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On the Weak-type Constant of the
Beurling–Ahlfors Transform
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1. Introduction

The Beurling–Ahlfors operator B defined on Lp(C) by

Bf(z) = 1

π
p.v.

∫
C

f(w)

(z− w)2
dm(w) (1.1)

is a well-known example of a Calderón–Zygmund singular integral operator of
convolution type. The operator arises naturally in the study of the regularity of
solutions of the Beltrami equation and thus has applications to quasiconformal
mapping theory and partial differential equations (see [1; 9; 12; 14; 15]). In partic-
ular, the Iwaniec conjecture [12] that the Lp norm

‖B‖p = p∗ − 1, (1.2)

where 1 < p < ∞ and p∗ = max
{
p, p

p−1

}
, is partly motivated by its relation to

the Gehring–Reich conjecture proved by Astala in [1]. (The lower bound of p∗−1
was obtained by Lehto [16] in 1965.) Recent work has revealed B as an exemplary
junction between Fourier analysis and probability, and martingale methods estab-
lished by Burkholder have led to the present best known estimates on ‖B‖p; see
[3; 4; 10].

In this paper we investigate the action of B on the radial function subspaces (for
m a nonnegative integer)

Rp
m = {f ∈Lp(C) : f(re iθ ) = H(r)e−imθ }, (1.3)

and we arrive at a corresponding family of one-dimensional operators {�m}m≥0

on Lp([0,∞)) defined by

�mg(u) = (Hm − I )g(u) = 2m+ 2

m+ 2

∫ 1

0
g(uv2/(m+2)) dv − g(u)

=
∫ 1

0
g(uv)(m+ 1)vm/2 dv − g(u). (1.4)
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In his attempts to simplify the proof of Hilbert’s double series theorem, Hardy
showed in 1920 (see [11, Thm. 327; 18, Sec. 2.4]) that∫ ∞

0
|H0g(u)|p du <

(
p

p − 1

)p ∫ ∞

0
|g(u)|p du.

This is Hardy’s famous inequality with best constant, which has led to wide re-
search in basic inequalities and is at the heart of much of modern harmonic analy-
sis. In view of this fact, Hm may be referred as the Hardy average operator of
order m, and H := H0 as simply the Hardy operator.

The next objective is naturally to exploit the connection between B and the �

family. The following is an immediate but nontrivial fact that follows fromB being
an L2 isometry.

Theorem 1.1. For each m ≥ 0, �m is an L2([0,∞)) isometry.

Similarly, since �m is a one-dimensional operator, it is likely easier to derive in-
formation on its norm; whatever is gained then automatically gives parallel infor-
mation on B|Rp

m
. Indeed, better norm estimates are obtained on these spaces. In

the special case m = 0 and 1 < p ≤ 2, the Lp norm ‖�0‖p equals p∗ − 1, which
is a direct consequence of results in [2]. These results are discussed in Sections 4
and 5. The main result of this paper is computation of the weak-type constant of
�0 and thereby a new lower bound for the weak-type constant of B. Recall that
the general Calderón–Zygmund theory shows that B is Lp bounded for 1 < p <

∞ but not for p = 1. Instead there exists a universal constant C1 > 0 such that,
for all f ∈L1(C) and λ > 0,

m{z∈C : |Bf(z)| > λ} ≤ C1

λ
‖f ‖1.

This is the weak-type (1,1) inequality, and the minimal C1 is the weak-type (1,1)
norm of B denoted in this paper by ‖B‖w(1).

Theorem 1.2.
‖B‖w(1) ≥ ‖�0‖w(1) = 1

log 2
. (1.5)

Remark 1.1. In the first version of this paper, the authors had made the as-
sumption in the proof of Theorem 3.2 (without actually calculating (3.4)) that
µ[0,β) = 0 is an optimizing condition. This required that we fix β = e

λ
in (3.3)

and gave the smaller bound of e
2 . James Gill (personal communication) pointed out

that this condition is not optimizing and that the constant is actually 1
log 2 . Except

for the change in (3.3) and (3.4), the arguments here are exactly as in that first
version.

The rest of the paper is organized as follows. In Section 2 we prove the isometry
of �m on L2 and, along the way, derive various properties of B acting on Rp

m; in
this section we also prove Theorem 1.1. In Section 3, we prove the weak-type esti-
mates for �0 and derive the consequences for B. In Sections 4 and 5, we derive Lp

estimates for �0 and �m, respectively. We end the paper with a conjecture on the
possible best weak-type (1,1) constant for B restricted to real-valued functions.
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2. �m is an L2 Isometry

Iwaniec shows in [13] that the BMO2 norm of B is exactly 3. In Section 1 he writes
(independent of his main result): “The following formulas are worth recording.”
For each integer m ≥ 0, let

ρm,r (z) = z̄mχB(0,r)(z). (2.1)

Then

Bρm,r (z) = r 2m+2

zm+2
χB(0,r)c (z). (2.2)

Here B(0, r) = {z∈C : |z| < r} is the disk of radius r and B(0, r)c = C \B(0, r)
is the complement. Iwaniec actually proves this formula for the special case when
r = 1. Equation (2.2) follows from this because the Beurling–Ahlfors commutes
with dilations, and it is used in what follows to find the formula that relates �m

and B.

Remark 2.1. (1) Iwaniec also gives Bρ(z) = (1+ log|z|2)χB(z), where ρ(z) =(
z

|z|
)2
χB(z). Because

∫
Bρ · ḡ = ∫

ρBḡ for g a radial complex-valued function
(see Theorem 2.1), the action of B on ρ corresponds to the action of the adjoint
of �0. Hence, for such a class of functions we expect parallel Lp estimates in the
range 2 < p <∞.

(2) James Gill (personal communication) has computed that the adjoint also has
the weak-type constant 1

log 2 . This is work in preparation.
(3) We may also question whether the nonnegative integer m can be replaced

by nonnegative reals and then similar formulas obtained.

2.1. �m and B

Let Sp
m be the subspace of Rp

m containing functions of the form

z̄m
∑
k

akχB(0,rk)(z),

where ak ∈C for each k and where 0 < r1 < r2 < · · · .
Proposition 2.1. Sp

m is an Lp dense subset of Rp
m. That is, given ε > 0 and

f ∈Rp
m, there exists a g ∈ Sp

m such that ‖f − g‖p < ε.

Proof. Let f(z) = z̄m

|z|m h(z) where, without loss of generality, h ∈ Rp

0(C) ∩
C∞c (C). Assume that f is supported in B(0,R). For M a positive integer and N

such that
⌈

N
M

⌉ = �R�, define

fM(z) = z̄m

|z|m
N∑
k=1

h

(
k − 1

M

)
χAk

(z),

where Ak = B
(
0, k

M

) \B(
0, k−1

M

)
. Choose M large enough that ‖f − fM‖∞ < ε.

Then ‖f − fM‖p < ε|B(0,R)|. In particular, fM → f in Lp. Hence we can
assume without loss of generality that
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f(z) = z̄m

|z|m
N∑
k=1

akχB(0,k/M)(z) = z̄m

|z|m
N∑
k=1

ãkχAk
(z).

For δ > 0, define also

f̃δ(z) = z̄m

|z|m
N∑

k=2

ãk

r m
k−1

|z|mχAk
(z)χB(0,δ)c (z).

Then

|f̃δ − f | ≤ |fχB(0,δ)| +
N∑

k=�δM�
|ãk|

∣∣∣∣ |z|
m

r m
k−1

− 1

∣∣∣∣χAk
(z)

≤ |fχB(0,δ)| +
( |z|m
r m
k−1

− 1

)
|fχB(0,(�δM�−1)/M)c |.

It is clear that ‖f̃δ − f ‖p < ε for δ small and M large. Since g = f̃δ is in Sp
m, the

proof is complete.

Given f(z) = z̄m
∑

k akχB(0,rk)(z), it follows from (2.2) that

Bf(z) =
∑j

k=1 ak r
2m+2
k

zm+2
, rj ≤ |z| < rj+1. (2.3)

The fundamental representation theorem may be stated as follows.

Theorem 2.1. Let f ∈Rp
m. Then Bf ∈Rp

m+2 and

Bf(z) = z̄2

|z|2
[

2m+ 2

m+ 2

∫ 1

0
f(v1/(m+2)z) dv − f(z)

]
. (2.4)

Proof. The formula clearly shows that B : Rp
m → Rp

m+2. It suffices to prove the
theorem for f(z) = z̄m

∑
k akχBk

(z); the general case then follows by approxi-
mation. Let rn ≤ |z| < rn+1 and define σ(k, z) = ( rk

|z|
)m+2

. We have∫ 1

0
f(v1/(m+2)z) dv = z̄m

∫ 1

0
vm/(m+2)

∑
k

akχBk
(v1/(m+2)z) dv

= z̄m

∫ 1

0
vm/(m+2)

∑
k

akχ[0,σ(k,z))(v) dv

=
n∑

k=1

(∫ σ(k,z)

σ(k−1,z)
vm/(m+2)

( ∞∑
l=k

al

)
dv

)
z̄m

+
∫ 1

σ(n,z)

vm/(m+2) dv

( ∞∑
l=n+1

al

)
z̄m

= m+ 2

2m+ 2

z̄m

|z|2m+2

n∑
k=1

( ∞∑
l=k

al

)
(r 2m+2

k − r 2m+2
k−1 )

+ m+ 2

2m+ 2
z̄m

(
1−

(
rn

|z|
)2m+2)( ∞∑

l=n+1

al

)
.
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Since f(z) =∑∞
l=n+1 al , it follows that

z̄2

|z|2
(

2m+ 2

m+ 2

∫ 1

0
f(v1/(m+2)z) dv − f(z)

)
= 1

zm+2

n∑
l=1

alr
2m+2
l .

By (2.3), this equals Bf(z).

Given f ∈L2(0,∞), let f̃ (z) = f(|z|2) be the associated radial function and let
F(z) = z̄m

|z|m f̃ (z). Define the operator �̃m by

�̃mg(z) = 2m+ 2

m+ 2

∫ 1

0
g(v1/(m+2)z) dv − g(z),

so that BF(z) = (
z̄

|z|
)2
�̃mF(z) by Theorem 2.1. Observe finally that

BF(z) = z̄m+2

|z|m+2
�mf(|z|2). (2.5)

2.2. Proof of Theorem 1.1

The first step is to prove that �m preserves the L2-inner product.

Theorem 2.2. Let f , g ∈L2(0,∞). Then
∫ ∞

0
�mf(u)�mg(u) du =

∫ ∞

0
f(u)ḡ(u) du.

Proof.
∫ ∞

0
�mf(u)�mḡ(u) du =

∫ ∞

0
�mf(|z|2)�mg(|z|2) d(|z|2)

=
∫ ∞

0
�̃mf̃ (re

iθ )�̃mg̃(re
iθ ) d(r 2)

= 1

π

∫ ∞

0

∫
∂B(0,r)

�̃mf̃ (η)�̃mg̃(η) dσ(η) dr

= 1

π

∫
R2

�̃mF(z)�̃mG(z) dz.

In the last line, F(z) = z̄m

|z|m f̃ (z) and G(z) = z̄m

|z|m g̃(z). Because of the conjuga-
tion of G, the two unimodular terms cancel out and the integral value does not
change. It is important to note that F,G∈R2

m; hence, for instance,

BF(z) = z̄2

|z|2 �̃mF(z).

As a consequence,
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∫ ∞

0
�mf(u)�mg(u) du = 1

π

∫
R2

BF(z)BG(z) dz

= 1

π

∫
R2

F(z)G(z) dz

...

=
∫ ∞

0
f(u)ḡ(u) du.

This completes the proof of the theorem.

Proof. An alternate direct proof may also be obtained using the integration-by-
parts technique employed by Hardy. We outline such a proof.

Let f , g ∈C∞c ([0,∞)). A change of variables reveals that

Hmf(u) = 1

u(m+2)/2

∫ u

0
f(v)(m+ 1)vm/2 dv.

Let F(u) = ∫ u

0 f(v)(m+ 1)vm/2 dv and G(u) = ∫ u

0 g(v)(m+ 1)vm/2 dv. Then∫
�mf ·�mḡ

=
∫ (

F − u(m+2)/2f

u(m+2)/2

)
·
(
G− u(m+2)/2ḡ

u(m+2)/2

)

= 1

m+ 1

∫ [
(G− u(m+2)/2ḡ )

(
m

2
f − uf ′

)

+ (F − u(m+2)/2f )

(
m

2
ḡ − uḡ ′

)]
u−(m+2)/2 du

= − m

m+ 1

∫
fḡ + m

2(m+ 1)

∫
u−(m+2)/2(Gf + Fḡ)

+ 1

m+ 1

∫
[(G− u(m+2)/2ḡ )(−u−m/2f ′)+ (F − u(m+2)/2f )(−u−m/2ḡ ′)].

Applying integration by parts to the last term shows that it equals

−m

2(m+ 1)

∫
u−(m+2)/2(Gf + Fḡ)+ 2m+ 1

m+ 1

∫
fḡ.

Hence the sum equals
∫
fḡ as required.

Although this proof is straightforward, it would not be intuitive to guess that �m

preserves inner product without knowledge of its relationship withB. Furthermore,
our proof that �m is a surjection, and hence an isometry on L2([0,∞)), depends
on the corresponding property of B.

Theorem 2.3. �m : L2([0,∞))→ L2([0,∞)) is a surjection.

Proof. Let h ∈ L2([0,∞)) and let h̃ ∈ L2(C) be the associated radial function:
h̃(z) = h(|z|2). Define H(z) = z̄m+2

|z|m+2 h̃(z). Then it is easy to check that H̃ =
B̄H ∈R2

m. To see this, write out the singular integral and observe how the argument
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of H̃ changes as that of z is varied. It follows that H(z) = z̄2

|z|2 �̃mH̃(z) and h̃(z) =
�̃m

( |z|m
z̄m

H̃
)
(z). It follows that h is in the range of �m.

Thus �m preserves inner product and is onto; hence it is an L2 isometry. This
completes the proof of Theorem 1.1.

3. The Weak-type Estimates for �0 and B

� := �0 is defined on L1([0,∞)) by

�f(u) = Hf(u)− f(u)

= 1

u

∫ u

0
f(v) dv − f(u)

=
∫ 1

0
f(uv) dv − f(u).

Because the delta measure plays a crucial role in the optimization procedures of
the proofs, it is useful to generalize the definition for arbitrary finite measures as
follows. Let dµ(v) = f(v) dv+ dν(v), where ν is mutually singular with respect
to the Lebesgue measure. Define

�µ(u) = Hµ(u)− f(u)

= µ([0, u])

u
− f(u).

Define the weak-type “norm” of a function F as

‖F‖w(1) = sup
λ>0

λm{u∈ [0,∞) : |F(u)| > λ};

here, as always, dm(u) denotes the Lebesgue measure.

Theorem 3.1. Let dµ = fdv + dν be a positive finite measure [0,∞). Then

‖�µ‖w(1) ≤ ‖µ‖1.

This is best possible.

Proof. Without loss of generality, assume ‖µ‖1 = 1. Observe that:

(1) Hδ0(x) = 1
x
;

(2) since µ ≥ 0, |�µ| ≤ max(f , Hµ);
(3) {max(f , Hµ) ≥ λ} = {max(f ∧ λ, Hµ) ≥ λ}; and
(4) if

∫ x

0 f ≤ ∫ x

0 g for all x > 0, then Hf ≤ Hg.

In light of (3) and (4), it is optimizing to assume that µ = aδ0 + λχE , where
m(E) = 1−a

λ
. (In regions where f < λ, |�µ| ≥ λ only if Hµ ≥ λ, and Hµ would

be higher if we took the f values here—along with the singular ν measure—and
stored them at 0.)

So assume that µ has this form with f = λχE. Then

Hµ(u) = a

u
+ λ|E ∩ [0, u)|

u
,



466 Rodrigo Bañuelos & Prabhu Janakiraman

and Hµ(u) ≥ λ if and only if |E ∩ [0, u)| ≥ λu−a
λ

. Since u − |E ∩ [0, u)| =
|[0, u) \ E|, it follows that Hµ(u) ≥ λ if and only if |[0, u) \ E| ≤ a

λ
. Let u∗ be

the maximal such u. Note that u∗ ≤ 1
λ
.

The set {max(f , Hµ) ≥ λ} has an intersection within [0, u∗ ] and also one out-
side of it. The outside part reduces to E \ [0, u∗ ]; the inside part is the union of
{Hµ ≥ λ} and E ∩ [0, u∗ ]. This is the same as

({Hµ ≥ λ} \ E) ∪ (E ∩ [0, u∗ ]) ⊂ ([0, u∗ ] \ E) ∪ (E ∩ [0, u∗ ]).

Therefore, joining the outside and inside shows that

{max(f , Hµ) ≥ λ} ⊂ ([0, u∗ ] \ E) ∪ E.

We thus conclude that

m(|�µ| ≥ λ) ≤ m(max(f , Hµ) ≥ λ)

≤ |[0, u∗ ] \ E| + |E|
≤ a

λ
+ 1− a

λ
= 1.

Since ‖µ‖1 = 1, this completes the proof of the theorem. To show that this is op-
timal, just take µ to be the delta measure δ0.

Alternatively, we can argue as follows.

Proof. Let a1 = sup{x > 0 : Hµ(x) ≥ λ}. Then Hµ(a1) = λ and Hµ(x) < λ

for x > a1. Store all of µ([0, a1)) in 0: that is, replace µ by µ([0, a1])δ0+µ|(a1,∞).

Observe that the choice of a1 implies µ([0, a1]) = λa1. In particular,

m{x < a1 : |�µ(x)| ≥ λ} = a1 = µ([0, a1))

λ
. (3.1)

Notice that {x > a1 : |�µ(x)| ≥ λ} is a subset of {x > a1 : f(x) ≥ λ} because
|�f | ≤ max(f , Hµ) and Hµ(x) < λ here. Therefore,

m{x > a1 : |�µ(x)| ≥ λ} ≤ 1

λ

∫ ∞

a1

f ≤ µ((a1,∞))

λ
. (3.2)

Combining (3.1) and (3.2) finishes the proof.

Thus the positive measure case follows from a rather trivial-looking proof. The be-
havior of� on positive measures is controlled by that of the maximum of the Hardy
operator and the identity, which fortunately is easy to analyze in the weak-type
case. What happens, then, when the domain is the general finite measure space? It
is easy to see that, since |Hµ| ≤ H|µ|, the weak-type norm of the Hardy operator
remains the same (one) with the delta measure δ0 as extremal. The � operator, on
the other hand, appears much more formidable, and the subtracted H− I actually
turns out to have a higher weak-type constant 1

log 2 as stated in Theorem 1.2. For-
tunately again, the operator allows for a constructive optimization procedure (in
the weak-type case) that can be taken to the end. We begin with obtaining upper
estimates by finding the weak-type constants of a couple of bigger operators.
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Consider 5 defined by

5f(u) = f(u)+ ‖f ‖1

u
.

It is clear that |�f | ≤ H|f | + |f | ≤ 5|f | and hence ‖�‖w(1) ≤ ‖H + I‖w(1) ≤
‖5‖w(1).

Proposition 3.1. ‖5‖w(1) is the unique solution of the equation

α − eα−2 = 0.

Proof. Without loss of generality, assume that ‖f ‖1 = 1 and is nonnegative. Note
that 5f(u) = f(u)+ 1

u
is bigger than λ when u ≤ 1

λ
. To obtain the upper bound,

consider the graph of 1
u

and find α such that
∫ α

1/λ

(
λ− 1

u

)
du = 1.

Thus the contribution of

f(u) =
(
λ− 1

u

)
χ(1/λ,α)(u)

is kept completely separate from the place where 1
u

exceeds λ. Moreover, this is
the optimal way to choose f because, at points further away, more height is re-
quired to make f(u)+ 1

u
= λ.

It is a simple exercise to show that α solves the equation αλ−eαλ−2 = 0. Since
this choice of f is optimizing, the weak-type constant of 5 is as required. By a
numerical calculation we see that the value is slightly smaller than 3.15.

A better estimate is obtained by considering H+ I.

Proposition 3.2. ‖�‖w(1) ≤ ‖H+ I‖w(1) = 2.

Proof. It suffices to work with nonnegative functions. Observe that Hf + f ≤
2 max{Hf , f }, and hence 2 is an upper bound (following the proof of Theorem 3.1).
To see that it is also a lower bound, consider f(u) = λ

2χ[0,1].

The next theorem estimates ‖�‖w(1) from below.

Theorem 3.2. ‖�‖w(1) ≥ 1
log 2 .

Proof. In Theorem 3.1 it is shown that the positive function case is optimized by
the delta measure. Then �δ0(u) = Hδ0(u) = 1

u
. Starting at u = 1

λ
, a negative

function f = fχ(1/λ,β) can be added so that �µ = Hµ − f = λ in
( 1
λ

,β
)
. This

addition increases both the measure in consideration and the total integral. It is
shown that the optimal β = 2

λ
.
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Let dµ(u) = δ0(u)+ f(u) du satisfy the following conditions:

(1) for 0 < t < β − 1
λ

,

1+ ∫ 1/λ+t

1/λ f(v) dv

1/λ+ t
− f

(
1

λ
+ t

)
= λ;

(2) f(u) = 0 for u > β.

The unique solution is

dµ(u) = δ0(u)− λ log(λu)χ(1/λ,β)(u) du. (3.3)

It can be verified that
λm{|�µ| ≥ λ}

‖µ‖ = βλ

2− βλ+ βλ logβλ
, (3.4)

which acquires maximum value 1
log 2 at β = 2

λ
. Hence 1

log 2 is a lower bound for
the weak-type constant.

The next result is an immediate consequence of Theorem 3.2.

Corollary 3.1. ‖B‖w(1) ≥ 1
log 2 .

Proof. Let f̃ (z) = f(|z|2) be radial. We have

m(|Bf̃ | ≥ λ) = m(|�̃f̃ | ≥ λ)

=
∫ ∞

0
χ{r :|�̃f̃ (re i0 )|≥λ}(s)2πs ds

=
∫ ∞

0
χ{r :|�f(r 2)|≥λ}(s)2πs ds

= π

∫ ∞

0
χ{r :|�f(r 2)|≥λ}

(√
s

)
ds

= π

∫ ∞

0
χ{r :|�f(r)|≥λ}(s) ds

= π|{|�f | ≥ λ}|.
Now observe that ‖f̃ ‖L1(R2) = π‖f ‖L1(0,∞). The proof follows from the corre-
sponding lower-bound theorem for �.

This also proves the first inequality of Theorem 1.5. The most difficult work is in
showing that 1

log 2 is also the upper bound for the weak-type constant of �. Luckily
the most straightforward approach works. We are able to establish an optimiza-
tion process that starts with an arbitrary function and ends up with a measure that
has a form analogous to (3.3). That is, the optimizing representative will have
a delta measure followed by a logarithmic negative function. Then Theorem 3.2
shows that the function in (3.3) is the weak-type extremal, and hence 1

log 2 is the
upper bound.
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Notation. For convenience, f is used to denote the entire measure µ and not
just the absolutely continuous part.

Theorem 3.3. Let f be real-valued and integrable. Then

‖�f ‖w(1) ≤ 1

log 2
‖f ‖1.

This is best possible.

Proof. Start, without loss of generality, with a continuous function f on [0,∞).

The proof proceeds in fourteen steps as follows.
1. A slight modification will ensure that Hf is nonnegative. Just change the sign

of f , in the intervals where it is negative, in a sequential manner. (Changing f at
x does not affect values at y < x but could affect values at y > x; this is why the
procedure should be done from left to right.) The resulting function is piecewise
continuous, but neither |f | nor |�f | has been changed. In all the modifications
that follow, Hf remains nonzero and generally increases. This is reiterated at var-
ious points hereafter.

2. Type-1optimization. Identify the maximal a1 satisfying Hf(a1) = λ. Without
loss of generality, assume a1 > 0. (Otherwise add an infinitesimal value at 0.)
Observe that by storing fχ(0,a1) at 0, as

(∫ a1

0 f
)
δ0, we have Hf(x) > λ for 0 <

x < a1 and values after a1 remain unchanged.
3. Partition as 0 < a1 < a2 < · · · → ∞, where f < 0 in (a1, a2), f ≥ 0 in

(a2, a3), and so on in an alternating manner. Without loss of generality, assume
that f < 0 immediately after a1; otherwise, an infinitesimal modification will ob-
tain this.

4. Type-2 optimization. It is shown next that f may be assumed to equal either
λ or 0 wherever it is nonnegative. Suppose f ≥ 0 in Ii = (ai, ai+1) for some
i �= 0. Then Hf(u) < λ in this region (since u > a1), so if |�f | ≥ λ then f ≥ λ.

The upper estimate will be obtained by considering only f ; hence a modification
that increases Hf without changing where f ≥ λ (or properly compensating for
any changes) will not adversely affect the net measure.

5. For this purpose, replace f here with f ∧ λχf≥λ and store all of the re-
moved integral at 0. The storage at 0 increases Hf everywhere. The estimation
in regions where f < 0 will be improved because |�f | increases there. Where
f ≥ 0, as said before, since only f is considered, it follows that the maximal re-
gion where the original function was≥ λ will still remain the same (with= λ). As
for the possibility that in these regions more points occur (owing to modification)
where Hf > λ, the issue is avoided by repeating Type-1 optimization with this
new function. So a new a1 starts off the show, with all of (0, a1) being included
in the measure count and after which Hf may play a role only where f < 0. In
the end, f starts as a delta measure and then, after a1 switches between − and +,
f takes as its value either 0 or λ in + regions. Note that Hf remains nonnegative
throughout and is less than λ after a1.

6. The objective is to initiate a reduction process that eliminates all but [a0, a1),
[a1, a2), and [a2,∞). Then a simple optimization is done to prove the theorem.
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7. MOD 1. First remove f in (a2, a3) (where f ≥ 0) and make it 0 there. The
integral loss would be β = ∫ a3

a2
f : store this instead at 0. Observe that β

λ
≤ a3−a2

since f ≤ λ in this region by Type-2 optimization. The values after a3 are un-
changed for f and Hf ; however, the Hf has increased in (0, a3).

8. Two things must be considered. First, there may have been points in (a2, a3)

where f = λ, and these must be compensated. Second, the modification has made
Hf(a1) > λ. These are fixed in the next step.

9. Compensation for potential loss of {f = λ}. We remark that β

λ
= 1

λ

∫ a3

a2
f ≤

a3 − a2 is the maximal measure in the region of removal where f could have
equaled λ; we would obtain this measure if and only if f = λ wherever it is non-
zero. Now make the second modification, MOD 2: shift the negative f in (a1, a2)

to
(
a1+ β

λ
, a2 + β

λ

)
without any changes ( just translation). Since we have stored

at 0 the measure
(
λa1+ β

λ

)
δ0 and since H((

λa1+ β

λ
)δ0

)
(a1+ β

λ

) = λ, the MOD 2
acquires the entire set

(
a1, a1+ β

λ

)
of measure β

λ
within {|�fnew| ≥ λ}, where fnew

is the modified f. Thus the potential loss of {f = λ} ∩ (a2, a3) that occurred from
MOD 1 is optimally compensated by MOD 2.

10. It is clear that the “new a1” should equal the present a1 + β

λ
. This change

in notation is made in step 12. Next it is verified that MOD 2 did not reduce the
subset in (a1, a2) where �f ≥ λ. That is, it is verified that

|{|�f | ≥ λ} ∩ (a1, a2)| ≤
∣∣∣∣{|�fnew| ≥ λ} ∩

(
a1+ β

λ
, a2 + β

λ

)∣∣∣∣.
As fnew

(
x + β

λ

) = f(x) for a1 < x < a2, we must check that Hfnew
(
a1+ β

λ
+ t

) ≥
Hf(a1+ t) for 0 < t < a2 − a1. In other words, is

(λa1+ β)+ γ

a1+ β/λ+ t
≥ λa1+ γ

a1+ t
?

Here λa1 is the original measure stored at 0 and hence integral of f up to a1
(
recall

that Hf(a1) = λ; the new a1 after verifications are done will be a1+ β

λ
, but not yet

)
.

Observe that γ is the integral of f in (a1, a1+ t) and of fnew in
(
a1+ β

λ
, a1+ β

λ
+ t

)
,

and γ is negative in value. Thus:

((λa1+ β)+ γ )(a1+ t) ? (λa1+ γ )

(
a1+ β

λ
+ t

)
,

β(a1+ t), ?
β

λ
(λa1+ γ ),

a1+ t ? a1+ γ

λ
,

t ?
γ

λ
.

Since γ is negative, each ? mark may be replaced with a ≥ sign. In other words,
the shifting of f is beneficial and increases the measure of set where �f ≥ λ.

Hence fnew is indeed a good optimization.
11. After MOD 1 and MOD 2, we have fnew < 0 in

(
a1 + β

λ
, a2 + β

λ

)
, fnew =

0 in
(
a2 + β

λ
, a3

)
, and fnew < 0 in (a3, a4). MOD 3: Switch

(
a2 + β

λ
, a3

)
and
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(a3, a4) (along with the corresponding function values). This joins the two alter-
nate negative intervals into one:

(
a1 + β

λ
, a2 + β

λ
+ (a4 − a3)

)
and moves the

intermediate 0 interval to
(
a2 + β

λ
+ (a4 − a3), a4

)
. Denote fnew as the function

after MOD 1 and MOD 2 and denote f̃new as the function after MOD 3 as well.
Then, for x < a4 − a3:

(a) a2 + β

λ
≤ a3;

(b) f̃new
(
a2 + β

λ
+ x

) = fnew(a3 + x);
(c)

Hf̃new

(
a2 + β

λ
+ x

)
= 1

a2 + β/λ+ x

∫ a2+β/λ+x

0
f̃new

= 1

a2 + β/λ+ x

∫ a3+x

0
fnew

≥ 1

a3 + x

∫ a3+x

0
fnew = Hfnew(a3 + x);

(d) both Hf̃new and Hfnew are less than or equal to λ in their corresponding 0-
intervals where f̃new = fnew = 0.

These facts imply that

m{|�f̃new| ≥ λ} ≥ m{|�fnew| ≥ λ}.
Thus MOD 3 is also optimizing.

12. Relabel f as f̃new, a1 as a1+ β

λ
, a2 as a2 + β

λ
+ (a4 − a3), and so on, fol-

lowing the rule described in step 3.
13. Repeat steps 3–12 indefinitely to obtain an optimizing f of the following

form: it is λa1δ0 at 0, has strictly negative values in some (a1, a2), and is 0 in
(a2,∞). Since Hf is nonnegative throughout, the absolute value of the integral
in (a1, a2) is less than or equal to λa1.

14. But at this stage the question remains: What is the optimal way to decrease
f in (a1, a2)? The log decrease of Theorem 3.2 is the right answer.

(a) First, note that if |�f | > λ anywhere in (a1, a2), then there is loss in mea-
sure of where �f ≥ λ. (The excess function pulls down Hf more quickly
and dissipates more quickly its allowed integral value.) So f should satisfy
�f ≤ λ. Now suppose in a subinterval (x, x + ε) that �f < λ.

(b) Set f = 0 in (x, x + ε). Observe that this modification (i) does not change
the values of f , Hf , and �f to the left of x, (ii) increases Hf and so �f =
Hf − f to the right of x + ε, and (iii) leaves Hf ≥ 0 everywhere. Although
we have increased Hf in (x, x + ε) (by eliminating negative values of f ),
the values of Hf remain less than or equal to λ. This is because x > a1 and
Hf(a1) = λ; hence, for the modified fnew,

Hfnew(x + δ) = 1

x + δ

∫ x

0
fnew ≤ Hf(x) ≤ λ.

In conclusion, it is favorable to set f = 0 in (x, x + ε), and we do so.
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(c) Next, it is optimizing (as shown before) to push out the intervening 0 regions
of f ; so repeating the previous optimizing procedures shows that the best op-
tion is to have |�f | = λ in (a1, a2). This is achieved by having f decrease
logarithmically to an optimizing choice of a2, which is precisely how the lower
bound is computed in Theorem 3.2. Thus the lower-bound example is also an
upper-bound extremal, and the weak-type constant ‖�‖w(1) = 1

log 2 .

This completes the proof of Theorem 3.3.

Theorem 3.3 and Corollary 3.1 together complete the proof of Theorem 1.5. An
interesting problem is to extend this result for complex-valued radial functions.

4. ‖�0‖p for 1<p< 2

Baernstein and Smith introduce in [2] the family S of stretch functions of the form
g(r)e iθ, where g : [0,∞)→ [0,∞) is nonnegative and locally Lipschitz, g(0) =
g(0+) = 0, and limr→∞ g(r) = 0. Consider the Cauchy–Riemann differential
operators

∂ = ∂x − i∂y

2
, ∂̄ = ∂x + i∂y

2
.

Then, for a stretch function h(re iθ ) = g(r)e iθ,

f̃ = ∂h = 1

2
(g ′ + r−1g) and Bf̃ = ∂̄h = ei2θ

2
(g ′ − r−1g).

It is shown in [2] that ‖Bf̃ ‖p ≤ (p∗ − 1)‖f̃ ‖p for 1 < p < 2. Hence Iwaniec’s
conjecture is verified (when 1 < p < 2) for the subspace

∂S = {∂h∈Lp(C;R) : h∈ S} ⊆ Rp

0(C).

Define
R̃p

0(C) = {f̃ ∈Rp

0(C) : Hf ≥ 0}
and ∂S ; = ∂S ∩ R̃p

0(C).

Lemma 4.1. ∂S ; is Lp dense in R̃p

0(C).

Proof. Let f̃ ∈ R̃p

0(C) ∩ C∞c (C). As before, let f : [0,∞) → R satisfy f̃ (z) =
f(|z|2); then Hf ≥ 0. Define g(r) = rHf(r 2). Then

1

2
(g ′(r)+ r−1g(r)) = f(r 2) = f̃ (z).

Thus ∂S ; ⊃ R̃p

0(C) ∩ C∞c (C) and hence is dense in R̃p

0(C).

Theorem 4.1. For 1 < p < 2, ‖�0‖Lp([0,∞),R) = p∗ − 1= 1
p−1.

Proof. It suffices to consider the action of �0 on functions satisfying Hf ≥ 0 or,
equivalently, the action of B on R̃p

0(C). In particular, ‖B‖Rp

0
= ‖B‖R̃p

0
= ‖�0‖p.

Refer to step 1 of the proof of Theorem 3.3.
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By Lemma 4.1, ∂S ; is dense in R̃p

0(C). Therefore, since Iwaniec’s conjecture
holds on ∂S ;, it follows that ‖B‖R̃p

0
= ‖�0‖p ≤ p∗ − 1. The extremal family

fε(u) = uε−1/pχ(0,1)(u) verifies that p∗ − 1 is also the lower bound. This com-
pletes the proof of the theorem.

Remark 4.1. (1) Theorems 3.3 and 4.1 also hold for the Beurling–Ahlfors trans-
form acting on functions of the form

∑
k fkχBk

, where the Bk are disjoint disks
and each fk is radially supported in Bk and with integral 0. This is because Bfk is
supported in Bk for each k.

(2) Instead of relying on the Baerstein–Smith result for stretch functions, it may
be possible to apply parallel techniques (i.e., to prove Sverák’s conjecture; see [2])
directly to �0. The authors were able to verify this for f smooth and decreasing
in [0,∞) and believe that some standard analysis should lead to the general result.

4.1. An Estimate for ‖�0‖Lp([0,∞),C)

Proposition 4.1. Given F : [0, a)→ C, smooth and compactly supported, there
exists a G = g1+ ig2 such that Hg2(t) < ε,

|�0F(t)| = |�0G(t)|, and |F(t)| = |G(t)|
for each t ∈ [0, a).

Proof. LetF = f1+ if2. First change the sign of f2 in all intervals where Hf2 < 0.
Then change the sign of f1 in all intervals where Hf1 < 0. Observe that the mod-
ifications ensure that Hf1 and Hf2 are nonnegative, so HF maps into the first
quadrant of the plane. Moreover, |�0F | and |F | remain unchanged because the
signs of Hfi and fi are modified simultaneously.

Let k initially equal 2. Let F1 = F.

(1) Multiply Fk−1 by ei(π/2k ). Then the range of the function is contained within
the arguments −π/2k and π/2k.

(2) If Fk−1 = h1 + ih2, then change the sign of h2 wherever Hh2 < 0. Let this
modified function be Fk. Note that HFk has arguments between 0 and π/2k.

(3) Add 1 to k.

Repeat these three steps until ‖Hh2‖∞ < ε (where Fk = h1 + ih2). Let G =
Fk. Note that |�0G| = |�0F | and similarly |G| = |F |.
Observe that, since G is bounded and compactly supported, ‖Hg2‖p may be taken
arbitrarily small by choosing ε small enough. Therefore,

‖�0F‖p = ‖�0G‖p ≈ ‖�0g1+ ig2‖p.
Hence the norm of �0 on complex functions over [0,∞) is no greater than the

norm of the operator L defined by LF = �0f1+ if2. In fact, it is equal because
for any real-valued function f there exists an f̃ with |Hf̃ | small. This is obtained
by multiplying f by a suitable sharply oscillating function with absolute value 1.
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Theorem 4.2. Let f = f1+ if2 ∈Lp([0,∞)) for 1 < p < 2. Then

‖Lf ‖p = ‖�0f1+ if2‖p ≤
Cp

p − 1
‖f ‖p, (4.1)

where

Cp = (1+ (p − 1)2p/(2−p))1/p√
1+ (p − 1)2p/(2−p)

. (4.2)

This Cp is slightly larger than the expected value of 1. The maximum is approxi-
mately 1.003074795 at p = 1.3224 (checked for various p-values using Maple).
The main estimate in the proof is not sharp enough to give 1.

Proof. The key estimate is

|�0f1+ if2|p ≤ |�0f1|p + |f2|p.
Since

∫ |�0f1|p ≤ (p∗ − 1)p
∫ |f1|p, the goal becomes to show that

(p∗ − 1)p
∫
|f1|p +

∫
|f2|p ≤ Cp(p

∗ − 1)p
∫
|f1+ if2|p

or, equivalently,∫ (|f1|p + (p − 1)p|f2|p − Cp

(√
f 2

1 + f 2
2

)p) ≤ 0.

By maximizing the function sp+ (p−1)p
(√

1− s2
)p

on (0,1), it can be deduced
that Cp equals the value in (4.2). (Note that the functions can be chosen so that
this is best possible.)

5. The Lp Norm Estimates for �m, m≥1

In this section, we give upper and lower estimates for the Lp norm of Hm, of �m,
and hence of B restricted to Rp

m spaces. As for the special case m = 0, the norm of
the general Hardy average operator Hm is amenable to computation via the stan-
dard Minkowski integral inequality. And the same extremal class works for all m.

Proposition 5.1. ‖Hm‖p = p(2m+2)
p(m+2)−2 .

Proof.

‖Hmf ‖p =
(∫ ∞

0

∣∣∣∣
∫ 1

0
f(uv)(m+ 1)vm/2 dv

∣∣∣∣
p

du

)1/p

≤
∫ 1

0

(∫ ∞

0
|f(uv)|p du

)1/p

(m+ 1)vm/2 dv

=
∫ 1

0
(m+ 1)vm/2−1/p dv‖f ‖p

= p(2m+ 2)

p(m+ 2)− 2
‖f ‖p.
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To show that the same constant is also a lower bound, verify that

fε(x) = x−1/p+εχ(0,1) (5.1)

extremizes the norm as ε → 0.

An immediate corollary is as follows.

Corollary 5.1.

‖B‖Rp
m
= ‖�m‖p ≤ (3m+ 4)p − 2

(m+ 2)p − 2
. (5.2)

The first equality follows from the representation Theorem 2.1 and the second in-
equality from the fact that ‖�m‖ = ‖Hm− I‖ ≤ ‖Hm‖+1. It is evident that this
upper bound is not the correct constant, since for p = 2 the value does not equal 1
(though �m is an L2 isometry). A lower bound

‖�m‖p ≥ mp + 2

p(m+ 2)− 2
, 1 < p <∞, (5.3)

may be obtained by considering the extremal family in (5.1) for Hm. Recall that
Iwaniec’s conjecture predicts ‖B‖p = 1

p−1 for 1 < p < 2, and observe that
‖�0‖p = 1

p−1 = p

p−1 − 1 for 1 < p < 2. Since ‖B‖Rp

0
= ‖�0‖p ≤ ‖B‖p, we

have the following reasonable conjecture.

Conjecture 1. For 1 < p < 2,

‖�m‖p = ‖Hm − I‖p = ‖Hm‖p − 1= mp + 2

p(m+ 2)− 2
(5.4)

with the extremal family as given in (5.1).

Naturally one might consider generalizing the techniques for the case m = 0 (in
[2]) to verify Conjecture 1. The conjecture is probably false for p > 2. In fact, it
is easy to see that

‖�m‖∞ = 2(m+ 1)

m+ 2
+ 1. (5.5)

An extremal is the function χ[0,1)−χ[1,2). At present, we do not have a conjecture
for p > 2.

Remark 5.1. For the operator �m (and �0), we may conjecture that the main re-
sults of the paper hold when �m acts on complex-valued functions. This is true for
the Hardy operators, but the subtraction by identity makes the problem nontrivial.

6. Concluding Remarks

Observe from Theorem 4.1 that the extremals for ‖B‖p, 1 < p < 2, are expected
to be radial, nonnegative, and decreasing. For p = 1, we have shown that the ex-
tremals for ‖B‖w(1) are definitely not nonnegative and radially decreasing. How-
ever, it may be expected that—at least in the real-valued setting—the extremals
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remain real-valued and radial. Therefore, a conjecture based on Theorem 1.2 could
be as follows.

Conjecture 2. For f ∈L1(C;R) and λ > 0,

λm{z∈C : |Bf(z)| > λ} ≤ 1

log 2
‖f ‖1.

This is best possible.

A natural question is whether the radial result can lead to a proof for Iwaniec’s
conjecture. It suffices to show that the conjecture is true for the class of simple
functions of the form

∑
i aiχBi

, where ai ∈C and {Bi} is a finite collection of dis-
joint unit disks. Given any fixed function f in this family, Bf can be explicitly
computed; however, even the case f = a1χB1+ a2χB2 appears impossible to ver-
ify because integration techniques are lacking. Still, owing to the explicit nature
of f and Bf , this class may be amenable to computer evaluations similar to those
performed in [2].
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