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Convergence of the Kähler–Ricci Flow and
Multiplier Ideal Sheaves on del Pezzo Surfaces

Gordon Heier

1. Introduction

Let X be an n-dimensional compact complex manifold with positive first Chern
class c1(X). Such manifolds are called Fano manifolds. The Kähler–Ricci flow
on X is defined by the equation

∂

∂t
gij̄ = −Rij̄ + gij̄ , (1)

where Rij̄ = −∂i∂j̄ log det gαβ̄ is the Ricci curvature tensor of the hermitian met-
ric

∑
i,j gij̄ dzi ⊗ dz̄j . If the class of the Kähler form ω̂ = i

2π

∑
i,j ĝij̄ dzi ∧ dz̄j

is c1(X), then the Kähler–Ricci flow preserves the class of i
∑

i,j ĝij̄ dzi∧ dz̄j , so
we can write

gij̄ = ĝij̄ + ∂i∂j̄ φ

for the solution to the Kähler–Ricci flow with initial condition

gij̄ (0) = ĝij̄ .

Equation (1) can be reformulated as

∂

∂t
φ = log

det gαβ̄
det ĝαβ̄

+ φ − f̂ , φ(0) = c0 ∈R, (2)

where f̂ is the Ricci potential; that is, for R̂ij̄ = −∂i∂j̄ log det ĝαβ̄ we have
R̂ij̄ − ĝij̄ = ∂i∂j̄ f̂ . It was proven in [Ca] that the solution to (1) exists for all
t > 0. This paper investigates the issue of convergence based on the following
theorem, which first appeared in [PSeS]. The version given here, which is stronger
than the one in [PSeS], is based on [PS].

Theorem 1.1 [PSeS; PS]. Let X be a Fano manifold. Consider the Ricci flow
in the form of (2) with the initial value c0 specified by [PSeS, (2.10)]. Then the
following two statements are equivalent.

(i) There exists a p > 1 such that

sup
t≥0

∫
X

e−pφω̂n <∞.

(ii) The family of metrics gij̄ (t) converges in C∞-norm exponentially fast to a
Kähler–Einstein metric.
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The preceding theorem will allow us to formulate the sufficient Criterion 1.6 for
statement (ii) to hold, in analogy to Nadel’s criterion for the existence of Kähler–
Einstein metrics (see [N1; DKo; He]). It is well known that some Fano manifolds
do not possess a Kähler–Einstein metric (e.g., P

2 blown up in one or two points;
see Section 5), so we cannot expect (ii) to hold in general on a Fano manifold. In
this paper, we mention no necessary condition for (ii) other than the existence of
a Kähler–Einstein metric.

First, we quickly recall the basics of multiplier ideal sheaves. The following
is the standard definition of the multiplier ideal sheaf pertaining to a plurisubhar-
monic function on a complex manifold.

Theorem 1.2 [N1]. Let ϕ be a plurisubharmonic function on the complex man-
ifold X. Then the multiplier ideal sheaf I(ϕ) is the subsheaf of OX defined by

I(ϕ)(U) = {f ∈OX(U) : |f |2e−ϕ ∈L1
loc(U)}

for every open set U ⊆ X. It is a coherent subsheaf.

Multiplier ideal sheaves have turned out to be very useful in algebraic geome-
try, mainly because of the following vanishing theorem. They are usually defined
using the notion of a singular hermitian metric on a line bundle, which in general
is a metric h that is given on a small open set U by h = e−ϕ , where ϕ is L1(U).

If ϕ is plurisubharmonic for every U, then the multiplier ideal sheaf I(h) attached
to h is defined by I(h)(U) = I(ϕ)(U) provided h = e−ϕ on U.

Theorem 1.3 (Nadel’s vanishing theorem). Let X be a compact complex Käh-
ler manifold. Let L be a line bundle on X equipped with a singular hermitian
metric such that the curvature current − i

2π ∂∂̄ logh is positive definite in the sense
of currents—in other words, there exist a smooth positive definite (1,1)-form ω

and an ε > 0 such that − i
2π ∂∂̄ logh ≥ εω. Then

Hq(X, (KX + L)⊗ I(h)) = 0 for all q ≥ 1.

We now develop a Nadel-type criterion for Theorem 1.1(ii) to hold. If we assume
that Theorem 1.1(ii) does not hold then, according to the theorem, for all p > 1
there exists a sequence of times ti →∞ with

lim
i→∞

∫
X

e−pφ(ti )ω̂n = ∞.

In fact, also

lim
i→∞

∫
X

exp

{
−p

(
φ(ti)− 1

V

∫
X

φ(ti)ω̂
n

)}
ω̂n = ∞,

whereV = ∫
X
ω̂n. Let ψ be an L1 limit of the sequence φ(ti)− 1

V

∫
X
φ(ti)ω̂

n. By
semicontinuity [ASi; DKo], ‖e−ψ‖Lp(X) = ∞. If G ⊆ Aut(X) is a compact sub-
group and if ω̂ is G-invariant, then we can assume ψ and I(pψ) to be G-invariant
as well.

We have
ω̂ + i

2π
∂∂̄ψ ≥ 0.
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Let ĥ be a smooth G-invariant hermitian metric for the anticanonical line bundle
−KX with 1

2πi ∂∂̄ log ĥ = ω̂ ∈ c1(X). The singular G-invariant hermitian metric
ĥ1+�p� · e−pψ is a singular metric for−(1+ �p�)KX with positive curvature in the
sense of currents:

− i

2π
∂∂̄ log(ĥ1+�p� · e−pψ) = − i

2π
∂∂̄ log(ĥ1+�p�−p · ĥp · e−pψ)

≥ (1+ �p� − p)ω̂.

Note that for all p > 1 we have 1+ �p� − p > 0.
Letting p = 3

2 (or any other number in the interval ]1, 2[) yields the following.

Theorem 1.4 (Nadel-type criterion). Let X be a Fano manifold. Assume that
Theorem 1.1(ii) does not hold. Then the G-invariant singular hermitian metric
h = ĥ2 · e−(3/2)ψ on the line bundle −2KX is such that

(i) the curvature of h is positive definite in the sense of currents,
(ii) 0 �= I(

3
2ψ

) �= OX.

The multiplier ideal sheaf I(
3
2ψ

)
is also G-invariant. In particular, every ele-

ment of G maps the zero set V
(I(

3
2ψ

))
to itself.

Note that we can apply Nadel’s vanishing theorem with h̃ = hhE = ĥ2 ·e−(3/2)ψhE
and L = −2KX+E, where E is an arbitrary line bundle with semipositive metric
hE , to obtain

Hq(X, (KX + L)⊗ I(h))
= Hq

(
X, (−KX + E)⊗ I(

3
2ψ

)) = 0 for all q ≥ 1. (3)

Definition 1.5. An ideal subsheaf I ⊆ OX is said to satisfy Property (Van) if,
for every semipositive line bundle E,

Hq(X, (−KX + E)⊗ I ) = 0 for all q ≥ 1.

The discussion so far can be summed up in the following sufficient criterion.

Criterion 1.6. Let X be a Fano manifold, and let G be a compact subgroup of
Aut(X). Let there be no nontrivial G-invariant subsheaf I ⊆ OX that satisfies
Property (Van). Then Theorem 1.1(ii) holds.

A criterion of this kind is the essence of Nadel’s technique, which can be ap-
plied under similar circumstances based on the continuity method for the Monge–
Ampère equation to show the existence of Kähler–Einstein metrics on certain Fano
manifolds [N1; DKo; He]). However, it is easier to handle Kähler–Einstein met-
rics instead of the Ricci flow with Nadel’s method because one can work with
a G-invariant singular hermitian metric for −KX instead of −2KX, resulting in
a cohomology vanishing statement for a G-invariant multiplier ideal sheaf I of
the form

Hq(X, (KX −KX)⊗ I ) = Hq(X, I ) = 0 ∀q ≥ 1. (4)
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Note that (4) yields more information on the zero set of I than (3). In fact, the
information in (4) is strong enough to prove the existence of Kähler–Einstein met-
rics on all del Pezzo surfaces of degree 4, 5, and 6 [He]. In this paper we show
that the information in (3) can be used to establish Theorem 1.1(ii) for certain non-
generic del Pezzo surfaces with large automorphism group. In particular, we will
prove the following result.

Main Theorem 1.7. Let X be one of the following del Pezzo surfaces:

(i) P
2 blown up in four points in general position;

(ii) P
2 blown up in five points in general position, where Aut(X) equals Z

4
2 �Z4,

Z
4
2 � (Z3 � Z2), or Z

4
2 � (Z5 � Z2).

Then Theorem 1.1(ii) holds.

The method of proof also applies to certain del Pezzo surfaces of low degree if their
automorphism group is large enough, as in the case of the Fermat cubic hyper-
surface in P

3 (see the remarks in Section 5).

Remark 1.8. It is a result of Perelman that, given the existence of a Kähler–
Einstein metric, the Kähler–Ricci flow will converge to it in the sense of Cheeger–
Gromov. It should be noted that Theorem 1.7 does not assume the existence of a
Kähler–Einstein metric. In fact, it proves the existence as an obvious corollary
to the convergence statement (ii) of Theorem 1.1. Moreover, note again that the
convergence in Theorem 1.1(ii) is very strong—namely, exponentially fast in the
C∞-norm.

Finally, let us remark that the nonexistence statements on multiplier ideal sheaves
that are established to prove Theorem 1.7 also yield a new result on Tian’s holo-
morphic invariant αG(X) (see [T1]). In fact, the following theorem is immediate
from our considerations.

Theorem 1.9. Let X be one of the del Pezzo surfaces described in Theorem 1.7.
Then αAut(X)(X) ≥ 2.

According to the comment immediately following Theorem 1.7, our methods also
give αAut(X)(X) ≥ 2 for certain del Pezzo surfaces X of low degree. When X is
the Fermat cubic hypersurface in P

3, Tian already found this lower bound in [T1,
Thm. 4.3].

Acknowledgment. The author would like to thank L. Ein for helpful com-
ments on an earlier version of this paper.

2. Classification and Basic Properties
of del Pezzo Surfaces

Definition 2.1. A del Pezzo surface is a two-dimensional compact complex
manifold X whose anticanonical line bundle −KX is ample. We call the self-
intersection number (−KX)

2 = K2
X the degree of X. We will denote the degree

also by δ.
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We now gather some important facts about del Pezzo surfaces that result in the
standard classification (see [MHaz; De; Ha]).

Facts 2.2. For every del Pezzo surface X, the Picard group PicX satisfies

rank PicX + δ = 10.

In particular, δ ≤ 9.
If δ = 9, then X is isomorphic to P

2. If δ = 8, then X is isomorphic either to
P

1 × P
1 or to P̃

2 (i.e., P
2 blown up at one point).

If 7 ≥ δ ≥ 1, then X is isomorphic to P
2 blown up at r = 9− δ points that have

the following properties:

(i) no three points lie on a line;
(ii) no six points lie on a conic;

(iii) no seven points lie on a cubic such that the eighth is a double point of the
cubic.

Any set of r = 9 − δ points satisfying these three properties will be said to be in
general position; conversely, the result of blowing up 1≤ r ≤ 8 points in general
position in P

2 is a del Pezzo surface. For 1≤ r ≤ 4 general points blown up, there
results in each case a unique del Pezzo surface. The reason is that, for any two
sets of points P1, . . . ,Pr and Q1, . . . ,Qr (r ≤ 4) with each set in general position,
there is an element A∈Aut(P2) = PGL(3, C) with A(Pi) = Qi (1≤ i ≤ r).

For our understanding of del Pezzo surfaces, the following facts about the anti-
canonical line bundle are also important.

Facts 2.3. Let 1 ≤ r ≤ 8. Let X be obtained by blowing up general points Pi,
i = 1, . . . , r. Let Ei denote the exceptional (−1)-curve that is the preimage of Pi.

Let π : X → P
2 denote the blowup map. Then

KX = π∗KP2 +
r∑

i=1

Ei.

This yields
dimH 0(X,−KX) = 10− r.

For 1 ≤ r ≤ 6, the complete linear system |−KX| gives an embedding into
P

9−r = P
δ. For r = 7, it gives a double cover of P

2. The complete linear system
|−2KX| gives an embedding into P

6. For r = 8, |−KX| has a unique base point,
|−2KX| gives a double cover of a singular quadric surface in P

3, and |−3KX| gives
an embedding into P

6.

Finally, it turns out that the number of (−1)-curves exceeds r on every del Pezzo
surface of degree at most 7. The reason is that, when blowing up two points in P

2,
the proper transform of the unique line through the two points becomes a (−1)-
curve as well. When blowing up five points, the unique conic through the five
points also becomes a (−1)-curve. It is easy to count these (−1)-curves: for r =
1, . . . , 8 their numbers are, respectively, 1, 3, 6,10,16, 27, 56, 240. It is interesting
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that for r = 1, . . . , 6 under the map given by |−KX|, all (−1)-curves become lines
in projective space. Hence they are often referred to as lines on X.

3. The Case of Four Points Blown Up

Let X be a del Pezzo surface obtained from blowing up four points. We may, and
do, assume these to be P1 = [1, 0, 0], P2 = [0,1, 0], P3 = [0, 0,1], and P4 =
[1,1,1]. It is known that Aut(X) is the Weyl group of the root system of Dynkin
type D5, which is S5 (see [K]; see also [Wi]). However, we would like to under-
stand Aut(X) more concretely.

First all of, there is a subgroup S4 of projectivities in PGL(3, C) = Aut(P2) that
preserve the set {P1,P2,P3,P4}. These projectivities lift to X, and we can write
S4 ⊂ Aut(X).

In addition, for every i = 1, . . . , 4 there exists a quadratic Cremona transforma-
tion Cri that leaves Pi fixed and has the three remaining points as indeterminacy
locus. (Note that such a Cri is defined only up to the action of the S3 ⊂ S4 con-
sisting of automorphisms fixing Pi; for our purposes, it does not matter which Cri
we choose.) All Cri extend to automorphisms of X. In light of this, we can write
Aut(X) set-theoretically as a disjoint union

Aut(X) = S4 �
( 4⊎

i=1

Cri � S4

)
.

In Sections 3.1 and 3.2 we will prove Theorem 1.7(i) by means of Criterion 1.6.

3.1. Zero-dimensional Multiplier Ideal Sheaves

Let I ⊆ OX be an Aut(X)-invariant ideal sheaf satisfying Property (Van). In par-
ticular, for E the trivial line bundle,

Hq(X, (−KX)⊗ I ) = 0 for all q ≥ 1. (5)

Let V = V(I ). Let dimV = 0; that is, V consists of a finite number of points.
Consider the short exact sequence

0 → I(−KX)→ OX(−KX)→ OV (−KX)→ 0.

Taking the corresponding long exact sequence yields

0 → H 0(X, I(−KX))→ H 0(X, OX(−KX))→ H 0(V, OV (−KX))

→ H1(X, I(−KX)).

From (5) it follows that H1(X, I(−KX)) = 0. Therefore, the map

H 0(X, OX(−KX))→ H 0(V, OV (−KX))

is surjective. We saw in Section 2 that dimH 0(X, OX(−KX)) = 10 − 4 = 6. As
a result, V consists of at most six points.

Proposition 3.1. There is no Aut(X)-invariant ideal sheaf I ⊆ OX satisfying
Property (Van) with dimV(I ) = 0.
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Proof. We assume that I exists and then derive a contradiction. Because V =
V(I ) has at most six points, the contradiction arises from the claim that all orbits
of Aut(X) have cardinality at least 8. In the sequel, we prove this claim.

If the cardinality of an orbit were 7 or less then it would actually be 6 or less, be-
cause the order of Aut(X) is not divisible by 7. The stabilizer subgroup of a point
in an orbit of cardinality 6 or less would be of order 120

6 = 20 or more. However,
the only subgroups of S5 of order 20 or more are S5, A5, S4, and the Frobenius
group Z5 � Z4, none of which has a faithful two-dimensional complex represen-
tation (on the tangent space to any point in the orbit). This yields the contradiction
we sought.

Remark 3.2. The nonexistence of faithful two-dimensional complex represen-
tations of S5, A5, S4, and Z5 � Z4 is a known fact in the representation theory
of finite groups. For the reader merely looking for a reference, we suggest [Dor,
Sec. 26], where a complete proof is given for Z5 �Z4. Alternatively, character the-
ory can be used to find, in an elementary way, all possible complex representations
of the groups in question (see e.g. [FH, Lect. 2]). With the lists of all possible rep-
resentations at hand, it is easy to check that there are no faithful two-dimensional
ones among them.

3.2. One-dimensional Multiplier Ideal Sheaves

Let I ⊆ OX be an Aut(X)-invariant ideal sheaf satisfying Property (Van). Let
V = V(I ), and let dimx V = 1 for all x ∈ V. We assume that the scheme defined
by I ⊆ OX has no embedded points; that is, I = OX(−D) for some effective divi-
sor D. Then there exist an effective divisor D ′ on P

2 and a sequence m1, . . . ,m4 ∈
Z such that

OX(−D) = π∗OP2(−D ′)⊗OX

( 4∑
i=1

miEi

)
.

Note that the support of D ′ is π(V ).

It follows from Property (Van) and [N2, Thm. 2.1] or [L] that

Riπ∗(I(−KX)) = 0 for i > 0

and
H i(P2,π∗(I(−KX))) = 0 for i > 0.

In particular,
H 2(P2,π∗(I(−KX)) = 0.

By the standard projection formula [F, p. 281] applied twice, for some k1, . . . , k4 ∈
N we have

π∗(I(−KX)) = π∗
(
π∗(−KP2 )⊗OX

(
−

4∑
i=1

Ei

)
⊗ I

)

= OP2(−KP2 )⊗ π∗
(
π∗OP2(−D ′)⊗OX

( 4∑
i=1

(mi − 1)Ei

))

= OP2(−KP2 )⊗OP2(−D ′)⊗mk1
P1
⊗ · · · ⊗mk4

P4
.
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Here we have used that, for all k ∈ N and i = 1, . . . , 4, π∗(OX(kEi)) = OP2 and
π∗(OX(−kEi)) = mk

Pi
.

Let OP2(−D ′) ∼= OP2(−d) with d ≥ 1. Then, by Serre duality,

0 = H 2(P2,π∗(I(−KX)))

= H 2(P2, OP2(−KP2 )⊗OP2(−D ′)⊗mk1
P1
⊗ · · · ⊗mk4

P4
)

= H 2(P2, OP2(−KP2 )⊗OP2(−D ′))

= H 2(P2, OP2(−KP2 )⊗OP2(−d))
= H 0(P2, OP2(2KP2 )⊗OP2(d ))

= H 0(P2, OP2(d − 6)).

Note that H 0(P2, OP2(d − 6)) = 0 if and only if d ≤ 5. From this information,
we will now extract information onV and show that no suchV can exist. First we
record two lemmas.

Lemma 3.3. Aut(X) acts effectively on any Aut(X)-invariant irreducible curve.

Proof. For any given element of Aut(X), it is easy to list the irreducible curves
that are left pointwise fixed by the given element (if any exist). However, none of
these curves are Aut(X)-invariant.

Lemma 3.4 [H, Exer. 20.18]. The number of singular points of an irreducible
plane curve of degree d is no more than its arithmetic genus, which is ga =
1
2 (d − 1)(d − 2).

Proposition 3.5. There is no Aut(X)-invariant ideal sheaf I ⊆ OX satisfying
Property (Van) with dimx V(I ) = 1 for all x ∈ V(I ) and such that the scheme
defined by I ⊆ OX has no embedded points.

Proof. We assume that I exists and derive a contradiction. We can assume with-
out loss of generality (w.l.o.g.) that no (−1)-curve is contained in V = V(I ), be-
cause otherwise the Aut(X)-invariance would imply that all ten (−1)-curves are
contained inV and that π(V ) has at least six irreducible one-dimensional compo-
nents, in violation of H 0(P2, OP2(d − 6)) = 0.

All elements f of Aut(X) are induced by an automorphism or birational map
of P

2 (again denoted by f ). For an irreducible curve C not contained in the ex-
ceptional set of π we thus have π(f(C)) = f(π(C)), where f(π(C)) is defined
to be the closure of f(π(C) ∩ Dom(f )).

First, let us assume thatV is irreducible. If d = 1, 2, thenV = P
1. This is a con-

tradiction, because S5 = Aut(X) acts effectively on V by Lemma 3.3 but S5 �⊆
PGL(2, C) (see [GB, Chap. 2]).

If d = 3, then ga = 1. Since Aut(X) acts on V with orbits of length at least
8, V is smooth by Lemma 3.4. We saw in Lemma 3.3 that S5 acts effectively on
all S5-invariant curves. However, it is not a subgroup of the automorphism group
of any elliptic curve, because it is well known (see [Mi, p. 64]) that the possible
automorphism groups of an elliptic curve are
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Z2 � C/2, Z4 � C/2, Z6 � C/2, (6)

none of which can contain S5. We have obtained a contradiction.
If d = 4 then ga = 3. Again, V is smooth. We will obtain a contradiction by

analyzing the Riemann–Hurwitz formula of the cyclic branched covering V →
V/S5. Since the only nontrivial cyclic subgroups of S5 are Z2, Z3, Z4, Z5, the car-
dinality of a given fiber of the covering is in the set {120, 60, 40, 30, 24}. Thus, the
Riemann–Hurwitz formula reads

2ga − 2 = 4 = 120(2gV/S5 − 2)+ 60j1(2− 1)+ 40j2(3− 1)

+ 30j3(4− 1)+ 24j4(5− 1)

for some j1, j2, j3, j4 ∈ N. Obviously, gV/S5 must be zero, so the formula can be
simplified to

122 = 30j1 + 40j2 + 45j3 + 48j4.

It is easy to check that this relation cannot be satisfied by any combination of non-
negative integers j1, j2, j3, j4 ∈N, so we have reached a contradiction.

If d = 5 then ga = 6. Again V is smooth, and the Riemann–Hurwitz relation
becomes

125 = 30j1 + 40j2 + 45j3 + 48j4.

This relation is satisfied precisely for the values j1 = j4 = 0, j2 = 2, and j3 = 1.
We will derive a contradiction from the fact j2 = 2, which means that there are
two branch points in V/S5 = P

1 over each of which are 40 points that each have a
stabilizer group isomorphic to Z3.

Let g be the element of Aut(X) induced by the matrix
 0 0 1

1 0 0
0 1 0


.

On P
2, this matrix has three fixed points:

P4 = [1,1,1], Q1 := [1, e2πi/3, e−2πi/3], Q2 := [1, e4πi/3, e−4πi/3].

Accordingly, g has four fixed points on X: the two above Q1,Q2 and two above
P4. The latter correspond to the intersection of the lifts of the two lines P4Q1 and
P4Q2 with the exceptional curve E4 over P4.

It is trivial to check that g generates a cyclic subgroup Z3 in Aut(X) = S5.

According to the Sylow theorems, there are ten (see [W]) such subgroups in S5,
all of which are conjugate to each other. Because they are all conjugate, the union
of all their respective fixed points cannot consist of more than 10 · 4 = 40 points.
However, j2 = 2 in the Riemann–Hurwitz relation requires that there be 80 such
points—a contradiction.

Next we treat the case where the number of irreducible components of V is 2.
For d = 2, the two components of π(V ) are lines. If the two lines intersected
outside of {P1,P2,P3,P4}, then the components of V would intersect in precisely
one point as well. Yet this is impossible because the minimum orbit length of the
action of Aut(X) is 8. Therefore, the two lines must each go through the same Pi.

It is now obvious that they are not invariant under S4 ⊂ S5.
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For d = 3, the components of π(V ) are a line and a conic. They must meet
in one (with multiplicity 2) or two of the {P1,P2,P3,P4}. We again obtain a
contradiction.

For d = 4, there are two cases. First, the components of V could be a ratio-
nal curve and an elliptic curve. They each must be invariant under S5, in which
case we obtained a contradiction earlier. Second, the components of π(V ) could
be two conics. Since the length of any orbit of the action of S5 is at least 8, these
conics must intersect precisely in the points P1 = [1, 0, 0], P2 = [0,1, 0], P3 =
[0, 0,1], and P4 = [1,1,1] so that they become separated under the blowing up.
Note that any conic through these four points is of the form

a0X1X2 + a1X0X2 + (−a0 − a1)X0X1 = 0,

yet any such conic is mapped to a line under Cr4, a contradiction.
For d = 5, the components of V are a rational curve and an elliptic curve or a

rational curve and a curve of genus 3. From the rational curve, which is preserved,
we get a contradiction.

Now we treat the case of three irreducible components. For d = 3, the com-
ponents of π(V ) are lines that meet in at most three of the points P1,P2,P3,P4.

Thus they cannot be invariant under the S4 action.
For d = 4, the three components ofπ(V ) are two lines and one conic. All points

of intersection must be contained in {P1,P2,P3,P4}, but the multiplicity will not
be the same at all Pi, i = 1, . . . , 4. This is again impossible by the S4-symmetry.

For d = 5, π(V ) consists of either two lines and an elliptic curve or one line
and two conics. In either case, we can argue as before to obtain a contradiction.

Now for the case of four irreducible components. If d = 4, then the com-
ponents of π(V ) are lines whose six (or fewer) points of intersection must be
{P1,P2,P3,P4} (counted with multiplicity). However, the multiplicity cannot be
distributed symmetrically, and we derive a contradiction from the action of S4.

If d = 5 then the components of π(V ) are three lines and a conic. The eight
points of intersection (counted with multiplicity) must either be contained entirely
in {P1,P2,P3,P4} or be disjoint from it. Containment is impossible because of
the S4-symmetry. Now, again by the S4-symmetry, all three lines must be disjoint
from {P1,P2,P3,P4}. As a consequence, the equations of the three lines are of
the form

a0X0 + a1X1 + a2X2 = 0

with a0, a1, a2 �= 0. Under Cr4 such lines are mapped to conics of the form

a0X1X2 + a1X0X2 + a2X0X1 = 0,

which is a contradiction.
Finally, we treat the case of five components. The only possibility is d = 5 and

π(V ) consisting of five lines. Since lines that are disjoint from {P1,P2,P3,P4}
are mapped to conics by Cr4, all five lines must have nonempty intersection with
{P1,P2,P3,P4}. Clearly, one point must be contained in two lines. By the S4-
symmetry, all points must be contained in two lines. Arguing again from the min-
imum orbit length of 8, we see that it is impossible for six or fewer points of
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intersection to be outside {P1,P2,P3,P4}, so all ten must be in this set. However,
it is impossible to distribute the ten points onto the four points with equal multi-
plicity. Therefore, the S4-action gives our final contradiction.

Propositions 3.1 and 3.5 prove Theorem 1.7(i) for pure-dimensional V(I ) in the
absence of embedded points. It is clear that the argument used to handle multiplier
ideal sheaves with zero-dimensional zero set goes through when one-dimensional
components (with or without embedded points) are present. So in order to prove
Theorem 1.7(i) completely, it remains only to indicate how to handle a purely
one-dimensional zero set that has embedded points as a scheme.

Toward this end, let I = ⋂
j∈J pj be a primary decomposition of I. Let

Ĩ = ⋂
j∈J̃ pj , where J̃ ⊆ J is such that there are no embedded points, but

set-theoretically V(I ) = V(Ĩ ). Then there is a short exact sequence

0 → I(−KX)→ Ĩ(−KX)→ (Ĩ/I )(−KX)→ 0.

Since H1(X, I(−KX)) = 0, the map

H 0(X, Ĩ(−KX))→ H 0(X, (Ĩ/I )(−KX))

is surjective. Clearly, dimH 0(X, (Ĩ/I )(−KX)) is at least as large as the cardi-
nality of the locus of embedded points, and

dimH 0(X, Ĩ(−KX)) ≤ dimH 0(X, OX(−KX)) = 6.

Thus, the cardinality of the locus of embedded points is at most 6. Since this locus
is preserved by Aut(X), we obtain a contradiction in exactly the same way as we
did in the proof of Proposition 3.1.

4. Five Points Blown Up

Let X be a del Pezzo surface obtained by blowing up five points. We can find an
automorphism of P

2 that takes the five points to P1 = [1, 0, 0], P2 = [0,1, 0],
P3 = [0, 0,1], P4 = [1,1,1], and P5 = [a, b, c] with (a, b, c) ∈ (C∗ × C

∗ × C
∗)\

{(1,1,1)}. (The reason for a, b, c �= 0 is that no three of these points lie on a line.)
The structure of Aut(X) is described in [Ho1], for example (see also [Wi]). It

turns out that this structure is always of the form

Aut(X) = Z
4
2 � GP5 ,

where GP5 is a subgroup of S5 depending on the point P5. The possibilities for
GP5 are: (i) {id}; (ii) Z2; (iii) Z4; (iv) Z3 �Z2; and (v) Z5 �Z2. The elements of
GP5 are lifts of those elements of PGL(3, C) that map the set {P1,P2,P3,P4,P5}
to itself. For a generic point P5, we have GP5 = {id}. More precisely, we have the
following statement.

Proposition 4.1. One has GP5 �= {id} if and only if P5 = [1, ξ, 1 + ξ ] with
ξ ∈ C\{0,1, −1}. Moreover, GP5 = Z2 holds precisely when ξ 2 + 1 �= 0 and
ξ 2 ± ξ ± 1 �= 0.



434 Gordon Heier

When GP5 �= {id}, [Bl, Prop. 8.1.11] gives explicitly the elements of GP5 ⊂
PGL(3, C) and their action on the set {P1,P2,P3,P4,P5}. Based on Proposi-
tion 4.1, it is clear that there exists one element of PGL(3, C) that is contained in
GP5 whenever it is not the trivial group—namely,

[X0,X1,X2 ] #→ [X2 −X1,X2 −X0,X2 ].

Next, we take a closer look at the elements of Z
4
2 ⊆ Aut(X). The following

two birational involutions of P
2 lift to elements of Aut(X). We define Cr45 to be

Cr45([X0,X1,X2 ]) = [aX1X2, bX0X2, cX0X1].

This is a quadratic Cremona transformation that exchanges P4 and P5 and has
{P1,P2,P3} as indeterminacy locus. We abuse notation and use Cr45 to signify
both the birational involution and the corresponding element of Aut(X).

Moreover, we let σ1 be the following cubic birational involution of P
2:

σ1([X0,X1,X2 ]) = [−aX1X2((c − b)X0 + (a − c)X1 + (b − a)X2),

X1(a(c − b)X1X2 + b(a − c)X0X2 + c(b − a)X0X1),

X2(a(c − b)X1X2 + b(a − c)X0X2 + c(b − a)X0X1)].

We use σ1 to denote both the birational involution and the corresponding element
of Aut(X). It is easy to see that the strict transform of the cubic curve C given by

b(a − c)X2
0X2 + c(b − a)X2

0X1 + a(a − c)X2
1X2

+ a(b − a)X1X
2
2 + 2a(c − b)X0X1X2 = 0

is precisely the set of points fixed pointwise by the lift of σ1. In addition, the fol-
lowing lemma tells us that C is invariant under every element of Z

4
2.

Lemma 4.2. Let A be an abelian group acting on a set M. For g ∈A, let

Mg = {x ∈M : gx = x}.
Then Mg is invariant under every element of A.

Proof. For x ∈Mg, for any h∈A we have

g(hx) = h(gx) = hx;
that is, hx ∈Mg also.

Closer inspection (cf. [K; Ho1; Wi]) shows that Z
4
2 ⊆ Aut(X) contains the lifts

of ten quadratic Cremona involutions Crij (1 ≤ i < j ≤ 5) that exchange Pi and
Pj and have the remaining three points as indeterminacy locus. Again, we abuse
notation and denote the maps before and after the lift by the same symbols Crij .

Moreover, Z
4
2 ⊆ Aut(X) contains the lifts of five cubic involutions σi (1 ≤

i ≤ 5). By comparing the respective action on the set of the sixteen (−1)-curves
(which determines any automorphism uniquely; see [K] or [Ho1]), it is easily ver-
ified that
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Crij � Crkl = Crkl � Crij ,

Crij � Crjk = Crik.

Moreover, for i, j, k, l,m all distinct, we have

σm = Crij � Crkl .

In particular,
σj = Cr1j � σ1 (2 ≤ j ≤ 5). (7)

The Crij have precisely four fixed points each (both before and after the lift-
ing). Thus, the only Z

4
2-invariant curves on which Z

4
2 does not act effectively are

the lifts of the curves C pertaining to the cubic involutions. For a, b, c �= 0, how-
ever, the curves C are smooth elliptic curves (easy exercise). Therefore, the group
Z

4
2 ⊂ Aut(X) acts effectively on any Aut(X)-invariant irreducible curve that is

not an elliptic curve.
In Sections 4.1 and 4.2 we will prove Theorem 1.7(ii) by means of Criterion 1.6.

4.1. Zero-dimensional Multiplier Ideal Sheaves

Let I ⊆ OX be an Aut(X)-invariant ideal sheaf satisfying Property (Van). Let
V = V(I ) and let dimV = 0. We saw in the previous section that the map

H 0(X, OX(−KX))→ H 0(V, OV (−KX))

is surjective. Since dimH 0(X, OX(−KX)) = 10 − 5 = 5, it follows that V con-
sists of at most five points.

Proposition 4.3. If GP5 = Z4, Z3 � Z2, or Z5 � Z2, then there is no Aut(X)-
invariant ideal sheaf I ⊆ OX satisfying Property (Van) with dimV(I ) = 0.

Proof. We assume that I exists and then derive a contradiction. SinceV = V(I )

has at most five points, the statement follows from the claim that all orbits of
Aut(X) have cardinality at least 8. In the sequel, we prove this claim.

We first consider the action of Z
4
2 ⊂ Aut(X) on X. There are no orbits of length

less than 4, which can be shown as follows. If we assume that there is such an
orbit, then the stabilizer subgroup (Z4

2)P of a point P in the orbit would be a sub-
group of order 8 or 16 in Z

4
2. The only such groups are Z

3
2 and Z

4
2, but by Schur’s

lemma these groups do not permit faithful two-dimensional complex representa-
tions (on the tangent space to any point in the orbit)—a contradiction.

Now let P ∈X be such that the cardinality of the orbit of P under Z
4
2 is #Z

4
2P =

4. The list in [Bl, Prop. 8.1.11] gives the action of GP5 on the elements of the set
{P1,P2,P3,P4,P5}. This data determines the action on the sixteen (−1)-curves
and therefore determines the automorphism uniquely.

When GP5 = Z4, Z3 �Z2, or Z5 �Z2, the claim is implied by #(Z4
2 �GP5)P ≤

8. A case-by-case analysis shows that if #(Z4
2 � GP5)P > 8 then

Z
3
2 ⊆ (Z4

2 � GP5)P ∩ Z
4
2,
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which yields a contradiction by Schur’s lemma. Note that the strict inequality
#(Z4

2 � GP5)P > 8 is necessary, because otherwise (Z4
2 � GP5)P = Z

2
2 � Z2 �∼=

Z
3
2 might (and does) occur.

4.2. One-dimensional Multiplier Ideal Sheaves

In this section, we prove the following result.

Proposition 4.4. If GP5 = Z4, Z3 � Z2, or Z5 � Z2, then there is no Aut(X)-
invariant ideal sheaf I ⊆ OX satisfying Property (Van) with dimx V(I ) = 1 for
all x ∈ V(I ) and such that the scheme defined by I ⊆ OX has no embedded
points.

Proof. We assume that I exists and derive a contradiction. We can again assume
w.l.o.g. that no (−1)-curve is contained in V = V(I ).

First, let us assume that V is irreducible. If d = 1 or 2, then V = P
1. This is a

contradiction, because Z
4
2 ⊂ Aut(X) acts effectively on V yet Z

4
2 �⊆ PGL(2, C)

(see [GB, Chap. 2]).
If d = 3, then ga = 1. Since Aut(X) acts on V with orbits of length at least 8,

it follows from Lemma 3.4 that V is smooth. We know that Z
3
2 � GP5 acts effec-

tively on V. However, it is not a subgroup of any of the groups listed in (6). We
have obtained a contradiction.

If d = 4 then ga = 3. Again,V is smooth. Since Z
4
2 ⊂ Aut(X) acts effectively

on V, we can get a contradiction by analyzing the Riemann–Hurwitz formula for
the cyclic branched covering V → V/Z

4
2. Clearly, all nontrivial cyclic subgroups

of Z
4
2 are isomorphic to Z2. Therefore, all fibers of the branched covering have

cardinality either 8 or 16, and the Riemann–Hurwitz formula reads

2ga − 2 = 4 = 16(2gV/Z
4
2
− 2)+ 8j

for some j ∈N. Since 4 is not divisible by 8, we have obtained a contradiction.
If d = 5 then ga = 6. Once again, V is smooth. In the preceding Riemann–

Hurwitz formula, the left-hand side now becomes 2ga − 2 = 10, which is also not
divisible by 8. Contradiction.

Next, we treat the case where the number of irreducible components is 2. For
d = 2, 3, the two components are smooth rational curves. If each component (call
themV1,V2) is invariant under Z

4
2 ⊂ Aut(X), then we have a contradiction as be-

fore. So let us assume that there is a g ∈ Z
4
2 ⊂ Aut(X) such that g(V1) = V2.

Let
G1 = {g ∈Z

4
2 : g(V1) = V1}.

Then
Z

4
2 = G1 � gG1.

Therefore, the index of G1 in Z
4
2 is 2 and so G1 = Z

3
2, which yields a contradiction

because Z
3
2 �⊆ PGL(2, C).

If d = 4, then V may be the disjoint union of a smooth elliptic curve and a ra-
tional curve or the disjoint union of two smooth rational curves. In either case,
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this is impossible. When d = 5, V may be the disjoint union of a smooth ellip-
tic curve and a smooth rational curve or the disjoint union of a smooth curve of
genus 3 and a smooth rational curve. In any case, this is impossible.

Next, let us assume that there are three irreducible components V1,V2,V3. If
d = 3, 4, then V is the union of three smooth rational curves. If the action of
Z

4
2 ⊂ Aut(X) on the three components leaves one component invariant, then

Z
4
2 ⊂ PGL(2, C), which is a contradiction.
If no component is invariant under Z

4
2 ⊂ Aut(X), then there exist g2, g3 ∈ Z

4
2

such that g2(V1) = V2 and g3(V1) = V3. However, a brief computation reveals
that (g2 · g3)

2(V1)∈V2, which means that the order of g2 · g3 cannot be 2. How-
ever, all nontrivial elements of Z

4
2 have order 2—a contradiction.

When d = 5, one of the components might be a smooth elliptic curve, but in
any case one obtains a contradiction as before.

Finally, in the cases of four and five irreducible components, all components
are rational curves. If there are two components whose union is Z

4
2-invariant, then

we obtain a contradiction as in the case of two irreducible components. If not,
then there exist g2, g3 ∈Z

4
2 and componentsV1,V2,V3 such that g2(V1) = V2 and

g3(V1) = V3. Again, we obtain a contradiction.

For the reasons given at the end of Section 3, the Propositions 4.3 and 4.4 together
yield Theorem 1.7(ii).

5. Comments on the Cases of r �= 4, 5

5.1. One or Two Points Blown Up. For P
2 blown up at one or two points, one

can show that the so-called Calabi–Futaki invariant does not vanish (see e.g. [T3,
Exam. 3.10, 3.11] for details). The nonvanishing of this invariant is an obstruction
to the existence of a Kähler–Einstein metric. If gij̄ (t) (t →∞) were to converge,
then it would necessarily converge against a Kähler–Einstein metric. So the state-
ment of Theorem 1.1(ii) cannot hold on P

2 blown up at one or two points.

5.2. Three Points Blown Up. In this paper we make no statement about this
case, because both zero- and one-dimensional zero sets of multiplier ideal sheaves
cannot be ruled out using Property (Van).

In the zero-dimensional case, the problem is that the surjectivity of the map

H 0(X, OX(−KX))→ H 0(V, OV (−KX))

limits the cardinality of the zero set to 10 − 3 = 7. However, the six points of
intersection in the “hexagon” formed by the six (−1)-curves are clearly Aut(X)-
invariant, and we are unable to rule out that they are the Aut(X)-invariant zero set
of a multiplier ideal sheaf satisfying (5).

Similarly, the union of the six (−1)-curves is clearly Aut(X)-invariant, and it is
not possible to rule out that it forms the zero set of a multiplier ideal sheaf based
on Property (Van). Clearly, this case merits further investigation.
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5.3. Six or More Points Blown Up. For a generic del Pezzo surface X of de-
gree 3, Aut(X) is unfortunately the trivial group (see [K]). There are of course
nongeneric X that have extra automorphisms, and a nice list of these can be found
in [Do, Table 10.3]. Recall that del Pezzo surfaces of degree 3 are precisely the
smooth cubic hypersurfaces of P

3, and perhaps the most important example is the
Fermat cubic surface in P

3 given by

Z3
0 + Z3

1 + Z3
2 + Z3

3 = 0.

Its automorphism group is Z
3
3 � S4, acting in the obvious way. The order of this

group is 27 · 24 = 648. In this case, the same analysis as in Section 4 does yield
statement (ii) of Theorem 1.1. The arithmetic argument involving the Riemann–
Hurwitz formula even becomes unnecessary because, according to the well-known
Hurwitz bound, the automorphism group of a Riemann surface of genus g ≥ 2
has order at most 84(g−1), which is less than 648 for g ≤ 8. We leave the details
to the reader.

At the other end of the spectrum, on a del Pezzo surfaceX of degree1, the unique
base point of the linear system |−KX| is fixed by all automorphisms. Therefore,
unfortunately, Aut(X) acts with a fixed point regardless of the nature of X, and
we are unable to handle this case.

On a del Pezzo surface X of degree 2, the linear system |−KX| gives a two-
sheeted cover of P

2 branched along a smooth curveC of degree 4 in P
2. This cover

defines an involutive automorphism ofX called the Geiser involution. On a generic
X, this is the only nontrivial automorphism (i.e., Aut(X) = Z2). However, certain
nongeneric X do have extra automorphisms. A list of these X and their automor-
phism groups, together with a lucid exposition of the topic, can be found in [Do,
Table 10.4]. We do not go into any details regarding this case.
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