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1. Introduction

1.1.  The purpose of this paper is to fill a gap that has remained open since 1979,
when in the Santa Cruz conference we announced the main results on the so-called
local structure of the blocks of finite p-solvable groups [6], which were mainly ob-
tained from a suitable translation to algebras of Fong’s reduction [4]. At that time,
the term local structure referred to the paper by Alperin and Broué [2], but since
that meeting it has become clear that, when studying a block of a finite group, the
structure to describe is its source algebra.

1.2.  Asamatter of fact, in [6] we already described the source algebra of a nilpo-
tent block in a finite p-solvable group, and one of the reasons for delaying the
publication of our work on the blocks of p-solvable groups was that, after Santa
Cruz, we concentrated our effort on determining the structure of the source alge-
bra of nilpotent blocks in any finite group [10].

1.3.  Another reason for delaying this publication was that, although the trans-
lation to algebras of Fong’s reduction does indeed allow one to determine the
structure of the source algebra of a block in finite p-solvable groups, this struc-
ture involves a Dade P-algebra, where P is a defect p-subgroup of the block,
and only many years later did we find a way to prove its uniqueness. A last re-
mark: although, for the sake of simplicity, we deal only with the source algebra of
a block in characteristic p > 0, the interested reader will see that [10, Lemma 7.8]
and [11, Cor. 3.7] allow one to determine the source algebra over a complete dis-
crete valuation ring of characteristic 0.

2. Notation and Quoted Results

2.1. We fix a prime number p and an algebraically closed field of characteristic
p. Itis well known that Fong’s reduction involves a central extension of the finite
group we start with; precisely, it involves a central extension by a finite subgroup
of k* and a handy way to unify our setting is to consider from the beginning a
central extension G of a finite group G by k*. This is not more general since, nev-
ertheless, G always contains a finite subgroup G’ covering G.
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2.2.  Explicitly, we call k*-group a group X endowed with an injective group
homomorphism 6 : k* — Z(X) (cf. [9, Sec. 5]) and call k*-quotient of (X, ) the
group X/6(k*); we denote by X ° the k*-group formed by X and by the compo-
sition of @ with the automorphism k* = k* mapping A € k* on A=\, We say that
a k*-group is finite whenever its k*-quotient is finite. Usually, we denote by Ga
k*-group and by G its k*-quotient, and we write A - £ for the product of £ € G by
the image of A € k* in G.

2.3, If G’ is a second k*-group, we denote by G x G’ the quotient of the direct
product G x G’ by the image in G x G’ of the inverse diagonal of k* x k*, which
has the obvious structure of k*-group with k*-quotient G x G’; moreover, if G =
G’ then we denote by G * G' the k*-group obtained from the inverse image of
A(G) CGxGin G x G’, whichis nothing but the so-called sum of both central
extensions of G by k*. In particular, we have a canonical k*-group isomorphism

G+xG°=k*xG. (2.3.1)

A k*-group homomorphism ¢ : G— G'isa group homomorphism that preserves
the k*-multiplication.

2.4. Note that for any k-algebra A of finite dimension—just called algebra in the
sequel—the group A* of invertible elements has a canonical k*-group structure. If
S is a simple algebra then Aut (S) coincides with the k*-quotient of S*; in partic-
ular, any finite group G acting on S determines—by pull-back—a k*-group G of
k*-quotient G together with a k*-group homomorphism

p: G —> S§* (2.4.1)
(cf. [9, 5.7]).

2.5. If G is afinite k*-group, we call G-interior algebra any algebra A endowed
with a k*-group homomorphism

0: G — A% (2.5.1)

as usual, we wrlte X-aand a - x instead of p(X)a and ap(X) for any X € G and any
a € A. Then, a G-interior algebra homomorphism from A to another G-interior
algebra A’ is a not necessarily unitary algebra homomorphism f: A — A’ fulfill-
ing f(x-a) =2x- f(a) and f(a - x) = f(a) - x; we say that f is an embedding
whenever Ker(f) = {0} and Im(f) = f(1)A’f(1). For a k*-group homomorphism
¢: G’ > G, we denote by Res,(A) the G'-interior algebra defined by p o . Note
that the conjugation induces an action of the k*-quotient G of G on A, so that A
becomes an ordinary G-algebra; thus, all the pointed group language developed
in [7] applies to G-interior algebras.

2.6. For any k*-subgroup Hof G, a point o of H on A is an (A")*-conjugacy
class of primitive idempotents of A and the pair H,isa pointed k*-group on A,
we denote by Pa(H) the set of points of H on A. For any i € «, iAi has the evi-
dent structure of an H-interior algebra mapping x € H onx-i=1i-x,and we
denote by A, one of these mutually (A7 )*-conjugate H-interior algebras.
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2.7.  Asecond pointed k *-group K s on A is contained in H,if K isak*- subgroup
of H and if, for any i € o, thereis a j € f such thatij = j = ji. Then it is quite
clear that the (AX)*-conjugation induces K -interior algebra embeddings

fi: Ag — Res!! (Aa) Q2.7.1)

More generally, we say that an injective k*-group homomorphism ¢ : K — His
an A-fusion from Kg to H, whenever there is a K -interior algebra embedding

fo: Ap — ResH(Ay) (2.7.2)

such that the inclusion Ag C A and the composition of f, with the inclusion
A, C A are A*-c on]ugate We denote by FA(Kﬂ, H ) the set of such fusions (cf.
[8, Def. 2. 5]) and by FA(K,g, H ) 1ts quotient by the action of H, whereas we de-
note by Eg (K 8> A ) and Eg (K 8> A ) the respective subsets of fusions determined
by elements of G; we set FA(I-AIQ) = FA(PAIa, PAIa) and so forth.

2.8. Note that any p-subgroup P of G can be identified with its image in G and
determines the k*-subgroup k* - P = k* x P of G; as usual, we consider the quo-
tient and the algebra homomorphism

Brp: A" — A(P) = A"/ Y, AD, (2.8.1)

where Q runs over the set of proper subgroups of P, and we call local any point y
of P on A not contained in Ker(Brp). We denote by LP4(P) the set of local points
of P on A. More generally, we denote by L4 the local category of A, where the
objects are the local pointed groups on A and the morphisms are the A-fusions be-
tween them with the usual composition (cf. 2.6 and Definition 2.15 in [8]). Recall
that the maximal local pointed groups P, contained in H,—called defect pointed
groups of H,—are all mutually H-conjugate (cf. [7, Thm. 1.2]).

2.9. [Itis clear that the inclusion k* C k determines a k-algebra homomorphism
to k from the group algebra kk™ of the group k¥, so that k becomes a kk*-algebra.
For any finite k*-group G, it is clear that the group algebra kG of the group G is
also a kk*-algebra, and then we call k*-group algebra of G the algebra

k.G = k Qi+ kG (2.9.1)

note that the dimension of k,G coincides with |G|. Coherently, a block of G is
a pr1m1t1ve idempotent b of the center Z(k, G) so that ¢ = {b} is a point of G
onk,G. If P, is a defect pointed group of G then we call source algebra of the
block b the P-interior algebra (k. G)y = (k. Gb)y Recall that, for any p-subgroup
P of G, we have

(k,G)(P) = kiCs(P) (2.9.2)

(cf. 2.9.2 and Proposition 5.15 in [9]); moreover, recall that a local pointed group
Qs on k.G is self-centralizing if Cp(Q) = Z(Q) for any local pointed group P,
on k.G containing Qs.
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2.10. If G isa finite k*- group, A a G-interior algebra, and Hak*- subgroup of G,
then as usual we denote by ResG(A) the corresponding H-interior algebra. Con-
versely, for any H-interior algebra B, we consider the induced G-interior algebra

mdS(B) = k.G ®, 5 B ®, j k.G, (2.10.1)

where the distributive product is defined by the formula
. o Ny F®bFD QY if $5 €H,
XRbRNHEI'®V'R®Y) = , (2.10.2)
0 otherwise
for any X9, x y e G and any b, b’ € B and where we map the element X X € G on
Z 1z ®I 7, with e G running over a set of representatives for G/ .

2.11.  Asmentioned in the Introduction, the source algebras we are looking for in-
volve Dade P-algebras; precisely, for a finite p-group P, we call Dade P-algebra
a simple algebra S endowed with an action of P that stabilizes a basis of S con-
taining 1. Actually, the action of P on S can be lifted to a unique group homomor-
phism P — S*, and usually we consider S a P-interior algebra. As we shall see,
this situation appears quite naturally when dealing with finite p-solvable groups
and, as a matter of fact, it was Dade’s motivation for introducing them in 1978 [3].

3. Fong Reduction for G-Interior Algebras

3.1. In[4] Fong developed a reduction method for the characters of a finite group
from the choice of a normal p’-subgroup. In fact, for a k*-group G with finite
k*-quotient G, Fong’s arguments can be extended to G-interior algebras in the fol-
lowing way. Let A be a G-interior algebra and S a G-stable semisimple unitary
subalgebra of A such that G acts transitively on the set / of primitive idempotents
of the center Z(S) of S; leti be an element of / and denote by H the stabilizer of
i in G. Then the k*-quotient H of H acts on the simple algebra Si determining a
k*-group "H, together with a k*-group homomorphism p: "H — (Si)* (cf. 2.4),
and we set (cf. 2.3)

H = H x (CH)". (.11

PROPOSITION 3.2. With the preceding assumptions, there exists an H -interior
algebra B, unique up to isomorphisms, such that we have a G-interior algebra
isomorphism

A 2 nd$(Si @ B) (3.2.1)
mapping s € Si on 1 Q@ (s ® 1) ® 1. In particular, A and B are Morita equivalent.

Proof. The multiplication by i determines an H-interior algebra structure on i Ai
and, since G acts transitively on /, it is easily checked that we have a G-interior al-
gebra isomorphism A = Indg(iAi) mapping a €iAion 1 ®a ® 1 (cf. [9, 2.14.2]).
Now, since Si is a unitary simple subalgebra of i Ai, the multiplication in this al-
gebra induces an algebra isomorphism
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Si @ B = iAi, 3.2.2)

where B is the centralizer of Si in iAi (cf. [7, Prop. 2.1]).

Moreover, if £ € H and “x € "H have the same image x in H then the ele-
ment p("x)~! - X of iAi centralizes Si, so that it belongs to B; whereas if (§,"y) €
H x "H is another such a pair then we have

PC)™ D pCN™TH) = pC») ()25 = p(Cx"») 7 (£9), (3.2.3)

so that B becomes an H “-interior algebra and isomorphism (3.2.2) becomes an
H-interior algebra isomorphism. U

COROLLARY 3.3. With the preceding assumptions, assume that B has a unique
H-conjugacy class of maximal local pointed groups P, , that P has a local point
on Si, and that the actions of P x P on A and B by left and right multiplication
stabilize bases where P x {1} and {1} x P act freely. Then Si is a Dade P-algebra
and, for any local pointed group Qs on B, we have a local point 1(8) of Q on A
such that isomorphism (3.2.1) induces a Q-interior algebra embedding

Ays) — Resg(Si) @ Bs, (3.3.1)

and this correspondence determines an equivalence of categories i Lg — L4 be-
tween the local categories of B and A. In particular, A has a unique G-conjugacy
class of maximal local pointed groups.

Proof. Since P stabilizes by conjugation a basis Y of B and since P has a local
point on B, it fixes an element of Y (cf. [9, 2.8.4]) and therefore Si is a direct sum-
mand of iAi and A as kP-modules when P acts by conjugation. However, we are
assuming that P x P stabilizes a basis of A by left and right multiplication; hence
P stabilizes by conjugation a basis Z of Si and, since we are assuming that it has
a local point on Si, P fixes an element of Z that can be replaced by 1, so that Si
is a Dade P-algebra (cf. 2.11).

If R4 is alocal pointed group on A then R fixes at least one element of I hav-
ing a nonzero image in A(R); that is to say, up to G-conjugation, we may assume
that R C H and Brj (i) # 0, so that R,4 comes from a local pointed group on
iAi = Si ® B (cf. [12, 2.11.2]), which forces

(Si)(R) # {0} and B(R) # {0} (3.3.2)

since the k-algebra homomorphism (S7)(R) ®; B(R) — (Si & B)(R) (cf. [12,
7.9.2]) is unitary. In particular, R has local points on B and, since Res?(Si) is a
Dade R-algebra, we actually get

(iAi)(R) = (Si)(R) Qi B(R) (3.3.3)
(cf. [12, Lemma 7.10]).
Conversely, let Qs be a local pointed group on B and assume that Qs C P,;
once again, we get
(IAD(Q) = (Si)(Q) ® B(Q) (3.3.4)
and we know that (Si)(Q) is a simple algebra (cf. [11, 1.8.1]). In particular, the
B(Q)*-conjugacy class BrS(S) of primitive idempotents of B(Q) and the unique
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conjugacy class of primitive idempotents of (Si)(Q) together determine a local
point ¢;(8) of Q on iAi and therefore a local point ¢(§) of Q on A (cf. [12, 2.11.2])
such that, for a suitable j’ € ¢(8) fulfilling j'i = j’ = ij’, isomorphism (3.3.4)
maps Bré (j") on Brg(ﬁ) ® Brg (j), where £ is a suitable primitive idempotent of
(Si)2 and j € 8. Actually, up to an identification via isomorphism (3.2.1), we may
assume that

Jeej=j=t®j)j (3.3.5)
and then we obtain a Q-interior algebra embedding
A5y = Res(Si) @ Bs. (3.3.6)

On the other hand, for a second local pointed group R, on B it follows from [8,
Cor. 2.16] that

FsigB(Ri), 0u5)) = Fa(Rie), Ou(5))s (3.3.7)

once again, we may assume that R, C P, and then, since B has a (P x P)-stable
basis where P x {1} and {1} x P act freely, it follows from [5, Lemma 1.17] that

Fsig B(Ri), Qu5)) C Fp(Re, Os). (3.3.8)

Moreover, since A and thus Si ®; B also have (P x P)-stable bases where P x {1}
and {1} x P act freely, the same Lemma 1.17 in [5] applies to the fusions on
(Si)° ®x (Si ®; B) and therefore, since we successively have P-algebra embed-
dings k — (S7)° ®; Si (cf. 1.3.2 and 1.3.3 in [11]) and

B — (Si)° ® Si ®; B, 3.3.9)
we still obtain (cf. [8, Prop. 2.14])

Fp(R;, Q5) C FsigB(Rye), Qus))- (3.3.10)
Finally, we obtain the equality
Fp(R;, Q5) = Fa(R, ), Q.(5))» (3.3.11)

which proves that the functor ¢: L5 — L4 is fully faithful. But we have already
proved that this functor is essentially surjective, so that it is an equivalence of cat-
egories. We are done. UJ

3.4. The main point in our Fong reduction is that, if A is a block algebra k.Gb
for a block b of G, then i is a block of H and, moreover, if either p does not divide
dimy (Si) or we have S = k, Kb for some normal k*-subgroup K of G having a
block d of defect zero such that db # 0, then B is also a block algebra. Denote
by V a simple Si-module, which becomes a k,”H-module throughout p (cf. 3.1).

PrOPOSITION 3.5.  With the preceding assumptions, if A = ki Gb for a block b
ofG then i is a block of H that belongs to a point B of H on A and we have

~

i(kyG)i = kyHi. In particular, we have an equivalence of categories L, . =

Ek*éb'
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Proof. Sincei-X-i =X - (z")z =0forany x € G- H we geti(k, G)l =k, Hi.
Similarly, denoting by 7: k, G — k the linear form vanishing on G — k*1 and
sending the unity element to 1, which clearly defines a nonsingular symmetric bi-
linear form, we have i = ), 7(i - )%, where % lifts x € G to G, and thus,
since

(- %) =t(-%-i)=1(G%-%) =0 forany G — H, (3.5.1)

i belongs to Z (k. H ); moreover, since b is prlmmve in Z(k, G) the idempotent i
must be primitive in Z(k, H) and, since iAi = k, Hi, the idempotent i is primi-
tive in A, too. On the other hand, assuming that § = EB, o1 k -1, itis quite clear
that all the hypotheses in Corollary 3.3 hold and therefore the last statement fol-
lows from this corollary. O

THEOREM 3.6. With the preceding assumptions, assume that A = k.Gb for a
block b off} and that p does not divide dimy (V). Then we have B = k. H "¢ for a
block c of H", and V is a simple k,”"H-module. In particular, we have an equiv-
alence of categories Ly, g~ = ‘Ck*éb'

Proof. Because Si ®; B = i(k*é)i = k*ﬁi, the respective images of "H and
H" still generate Si and B; in particular, V becomes a simple k,”H-module and,
since i is primitive in Z (k*I:I ), there is a block ¢ of H” such that we have a sur-
jective H " -interior algebra homomorphism g: k,H ¢ — B. It remains to prove
that g is also injective or, equivalently, that

dimy (k. H c) < dimg(B). (3.6.1)
. Once again, since Si @ B =i (k*f})i =k, I:{i, the structural homomorphism
H — Si ® k. H c determines a section s of the H-interior algebra homomorphism
ids; ® g: Si Q¢ ke H'c — Si ®; B, (3.6.2)

so the k, H -interior algebra homomorphism
id(siyeesi ® g: (S1)° @k Si @ ki H'c — (Si)° @ Si @ B (3.6.3)

admits the section id (s> ® .

On the other hand, since we assume that p does not divide dimy (S7), it follows
that & is a direct summand of Si as kH-modules and thus we have an H-interior
algebra embedding h: k — (Si)° ®; Si = End(Si) (cf. [14, Ex. 4.15]). Hence
the surjective H -interior algebra homomorphism g can be embedded in homo-
morphism (3.6.3), determining an evident commutative diagram

(S1)° ®¢ Si @k kyH c — (Si)° ® Si ® B

T T (3.6.4)

k.H c B

and in particular, we have

(id(siyecysi ® &) (h(1) ® ¢) = h(l) ® 1. (3.6.5)



330 Lruis Puic

Consequently, since both idempotents
J=h()®@c and £ = (id; @ s)(h(1) @ 1p) (3.6.6)

lift 2(1) ® 1 to the algebra T = ((Si)° @i Si ®y k.H ¢c)" and since j is primi-
tive, we have j¢' = j = ¢£'j for a suitable t € T* (cf. [14, Cor. 2.14]). However,
since

h(D((Si)° Q¢ Si)h(l) =k - h(l) (3.6.7)
it follows that

JU(Si)° Qi Si Qr kuH c)j =h(1) @ ke H ¢ = kyH c,
and similarly we still have
(h(D) @ 15)((Si)° @ Si & B)(h(1) ® 15) = h(1) ® B = B. (3.6.8)

Then the multiplication by j maps (idsi)> ® s)(h(1) ® B)', which is an H "-interior
subalgebra, onto h(1) ® k. H ¢ because it maps H" - £' onto h(l) ® H c; this
proves inequality (3.6.1).

At this point, setting 8 = {c} and choosing a defect pointed group P, of Hg, itis
clear that the actions of P x P on A and B by left and right multiplication stabilize
bases where P x {1} and {1} x P act freely (cf. [8, 3.3]); moreover, since B(P) #
{0} (cf. 2.8), acting by conjugation P fixes at least one element in a P-stable basis
of B (cf. [9, 2.8.4]). Hence it follows from isomorphism (3.2.1) that Si is a direct
summand of A as kP-modules always via the action of P by conjugation. Con-
sequently, since P still stabilizes a basis of A, P stabilizes a basis Z of Si and
moreover, since p does not divide |Z|, P fixes an element of Z. In other words,
Si with the action of P becomes a Dade P-algebra (cf. 2.11). Now, the last state-
ment follows from Corollary 3.3 and we are done. UJ

THEOREM 3.7. With the preceding assumptions, assume that A = k.Gb for a
block b of G and that S = kKb for a normal k*-subgroup K of G having a block
d of defect zero such that db # 0. Then K is a normal subgroup of H™ and we
have B = k,(H"/K)c for a block ¢ of H”/K. In particular, we have an equiva-
lence of categories Ly, (nyx)e = Lk*éb.

Proof. We clearly may assume that i = db; then K is contained in both H and
"H, which provides a canonical lifting of the k*-quotient K to H” (cf. 2.3.1). Up
to the identification of K with its canonical image in H “,weset H" = H"/K and
H = H/K. On the other hand, since H fixes d, multiplying by d the direct sum
decomposition
kH = P (k.K)%, (3.7.1)
XeH/K
where £ lifts ¥ € H to H, yields
dimy (k. Hd) = dimy (k. Kd)|H/K]|. (3.7.2)

Thus, setting e = Tr G(d) and applying Proposition 3.2 to the G interior algebra
k.Ge with the G-stable semisimple algebra k, Ke, we obtain a G-interior algebra
isomorphism
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k,Ge = Indg(k*led Rk H"); (3.7.3)
in particular, this isomorphism induces an algebra isomorphism
Z(k,Ge) = Z(k,H") (3.7.4)
mapping b on a block ¢ of H"/K, and then it is quite clear that
k. H ¢ = B. (3.7.5)

Now set o = {b} and choose a defect pointed group P, of G According to
Proposition 3.5, we may assume that P, C Hpg, so that P, comes from a local
pointed group on iAi = Si ®; B (cf. [12, 2.11.2]), which forces

(Si)(P) #{0} and B(P) # {0} (3.7.6)

because the k-algebra homomorphism (Si)(P) Qi B(P) — (Si & B)(P) (cf.
[12, 7.9.2]) is unitary. In particular, since P stabilizes a basis Z of Si = k, Iedb,
we know that P fixes an element of Z (cf. [9, 2.8.4]) and thus Resg(Si) is a
Dade P-algebra (cf. 2.11). However, d is a block of defect zero of K and so we
have (S7)(R) = {0} for any nontrivial p-subgroup R of K (cf. 2.8); thus we have
P N K = {1} and therefore P is isomorphic to its image P in H".

Consequently, since A = k*éb and k,H"¢ = B, the actions of P x P on A
and B by left and right multiplication stabilize bases where P x {1} and {1} x P
act freely (cf. [8, 3.3]). Then, since

(Si @ B)(P) = (Si)(P) @ B(P) (3.7.7)

(cf. [9, 2.8.4]), y determines a local point y of P = P on B (cf. [10, Prop. 5.6])
and it follows from [8, Thm. 3.1] that

Fp(P;) = Ng-(P;)/Cy-(P), (3.7.8)

so that the subgroup FB(131;) of Aut(P) stabilizes the Dade P-algebra Si. At this
point, it follows from [5, Lemma 1.17] and [8, Prop. 2.14] that

Fu(Py) = Fp(P;); (3.7.9)

thus, since P, is a maximal local pointed group on k. Gb, the Brauer First Main
Theorem implies that NHA(};;;)/I5 . C,;A(ﬁ) is a p’-group and hence that F_’}; is a
maximal local pointed group on k, H"¢ = B. Now, the last statement follows from
Corollary 3.3 and we are done. UJ

4. The p-Solvable k*-Group Case

4.1. Asbefore, G isa k*-group with finite k*-quotient G, and in this section we
assume that G is p-solvable. Let b be a block of G and let S be a G-stable semi-
simple unitary subalgebra of k.Gb that is maximal such that p does not divide
the dimension of its simple factors; since b is primitive in Z(k,.Gb), the group G
acts transitively on the set / of primitive idempotents of Z(S) and we borrow the
notation i, H, "H, p,and H” from 3.1. According to Propositions 3.2 and 3.5 and
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to Theorem 3.6, i is a block of H that belongs to a point 8 of H on k.G and, for
a suitable block ¢ of H", we have G- and H-interior algebra isomorphisms

k.Gb = Ind(i(k*l-}i) and  (k,G)p =k, Hi = Si ®; k Hc 4.1.1)

as well as an equivalence of categories ¢: £ ke He = L &y in part1cular there is
a defect pointed group P, of b contained in H,g Denote by O /(H ), 0, (CH), and
O,/ (H") the respective inverse images in H, "H, and H" of O,/ (H).

PROPOSITION 4.2.  Assume that G is p-solvable. Then P is a Sylow p-subgroup
of H,we have Si = k, 0, (H)i, and the inclusion O, (H)i C (Si)* induces an
H-stable k*-group isomorphism o : k* x O, (H) = O,/(H") such that

1 H

=——— Y o(y) and kHcZk,———. (4.2.1)
0y (I, &=, 0 (0, (H))

Moreover, setting Q = PN O, ,(H), the idempotent c is primitive in (ke H"c)C.

Proof. If T is an H-stable semisimple unitary subalgebra of k, H "¢ such that p
does not divide the dimension of its simple factors, then in the induced algebra
IndG (Si®ikyH c) the direct sum Z X C® (Si®;T)®x ™!, where x € G runs overa
set of representatives for G/H and £ € G lifts x, determines a G-stable semisimple
unitary subalgebra of k., Gb fulfilling the preceding condition and containing S.
Thus, the maximality of S forces T =k - c.

In particular, since the algebra k.0, (H") is semisimple, we obtain

k.0, (H e =k -c, 4.2.2)

which forces 01,/(ﬁ)i C Si. Then we necessarily have Opr(I:I)i = p(0, (CH))
and thus still get an H-stable k*-group isomorphism (cf. (2.3.1))

o:k*x0,(H)Z0,(H). 4.2.3)
Therefore, setting
1 H”
S Z o(y) and L = ———, 4.2.4)
0, (D] &=, o(0,/(H))

we have ec = ¢ and that ¢ determines a block of L”; but since H is p-solvable,
C1(0,(L)) = Z(0,(L)) and therefore O, (L) has a unique local pointon k, L" =
ki+H e (cf. (2.9.2)) that actually has multiplicity 1 (cf. (2.9.2)). Moreover, it is
easily checked that Ker(Bro, 1)) C J (kL"), so the unity element is primitive in
(kL™)O (D) (cf. (2.9.2)); hence ¢ coincides with e and is primitive in (k. H")* for
any p-subgroup R of H such that O, ,(H) C O, (H) - R.
Consequently, we have
keH ¢ = k,L" 4.2.5)

and {c} is the unique local point of R on k,H "c; this forces P to be a Sylow
p-subgroup of H because Ny (P)/P - Cy(P) is a p’-group by the Brauer First
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Main Theorem Moreover, smce (ks G)ﬂ = Si ® k«H ¢, R has a unique local
point ¢ on k, G such that R, C H,g (cf. Proposition 5.6 and Corollary 5.8 in [10])

Finally, T = k,O /(H )i is an H-stable semisimple unitary subalgebra of k. Hi
and therefore—denoting by j a primitive idempotent of Z(T'), by K the stabilizer
of j in H, and by C the centralizer of Tj in j(k, H ) j—it follows from Proposi-
tion 3.2 that, for a suitable k., K -interior algebra structure on 7j ®; C, we have a
H-interior al gebra isomorphism

k. Hi = Ind(T) ® C). (4.2.6)

More precisely, it follows from Theorem 3.6 that C is the block algebra of a suit-
able k*-group with k*-quotient K and, since

O,(H)c K and O, (H)jCTj, 4.2.7)
the inverse image of O,/(H) in this k*-group has a trivial image in C; therefore,
dimy(C) < |K : O, (H)|. (4.2.8)

Furthermore, since T C Si we have
|H : K|dim(Tj) < dim(Si), (4.2.9)

the inequality being strict whenever K # H.
On the other hand, isomorphisms (4.1.1) and (4.2.6) imply that

dim (Si)|H : O, (H)| = dim(k, Hi)
= |H : K|*dim(Tj) dimy(C).  (4.2.10)

Hence the preceding inequalities are actually equalities, sowehave K = H, j =i,
and T = Si as claimed. O

COROLLARY 4.3.  Assume that G is p-solvable, set Q = P N Oy ,(H), and de-
note by y and § the respective local points of P and Q on k.G such that Os C
P, C Hg. Then Qj is the unique local pointed group on k.G that fulfills the fol-
lowing conditions:

4.3.1) Qs < P,, Cp(Q) = Z(Q), and O,(E(Qs)) = {1};
4.3.2) EG(RS, P,) = En;5)(Re, Py) for any local pointed group R, on k., G
contazned inP,.

Proof. With notation as in Proposition 4.2, set L =H "/o(0,/(H)). It follows
from this proposmon that the unity element is primitive in (k, L)Q and so deter-
mines local points y° and 6° of P and Q, respectively, on k L, since we have
kL = k.H"c, these local points determine local points y and § of P and Q,
respectively, on k.G (cf. Proposition 5.6 and Corollary. 5.8 in [10] and Proposi-
tion 2.14 in [8]). Therefore, P normalizes Qs and the p-solvability of H forces
Cp(Q) = Z(Q).

Moreover, it follows from Theorem 3.6 that, for any local pointed group R, on
k*é contained in P, , we have
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EG(R:, Py) = EL(Ree, Pye), (4.3.3)

where £° denotes the corresponding local point of R on k. L. However, the unique-
ness of é forces Ny (Qs) = Ny (Q) and thus, by the Frattini argument, we obtain
H =0, (H).Ny(Qs). Consequently, it is easily checked that we still have

EG(R;, Py) = Eny05)(Re, Py). 4.3.4)
In particular, E¢(Qs) = Ny (Q)/Cy(Q) and so we still get
0,(Ec(Q5)) = {1}. (4.3.5)

Finally, if 7T} is a local pointed group on k.Gb fulfilling conditions (4.3.1) and
(4.3.2), then we have E(Qs) = Eng(1,)(Qs) and therefore E7(Qs) is a normal
p-subgroup of Eg(Qs), so that E7(Qs) = {1}. Hence, we have

TCcPNQ.Cc(Q)=0 (4.3.6)
and, by symmetry, the equality follows. UJ

4.4, Wlth notation as in Proposition 4.2, set L =H "/o(0, (H)) and con-
sider k, L endowed with the obvious group homomorphlsm P — (kL)*asa
P-interior algebra. Then isomorphisms (4.1.1) and (4.2.1) yield a P-interior alge-
bra embedding

(ks G)V — Res "(Si) @ kyL, 440

which already gives a satisfactory description of a source algebra of the block b
except that we know nothing about the uniqueness of the left tensor factor. In
order to get this we need the following lemma, which we prove in a more general
context.

LEMMA 4.5. Let L and L' be k*-groups with respective finite k*-quotients L and
L’ fulfilling
CL0,(L) = Z(O,(L)) and Cr(O,(L) = Z(O,(L),  (45.1)

and denote by P a Sylow p-subgroup of L. If t: P — L is an injective group
homomorphism and if T is a Dade P-algebra such that there exists a P-interior
algebra embedding

kil — T ® kL, (4.5.2)

then T is similar to k and L isomorphic to L.
Proof. Through embedding (4.5.2), any local pointed group R, on k. L determines

a local point ¢’ of R on kL' such that, denoting by p the unique local point of R
on 7, (4.5.2) induces an R-interior algebra embedding

(koL)e = T, @ (kL) (4.5.3)

(cf. Proposition 5.6 and Corollary 5.8 in [10] and Proposition 2.14 in [8]). More-
over, since there is a P-interior algebra embedding k — T° ®; T (cf. [10, 5.7]),
from (4.5.3) we easily derive the embedding
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(kuLl)er = (T,)° @1 (kuL)e; (4.5.4)

in particular, since (7,)(R) = k (cf. [10, Cor. 5.8]), if R, is self-centralizing (cf.
2.9) then, setting R’ = t(R), we have

(koL)or(R") = (ko L).(R) = kZ(R) = kZ(R'). (4.5.5)

Therefore, according to [13, Lemma 2.14], R ;, is self—gentralizing, too.

Set Q = O, (L). Actually, since Ker(Brgy) C J(k,L) and since we assume that
Cr(Q) = Z(Q), the unity element is primitive in (k*i)Q (cf. (2.9.2)) and there-
fore y = {1 ;} is the unique point of P on k. L, which is maximal local. In this
situation, setting P’ = t(P), denoting by y’ the corresponding local point of P’
onk,L', and considering the corresponding embeddings (4.5.3) and (4.5.4), it fol-
lows from [5, Lemma 1.17] that

EL(R., P,) = Ep(R,,, P)). (4.5.6)

Hence, by the Brauer First Main Theorem, the maximality of P, implies that
E L(P,)is a p’-group; then, since P}ﬁ, is self-centralizing, isomorphism (4.5.6) im-
plies that P;, is maximal local on k, L" and so P’ contains O, (L") (cf. [1, Sec. 13,
Thm. 6]). Consequently, according to our assumption on L', we have y’ = {1 ki)
and Cr/(P') = Z(P’), which implies that P’ is a Sylow p-subgroup of L.

At this point, the existence of embedding (4.5.4) for R, = P, shows that our
hypotheses are actually symmetric on L and L. On the other hand, considering
the point § = y of Q on k*f,, it follows easily from the isomorphism E;(Qs) =
E1/(Qy) that

IL| = |QIIEL(Qs)| < INL(Q5)] < IL| (4.5.7)

and thus, by symmetry, we obtain |L| = |L’|, @’ = O,(L’), and ' = y’. More
precisely, by isomorphisms (4.5.6) we can apply [5, Thm. 1.8] to show that L and
L' are isomorphic.

Moreover, by [10, Thm. 5.3], the isorqorphism E1(Qs) = Ep(Qjy) can be lifted
to a k*-group isomorphism E;(Qs) = E;/(Qy); but in our situation it is clear that

Er(Qs) L/O,(L) and Ep(Q}) = L/O,(L). (4.5.8)

That is to say, from now on we may assume that L = L' and that the unity element
is primitive in 77,
Since (k*l:)(Q) = kZ(Q), embedding (4.5.2) induces a P/Q-algebra embed-
ding (cf. [10, Cor. 5.8])
k — T(Q), (4.5.9)

which, since T " covers T(Q)* (cf. [9, 2.8.4]), is actually an isomorphism. How-
ever, it is clear that embedding (4.5.2) determines an embedding between the cor-
responding semisimple quotients, so that setting S(k,L) = kL /J (kyL) yields a
P-algebra embedding

S(kyL) — T & S(k,L), (4.5.10)

which tensored by S(k*I:)" determines another embedding,
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h: S(kioL) ®k S(kiL)° — T @i S(kyL) @i S(k,L)°. (4.5.11)

Furthermore: since Q acts trivially on S(k*L), the image of % is contained in
T2 ®; S(kyL) ®; S(k,L)°. Consequently, since T(Q) = k (cf. (4.5.9)), h induces
a P-algebra automorphism

h(Q): S(kiL) ®; S(kyL)° = S(koL) ®; S(k.L)° (4.5.12)

mapping s € S(k, L) Rk Sk, L)° on Bro(h(s)).

On the other hand, it is well known (cf. [14, Cor. 12.10]) that some simple k. L-
module M has a dimension prime to p and, in particular, that there is a point A of
L on S(k,L) ®; S(k,L)° such that

(S(kyL) ®; S(k L)), = k. (4.5.13)

It then follows from [14, Thm. 7.2] that X is contained in a local point of P on
S(ky L) Qu Sk, L)° and hence, choosing j € A, there is a primitive idempotent ;'
in (S(k, L) ®r S(ky L) )P such that (cf. [10, Prop. 5.6])

h(HA® jH*=h(j)=A® j)h()) (4.5.14)
for some invertible element a of (T ®; S(k*L) R S(k*L)")P . Therefore, since
Bro(1® j’) = j’and j'is primitive in (S(k*L) Qr S(k*L)")P, it follows from
equalities (4.5.14) that Bro(h(j)) = j'B¢@; in particular, isomorphism (4.5.13)
implies that

J'(S(kyL) @k S(kyL)°)j' = k. (4.5.15)

Finally, according to equalities (4.5.14), h and the conjugation by a determine
a P-algebra embedding

k= j(S(kyL) ®i S(kiL)*)j — T @ j'(S(kL) & S(hyL))j' =T, (4.5.16)
which proves that T is similar to k (cf. [11, 1.7.2]). O

THEOREM 4.6.  Assume that G is p-solvable. With notation as before, denote by
y the local point of P onk, G such that P, C Hg. Then there exist a k*-group L,
with finite k*-quotient L, endowed with an injective group homomorphismt: P —
L, and a Dade P -algebra T both unique up to isomorphisms, that fulfill the fol-
lowing conditions:

(4.6.1) CL(0,(L)) = Z(0,(L)) and the unity element is primitive in T?:
(4.6.2) there is a P-interior algebra embedding

(ksG), — T @ ki L. (4.6.3)

In particular, P has a unique local point y’ on T ®x kiL, and this embedding
induces a P-interior algebra isomorphism (k.G), = (T Q kyL),.

Proof. From 4.4 we already know that there exist a k*-group L, with a finite p-
solvable k*- quotlent L’ such that O,/ (L") = {1}, endowed with an injective group
homomorphism 7’: P — L’ such that the image of P is a Sylow p-subgroup of
L/, together with a Dade P-algebra T’ with the unity element primitive in 7’7,
admitting a P-interior algebra embedding
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(k.G), — T' & ki, (4.6.4)

which already proves the existence statement.
Moreover, since there is a P-interior algebra embedding (cf. [10, 5.7])

k—) T/O ®k T/

and since the unity element is primitive in (kL")?, it follows from embedding
(4.6.4) that
kil — T Q (kG),. (4.6.5)

Consequently, for L and T as in the statement of the theorem, we have another
P-interior algebra embedding

kol — (T"° @ T) @ ksl (4.6.6)

and it then follows from Lemma 4.5 that 7'° ®; T is similar to k or, equivalently,
that T is similar to T'. Because the unity elements are primitive in 7 and T'?,
T and T’ are actually isomorphic. We are done. O

4.7. 'We now give a “constructive” description of the Dade P-algebra that ap-
pears in a source P-interior algebra of the block b. Consider the chains {Z,},en
and {T,},cn of G-stable semisimple unitary subalgebras of k*éb defined recur-
sively by

Zoy=kb, T,= > kOy(G)j. Zu=Z(T,), 4.7.1)
{J1eP(Zn)

where éj denotes the stabilizer of j in G for any n € Nand any {j} € P(Z,). It
is clear that Z,, C Z(T,) = Z,+ and that T,, C T,+1, so the union

=7 (4.7.2)
neN
is also a G-stable semisimple unitary subalgebra of k*éb; in fact, T = T, for
some n € N.

4.8. Choosing a primitive idempotent j of Z(T') fixed by P such that s, (j) # 0,
which is possible because y is local, and denoting by K the stabilizer of jin G,
we see that the maximality of T forces &, O,/ (K )j = Tj. In particular, denote by
"K the k*-group determined by the action of K on Tj and, as before, set K~ =
K % (’K)°; then, up to suitable identifications, K and "K contain 0,,,(12 ) and
0,/ (K), respectively, and it follows from Proposition 3.2 and Theorem 3.6 that
we have a G-interior algebra isomorphism

k.Gb = IndS(k, 0, (K)j ®x ky (K0, (K))) (4.8.1)

since the unity element is the unique block of K°/0, (K) (cf. Proposition 4.2).
Consequently, we obtain a P-interior algebra embedding

(k. G)y = k0, (K)j @ kil K /0, (K)) 4.8.2)
and then Theorem 4.6 applies.



338 Lruis Puic

References

[1] J. Alperin, Local representation theory, Cambridge Stud. Adv. Math., 11, Cambridge
Univ. Press, Cambridge, 1986.

[2] J. Alperin and M. Broué, Local methods in block theory, Ann. of Math. (2) 110
(1979), 143-157.

[3] E. Dade, Endo-permutation modules over p-groups I, II, Ann. of Math. (2) 107, 108
(1978), 459-494, 317-346.

[4] P. Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961),
263-284.

[5] B. Kiilshammer and L. Puig, Extensions of nilpotent blocks, Invent. Math. 102
(1990), 17-71.

[6] L. Puig, Local block theory in p-solvable groups, Santa Cruz conference on finite
groups (Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, pp. 385-388, Amer. Math.
Soc., Providence, RI, 1980.

, Pointed groups and construction of characters, Math. Z. 176 (1981),

265-292.

, Local fusions in block source algebras, J. Algebra 104 (1986), 358-369.

, Pointed groups and construction of modules, J. Algebra 116 (1988), 4-129.

(7]

(8]
(9]

[10] , Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77-116.
[11] , Affirmative answer to a question of Feit, J. Algebra 131 (1990), 513-526.
[12] , On the local structure of Morita and Rickard equivalences between Brauer

blocks, Progr. Math., 178, Birkhéuser, Basel, 1999.

, Source algebras of p-central group extensions, J. Algebra 235 (2001),
359-398.

, Blocks of finite groups, Springer Monogr. Math., Springer-Verlag, New
York, 2002.

(13]

[14]

CNRS

Université Paris 7
94340 Joinville-le-Pont
France

puig@math.jussieu.fr



