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1. Introduction

The generalized Paley graphs are, as their name suggests, a generalization of the
Paley graphs, first defined by Paley in 1933 (see [15]). They arise as the relation
graphs of symmetric cyclotomic association schemes. However, their automor-
phism groups may be much larger than the groups of the corresponding schemes.
We determine the parameters for which the graphs are connected, or equivalently,
the schemes are primitive. Also we prove that generalized Paley graphs are some-
times isomorphic to Hamming graphs and consequently have large automorphism
groups, and we determine precisely the parameters for this to occur. We prove that
in the connected, non-Hamming case, the automorphism group of a generalized
Paley graph is a primitive group of affine type, and we find sufficient conditions un-
der which the group is equal to the one-dimensional affine group of the associated
cyclotomic association scheme. The results have been applied in [11] to distin-
guish between cyclotomic schemes and similar twisted versions of these schemes
in the context of homogeneous factorizations of complete graphs.

Let Fq be a finite field with q elements such that q ≡ 1 (mod 4). Let ω
be a primitive element in Fq and S the set of nonzero squares in Fq , so S =
{ω2,ω4, . . . ,ωq−1 = 1} = −S. The Paley graph, denoted by Paley(q), is the
graph with vertex set Fq and edges all pairs {x, y} such that x − y ∈ S. The
class of Paley graphs is one of the two infinite families of self-complementary
arc-transitive graphs characterized by Peisert in [16]. Moreover, Paley graphs are
also examples of distance-transitive graphs, of strongly regular graphs, and of
conference graphs; see [8, Sec. 10.3]. The automorphism group Aut(Paley(q))
of Paley(q) is of index 2 in the affine group A	L(1, q), and each permutation in
A	L(1, q) \ Aut(Paley(q)) interchanges Paley(q) and its complementary graph.
The generalized Paley graphs are defined similarly.

Definition 1.1 (Generalized Paley graph). Let Fq be a finite field of order q,
and let k be a divisor of q−1 such that k ≥ 2; and if q is odd, then in addition q−1

k

is even. Let S be the subgroup of order q−1
k

of the multiplicative group F∗
q . Then

the generalized Paley graph GPaley
(
q, q−1

k

)
of Fq is the graph with vertex set Fq

and edges all pairs {x, y} such that x − y ∈ S.
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The generalized Paley graphs GPaley
(
q, q−1

k

)
are the relation graphs of the sym-

metric cyclotomic association scheme Cyc(q, k) defined in Section 1.1. They also
arise as the factors of cyclotomic homogeneous factorizations of complete graphs
[11, Thm. 1.1]. Our main theorem determines precise conditions under which
Cyc(q, k) is primitive (defined in Section 1.1) and shows how the automorphism
group of a generalized Paley graph depends heavily on the parameters k and q.

Theorem 1.2. Let V = Fq , where q = pR with p a prime, and let k |(q − 1)
be such that k > 1 and either q is even or q−1

k
is even. Let Cyc(q, k) be a k-

class symmetric cyclotomic scheme with relation graphs 	1, . . . ,	k , and let 	 =
GPaley

(
q, q−1

k

)
. Then 	i ∼= 	 for each i, and the following statements hold.

(1) Cyc(q, k) is primitive if and only if k is not a multiple of q−1
pa−1 for any proper

divisor a of R.
(2) 	 is a Hamming graph if and only if k = a(q−1)

R(pa−1) for some proper divisor a
of R.

(3) If 	 is connected and is not a Hamming graph, then Aut(	) is a primitive
subgroup of AGL(R,p) containing the group of translations ZRp .

(4) If k divides p − 1, then Aut(	) = Aut(Cyc(q, k)) < A	L(1, q).

Commentary on the significance and consequences of this result is given in Sec-
tion 1.2. In particular, Hamming graphs and their automorphism groups are dis-
cussed there. The theorem may be contrasted with McConnel’s theorem [14],
proved in 1963, that the automorphism group of Cyc(q, k) (the intersection of the
automorphism groups of its relation graphs) is always a subgroup of A	L(1, q).

1.1. Cyclotomic Association Schemes and Cyclotomic Factorizations

Here we describe briefly the relationship between generalized Paley graphs, sym-
metric cyclotomic association schemes, and cyclotomic homogeneous factoriza-
tions of complete graphs. Symmetric association schemes are defined as follows.

Definition 1.3 [4, p. 43]. A symmetric k-class association scheme is a pair
(V, R) such that:

(1) R = {R0,R1, . . . ,Rk} is a partition of V ×V ;
(2) R0 = {(x, x) | x ∈V };
(3) Ri = RTi (i.e., (x, y)∈Ri implies (y, x)∈Ri) for all i ∈ {0,1, . . . , k};
(4) there are constants phij (called the intersection numbers of the scheme) such

that, for any pair (x, y) ∈ Rh, the number of elements z ∈V with (x, z) ∈ Ri
and (z, y)∈Rj equals phij .

For each i ≥ 1, the class Ri corresponds to the undirected graph 	i = (V,Ei),
where Ei = {{x, y} | (x, y)∈Ri} (see e.g. [7, Chap. 12]). These graphs are called
the relation graphs of the scheme and are not in general isomorphic. The scheme
is said to be primitive if each of the 	i is connected, and otherwise it is called im-
primitive. The automorphism group Aut(V, R) is the largest subgroup of Sym(V )
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that, in its natural action on V ×V, fixes each of the relations R1, . . . ,Rk setwise;
that is to say, Aut(V, R) = ⋂k

i=1Aut(	i). The edge sets of the 	i form a partition
E = {E1, . . . ,Ek} of the edge set of the complete graph Kn, where |V | = n, and
hence the relation graphs form a factorization of Kn. If the subgroup of Sym(V )
fixing R setwise permutes transitively the set {	1, . . . ,	k} and if Aut(V, R) is tran-
sitive onV, then the factorization is called homogeneous. In particular, in this case
the relation graphs 	i are pairwise isomorphic.

Let V = Fq , let k |(q − 1) be such that k > 1 and either q is even or q−1
k

is
even, and let S(k) = 〈ωk〉 ⊆ V ∗ = F∗

q (the multiplicative group of Fq). Then
the k-class symmetric cyclotomic scheme Cyc(q, k) = (V, R) has Ri = {(x, y) |
y − x ∈ S(k)ωi} for 1 ≤ i ≤ k. Note that condition (3) of Definition 1.3 holds
since −1 ∈ S(k). Also, the relation graph 	k is the generalized Paley graph of
Fq relative to S(k), and in particular if k = 2 then 	2 is the Paley graph of Fq
(see [4, p. 66]). Moreover, the affine group AGL(1, q) fixes R setwise and per-
mutes the relation graphs transitively, and Aut(Cyc(q, k)) = ⋂k

i−1Aut(	i) con-
tains the group of translations that is transitive on V. Thus the relation graphs for
Cyc(q, k) form a homogeneous factorization of Kq called a cyclotomic factoriza-
tion. In particular, all of the relation graphs are isomorphic to GPaley

(
q, q−1

k

)
,

and Aut
(
GPaley

(
q, q−1

k

))
contains the subgroup of AGL(1, q) of order q q−1

k
act-

ing arc-transitively.

1.2. Commentary on Theorem 1.2: Automorphism Groups
of Graphs and Schemes

In 1963, McConnel [14] proved that the full automorphism group of Cyc(q, k)
is a subgroup of A	L(1, q). However, the automorphism groups of the relation
graphs of Cyc(q, k), that is, of the generalized Paley graphs GPaley

(
q, q−1

k

)
, may

be much larger. This paper initiates a study of these automorphism groups for var-
ious ranges of values of the parameters q and k.

The “easiest” way for the automorphism group of GPaley
(
q, q−1

k

)
to be larger

is if the graph is not connected. Since all the relation graphs of Cyc(q, k) are iso-
morphic to GPaley

(
q, q−1

k

)
, it follows that Cyc(q, k) is primitive if and only if

GPaley
(
q, q−1

k

)
is connected. We determine in Theorem 1.2(1) the precise param-

eter values for GPaley
(
q, q−1

k

)
to be connected or, equivalently, for Cyc(q, k) to

be primitive. In Theorem 2.2, a more detailed version of this result, we also prove
that, if GPaley

(
q, q−1

k

)
is disconnected, then its connected components are gener-

alized Paley graphs over a proper subfield and generate a cyclotomic scheme over
this subfield.

Suppose now that GPaley
(
q, q−1

k

)
is connected. It is possible for GPaley

(
q, q−1

k

)
to be a Hamming graph, for certain q and k, and hence have a large automorphism
group. For positive integers a > 1 and b > 1, the Hamming graph H(a, b) has as
vertices all b-tuples with entries from a set � of size a. Two vertices are adjacent
inH(a, b) if and only if the two b-tuples differ in exactly one entry. The full auto-
morphism group of H(a, b) is the wreath product Sa � Sb in its product action on
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�b; see [4, Thm. 9.2.1]. Section 2 contains details about the product action. We
determine in Theorem 1.2(2) the precise parameter values for GPaley

(
q, q−1

k

)
to

be a Hamming graph.
Moreover we prove, in Theorem 1.2(3), that if GPaley

(
q, q−1

k

)
is connected and

not a Hamming graph, then its automorphism group is a primitive group of affine
type. Although this gives a lot of information about the group, it does not de-
termine it completely. In a special case that is relevant to our work on homoge-
neous factorizations in [11], we were able to show that the automorphism group of
GPaley

(
q, q−1

k

)
is indeed equal to the automorphism group of Cyc(q, k) (and no

larger); see Theorem 1.2(4).
We make additional detailed comments about Theorem 1.2 and its consequences

in Remark 1.4.

Remark 1.4. (a) The graph GPaley
(
q, q−1

k

)
is a Cayley graph for the transla-

tion subgroup T of A	L(1, q); see Section 2.2. Theorem 1.2(3) proves that, if
GPaley

(
q, q−1

k

)
is connected and not a Hamming graph, then it is a normal Cay-

ley graph—that is, the translation subgroup T of automorphisms is normal in the
full automorphism group.

(b) The condition k |(p − 1) holds in particular if q = p (i.e., if R = 1). In
this case, Theorem 1.2(4) follows from an old result of Burnside about primitive
permutation groups of prime degree; see [20, 11.7].

(c) The proof of Theorem 1.2(3) uses results from [17; 18], and that of Theo-
rem 1.2(4) depends heavily on results in [9]. Because the results used from these
papers rely on the classification of the simple groups, these two parts of Theo-
rem 1.2 also rely on that classification.

(d) Apart from the possibilities that GPaley
(
q, q−1

k

)
may be disconnected or

isomorphic to a Hamming graph, which are dealt with in parts (1) and (2) of
Theorem 1.2, there are other cases where Aut

(
GPaley

(
q, q−1

k

))
is not a one-

dimensional affine group. In Example 1.6, we give an explicit example. Thus,
despite our identifying the disconnected and Hamming cases precisely in Theo-
rem 1.2, there remain some mysteries to be solved concerning generalized Paley
graphs: Problem 1.5 is still largely open.

(e) Our interest in generalized Paley graphs arose from our study of homo-
geneous factorizations of complete graphs (see Section 1.1). These factorizations
were introduced in [12] as a generalization of vertex-transitive self-complementary
graphs. Our study in [11] gave a classification of arc-transitive homogeneous fac-
torizations of complete graphs. In addition to the cyclotomic factorizations, we
discovered a new family of examples that generalize an infinite family of vertex-
transitive self-complementary graphs constructed and characterized by Peisert
[16]. They may be viewed as a twisted version of cyclotomic factorizations.
Using Theorem 1.2(4), we proved in [11] that factor graphs in these two homo-
geneous factorizations, with the same parameters q and k, were nonisomorphic;
we showed that their automorphism groups had nonisomorphic intersections with
A	L(1, q).
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Problem 1.5. Determine the precise conditions on k and pR under which the
conclusion of Theorem 1.2(4) holds.

Example 1.6. Take R = 4, p = 3, and k = 4, so that pR−1
k

= 20, and let
	 = GPaley(81, 20). Then k �= a(pR−1)

R(pa−1) , and k is not a multiple of q−1
pa−1, for any

proper divisor a ofR. Hence, by Theorem 1.2, 	 is connected and not a Hamming
graph, and Aut(	) is a primitive subgroup of AGL(4, 3). Using Magma [3], we
computed Aut(	). Its order is |Aut(	)| = 233280, greater than |A	L(1, 81)| =
25920. Thus Aut(	) is not contained in the one-dimensional affine group. A fur-
ther check using Magma showed that a point-stabilizerA0 ofA := Aut(	), which
has order 2880, contains a normal subgroup B isomorphic to A6, and A0/B ∼=
D8, so Aut(	) = Z 4

3 � (A6 ·D8).

In Section 2, we introduce some terminology and definitions needed for subse-
quent results and we prove Theorem 1.2(1). We prove parts (2), (3), and (4) of
Theorem 1.2 in Sections 3, 4, and 5, respectively.

2. Preliminaries and Proof of Theorem 1.2(1)

2.1. Cayley Graphs

All graphs considered are finite, undirected, and without loops or multiple edges.
Thus a graph 	 = (V,E) consists of a vertex set V and a subset E of unordered
pairs fromV, called the edge set. An arc is an ordered pair (u, v)where {u, v} is an
edge. The generalized Paley graphs belong to a larger class of graphs called the
Cayley graphs, defined as follows.

Definition 2.1 (Cayley graph). For a group K and a nonempty subset H of
K such that 1K /∈ H and H = H −1 = {h−1 | h ∈ H }, the Cayley graph 	 =
Cay(K,H ) ofK relative toH is the graph with vertex setK such that {x, y} is an
edge if and only if xy−1 ∈H.
A Cayley graph	 = Cay(K,H ) is connected if and only if 〈H 〉 = K. Furthermore,
if 	 = Cay(K,H ) is disconnected, then each connected component is isomorphic
to Cay(〈H 〉,H ) and the number of connected components equals |K|

|〈H 〉| . A permu-
tation group G on V is semiregular if the only element fixing a point in V is the
identity element of G; and G is regular on V if it is both semiregular and transi-
tive. In Definition 2.1, the group K acts regularly on vertices by y : x → xy for
x, y ∈ K. Conversely (see [2, Lemma 16.3]), a graph 	 is isomorphic to a Cay-
ley graph for some group if and only if Aut(	) has a subgroup that is regular on
vertices.

2.2. Generalized Paley Graphs as Cayley Graphs

It follows from Definition 1.1 that

GPaley

(
q,
q − 1

k

)
= Cay(V, S),
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whereV is the additive group of the field Fq and S is the unique subgroup of order
q−1
k

of the multiplicative group F∗
q . Let ω be a primitive element of Fq . Then S =

〈ωk〉. Thus GPaley
(
q, q−1

k

)
admits the additive group of Fq acting regularly by

ty : x → x + y (for x, y ∈ Fq) as a subgroup of automorphisms. To distinguish
this subgroup from the vertex set V, we denote it by T = {ty | y ∈ Fq} and call it
the translation group of A	L(1, q).

Now T ∼= ZRp , where q = pR with p prime, and T is the unique minimal nor-
mal subgroup of A	L(1, q). Let ω̂ denote the scalar multiplication map ω̂ : x →
xω (for all x ∈ Fq) corresponding to the primitive element ω, and let α denote the
Frobenius automorphism of Fq; that is, α : x → xp. ThenA	L(1, q) = T�〈ω̂,α〉,
and the one-dimensional general semilinear group 	L(1, q) = 〈ω̂,α〉. Now both
ω̂k and α fix 0 and fix S setwise; hence T �〈W,α〉 is a subgroup of automorphisms
of GPaley

(
q, q−1

k

)
, where W := 〈ω̂k〉. In fact, T �W is arc-transitive, and W is

transitive on S = {1,ωk,ω2k, . . . ,ω((q−1)/k)−k} = 1W. (For a permutation group K
on V and a point v ∈V, we denote by vK the K-orbit {vx | x ∈K} containing v.)

2.3. Hamming Graphs and Cayley Graphs

Let H be a group, b a positive integer, and K a subgroup of the symmetric group
Sb. Then the wreath product H �K is the semidirect product Hb �K where ele-
ments of K act on Hb by permuting the “entries” of elements of Hb. That is,
(h1,h2, . . . ,hb)k

−1 = (h1k ,h2k , . . . ,hbk ) for all (h1,h2, . . . ,hb) ∈ Hb and k ∈ K.
Now supposeH ≤ Sym(�). Then the product action ofH �K on�b is defined as
follows. Elements of Hb act coordinate-wise on �b and elements of K permute
the coordinates: for (h1, . . . ,hb)∈Hb, k ∈K, and (δ1, . . . , δb)∈�b,

(δ1, . . . , δb)
(h1,...,hb) = (δ

h1
1 , . . . , δhbb ),

(δ1, . . . , δb)
k−1 = (δ1k , . . . , δbk ).

If A is a regular subgroup of Sa , then Ab < Sa � Sb and Ab acts regularly on
the vertices of H(a, b). Thus (see Section 2.1) H(a, b) is a Cayley graph. If a is
a prime power q, then A can be identified with the additive group of a finite field
Fq and the vertex set of H(a, b) can be identified with Fb

q .

2.4. Primitive Permutation Groups

Let G be a transitive permutation group acting on a finite set V. A nonempty sub-
set � ⊆ V is called a block for G if, for every g ∈G, either � ∩�g = ∅ or � =
�g. A block � is said to be trivial if |�| = 1 or � = V. Otherwise, � is called
nontrivial. We say that the group G is primitive if the only blocks for G are the
trivial ones.

The possible structures of finite primitive permutation groups up to permuta-
tional isomorphism are described by the O’Nan–Scott theorem (see e.g. [5; 13]).
Here, we will briefly describe the three types of finite primitive permutation groups
relevant to this paper (we refer readers to [5; 13] for further details about the re-
maining types).



On Generalized Paley Graphs and Their Automorphism Groups 299

A finite primitive permutation group G on V is of type HA (holomorph of an
abelian group) if G = T �G0 is a subgroup of an affine group AGL(R,p) on V,
where T ∼= ZRp is the (regular) group of translations (and we may identify V with
ZRp) andG0 is an irreducible subgroup of GL(R,p). We often say that a primitive
group of this type is of affine type. A primitive permutation groupG is of type AS
if G is an almost simple group—that is, if N ≤ G ≤ Aut(N ), where N is a finite
nonabelian simple group. Such a group can equivalently be defined as a primitive
groupG having a unique minimal normal subgroupN that is nonabelian and sim-
ple. Finally, a primitive permutation group G on V is of type PA (product action)
if V = �b and Nb ≤ G ≤ H � Sb ≤ Sym(�) � Sb in its product action, where H
is a primitive permutation group on� of type AS with simple normal subgroupN.

2.5. Proof of Theorem 1.2(1)

The following result relates the connectedness of 	 with the action ofW onV, and
Theorem 1.2(1) follows immediately from it.

Theorem 2.2. Let 	 = GPaley
(
q, q−1

k

) = Cay(V, S), where V = Fq and S =
〈ωk〉, with k a divisor of q − 1 such that k ≥ 2 and either q or q−1

k
is even. Let

q = pR with p prime, and let Cyc(q, k) = (V, R).
(1) The following are equivalent :

(i) 	 is connected ;
(ii) Cyc(q, k) is primitive;

(iii) 〈ω̂k〉 acts irreducibly on V ;
(iv) k is not a multiple of q−1

pa−1 for any proper divisor a of R.
(2) Suppose that k is a multiple of q−1

pa−1, where a divides R, so that 	 is not con-
nected. Then the connected components of 	 are all isomorphic, and the com-
ponent	0 containing 0 has vertex set Fpa (a proper subfield of Fq) containingS
and is isomorphic to GPaley

(
pa, p

a−1
k ′

)
, where k ′ = pa−1

q−1 k ≥ 1. Furthermore,
Aut(	) = Aut(	0) � SpR−a .

We note that, in part (2), k ′ may equal 1. When this happens we still use the nota-
tion GPaley

(
pa, p

a−1
k ′

)
for 	0 even though in this case 	0 = Cay(Fpa , S) ∼= Kpa ,

the complete graph on pa vertices.

Proof of Theorem 2.2. (1) The equivalence of parts (i) and (ii) follows from our
discussion in Section 1.1. LetU be the Fp-span of S; that is, U = {∑

ωik∈S λiωik |
λi ∈ Fp

}
. Since W = 〈ω̂k〉 leaves S invariant, it also leaves invariant the Fp-span

U of S. Also we note that 	 is connected if and only ifU = V (see Definition 2.1).
Suppose W acts irreducibly on V. Then, since U is W -invariant and nonzero,

U = V and hence 	 is connected. Conversely, suppose 	 is connected. Then S is
an Fp-spanning set forV (i.e.U = V ). Now S is the orbit 1W = 〈ωk〉 (note thatW
acts by field multiplication). Also, for each ωi ∈V ∗, ω̂i maps S to Sωi, and since
ω̂i ∈ GL(1,pR) it follows that Sωi is also an Fp-spanning set forV. However, Sωi

is theW -orbit containing ωi. Hence everyW -orbit in V ∗ is a spanning set for V
and soW is irreducible on V. Thus (i) and (iii) are equivalent.
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Suppose that k is a multiple of q−1
pa−1 for some proper divisor a of R. Then S is a

subgroup of the multiplicative group of the proper subfield Fpa of Fq . Thus U ⊂
Fpa and so 	 is disconnected. Therefore, condition (i) implies condition (iv). The
reverse implication will follow from (2).

(2) Suppose 	 is disconnected. Let U be the vertex set of the connected com-
ponent of 	 containing 1∈ FpR . Then U is the Fp-span of S. It follows that all the
connected components of 	 are isomorphic to Cay(U, S). We claim that U is a
subfield of V = FpR .

Because U is W -invariant, Uω̂ik = U for each ω̂ik ∈W and hence Uωik = U

for each ωik ∈ S. Thus U is closed under multiplication by elements of S. Now
each element of U is of the form

∑
ωik∈S λiωik for some λi ∈ Fp, and (by regard-

ing λi as an integer in the range 0 ≤ λi ≤ p − 1) each λiωik is equal to the sum
ωik + · · · +ωik (λi times). Thus each element of U is a sum of a finite number of
elements of S. Since U is closed under addition and under multiplication by ele-
ments of S, it follows that U is closed under multiplication. Thus U is a subring
of V. Also, U contains the identity 1 of V (since 1 ∈ S). Let u ∈ U \ {0}. Then,
since V is finite, ui = ui+j for some i ≥ 1 and j ≥ 1, and hence u−1 = uj−1 ∈U.
Thus U is a subfield of V = FpR as claimed.

Hence |U | = pa for some proper divisor a of R. Also, since S ≤ U ∗, it follows

that |S| = pR−1
k

dividespa−1. Let k ′ = (pa−1)k
pR−1

. Then |S| = pR−1
k

= pa−1
k ′ and, by

definition of a generalized Paley graph, we have Cay(U, S) = GPaley
(
pa, p

a−1
k ′

)
(though perhaps k ′ = 1). Since there are pR−a connected components in 	, it fol-

lows that Aut(	) = Aut
(
GPaley

(
pa, p

a−1
k ′

)) � SpR−a .

By Theorem 2.2, if 	 = GPaley
(
q, q−1

k

)
is disconnected then the connected com-

ponents are generalized Paley graphs for subfields. In the rest of the paper we will
assume that 	 = GPaley

(
q, q−1

k

)
is connected.

3. Proof of Theorem 1.2(2)

Suppose first that 	 = GPaley
(
pR, p

R−1
k

) ∼= H(pa, b), where R = ab with b >

1. The valency of 	 is pR−1
k

= b(pa − 1), so k = pR−1
b(pa−1) = a(pR−1)

R(pa−1) as required.

Conversely, suppose that k = a(pR−1)
R(pa−1) where R = ab and 1 ≤ a < R. Then,

since 	 = GPaley
(
pR, p

R−1
k

)
is connected, the Fp-span of S = 〈ωk〉 equals V ;

that is,
{∑

ωik∈S λiωik | λi ∈ Fp
} = V. Let U be the Fpa -span of the set X :=

{1,ωk,ω2k, . . . ,ω(b−1)k}. We claim that U = V.

Now Fpa ,X ⊆ V = FpR , and hence U ⊆ V. Moreover, since k = a(pR−1)
R(pa−1) , the

set S = 〈ωk〉 has order pR−1
k

= R
a

· (pa − 1) = b(pa − 1) and also ωbk has order
pa − 1. Thus 〈ωbk〉 = F∗

pa . Now suppose v �= 0 and v ∈V. Then v = ∑
λiω

ik,
where λi ∈ Fp (not all zero) and the sum is over all ωik ∈ S. Let i = bxi + ri where
0 ≤ ri < b. Then ωik = ω(bxi+ri )k = ωbxik · ωrik and we have

v =
∑

λiω
ik =

∑
λiω

bxik · ωrik.
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Since F∗
pa = 〈ωbk〉, it follows that ωbxik ∈ Fpa . Thus λiωbxik ∈ Fpa and so v ∈U.

Hence U = V as claimed.
From now on we shall regard V as a vector space over Fpa . We have shown that

V is spanned by the set X = {1,ωk,ω2k, . . . ,ω(b−1)k}, and since dimFpa (FpR ) = b

it follows that X is an Fpa -basis for V. Define . : V → Fb
pa as follows. For u =∑b−1

j=0 µjω
jk with µj ∈ Fpa , let .(u) = (µ0,µ1, . . . ,µb−1)∈ Fb

pa . Since X is an
Fpa -basis for V, . is a bijection.

Next, we determine the image of the connecting set S ⊂ V under .. As we
observed previously, |S| = |〈ωk〉| = b(pa − 1). Thus each element of S can be
expressed uniquely as ωik for some i such that 0 ≤ i ≤ b(pa − 1) − 1. As be-
fore, we write i = bxi + ri where 0 ≤ ri ≤ b − 1. Thus ωik = ωbxik · ωrik. Now
ωbxik ∈ F∗

pa = 〈ωbk〉, and so

.(ωik) = .(ωbxik · ωrik ) = (0, . . . , 0, ωbxik︸ ︷︷ ︸
ri th

, 0, . . . , 0).

Observe that xi can be any integer satisfying 0 ≤ xi ≤ pa − 2, and thereforeωbkxi

takes on each of the values in F∗
pa . Moreover, each of these values occurs exactly

once in each of the positions r for 0 ≤ r ≤ b − 1. Thus .(S) is the set of all ele-
ments of Fb

pa with exactly one component nonzero—that is, the set of “weight-1”
vectors.

Now . determines an isomorphism from 	 to the Cayley graph for Fb
pa with

connecting set .(S). In this Cayley graph, two b-tuples u,v ∈ Fb
pa are adjacent

if and only if u − v ∈.(S), that is, if and only if u − v has exactly one nonzero
component. Thus 	 = GPaley

(
pR, p

R−1
k

)
is mapped under the isomorphism. to

the Hamming graph H(pa, b) where b = R
a
.

4. Proof of Theorem 1.2(3)

Recall that, by Theorem 2.2(1), if 	 = GPaley
(
q, q−1

k

)
is connected then W =

〈ω̂k〉 acts irreducibly on V. It follows that the group G = T � W is a vertex-
primitive subgroup of Aut(	) of affine type. Thus Aut(	) is a primitive permu-
tation group on V containing G. We will use results from [17; 18] concerning
such groups.

Proof of Theorem 1.2(3). Suppose that 	 = GPaley
(
pR, p

R−1
k

) = Cay(V, S) is
connected and is not a Hamming graph. Let G = T � W where T ∼= ZRp and
W = 〈ω̂k〉, as in Section 2.2. By Theorem 1.2(2), k �= a(pR−1)

R(pa−1) for any a |R with
1 ≤ a < R. Also, by Section 2.2 and Theorem 2.2, G ≤ X := Aut(	) and W is
irreducible onV, so G is a primitive subgroup of AGL(R,p). Suppose, for a con-
tradiction, that X is not contained in AGL(R,p). Since k ≥ 2, it follows that 	
is not a complete graph and so X �= SpR or ApR . Then, by [17, Prop. 5.1], X is
primitive of type PA. Thus (see Section 2.4) R = ab with b ≥ 2, V = �b where
|�| = pa, and Nb ≤ X ≤ H � Sb with H primitive on � of type AS with sim-
ple normal subgroup N. Moreover, by [17, Prop. 5.1] and [18, Prop. 2.1], either
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N = Apa or N and pa are as listed in [17, Table 2] (denoted as L1 in [17]). In all
cases N acts 2-transitively on �, and since N is nonabelian simple it follows that
|�| = pa ≥ 5.

We will prove that pR−1
k

= b(pa − 1), contradicting the assumption on k and
thereby proving the theorem. Let γ ∈� and consider the point u = (γ, . . . , γ ) ∈
�b = V. Since Nb is transitive on V we have X = NbXu, where Xu is the stabi-
lizer of u inX. NowXu contains (N b)u = (Nγ )

b, andNγ is transitive on�−{γ }.
If v �= u, then v := (δ1, . . . , δb) with, say, 2 entries (1 ≤ 2 ≤ b) different from γ

and the length of the (N b)u-orbit containing v is (pa − 1)2.
Because X is a primitive subgroup of Sym(�) � Sb, X projects to a transitive

subgroup of Sb (see e.g. [5, Thm. 4.5]). Moreover, since X = NbXu, it follows
thatXu also projects to a transitive subgroup of Sb. Thus the 2-subset of subscripts
i such that δi �= γ has n2 distinct images under Xu, where n2 ≥ b/2. It follows
that the length of theXu-orbit containing v is at least n2 · (pa−1)2 ≥ b

2
· (pa−1)2.

Suppose now that the point v has been chosen to lie in 	(u) (the set of all vertices
in 	 adjacent to u) so that vXu = 	(u) has size pR−1

k
. Then

pR − 1

k
≥ b

2
· (pa − 1)2. (4.1)

On the other hand, Xu contains Gu = W = 〈ω̂k〉, and all W -orbits in V \ {u}
have length pR−1

k
. It follows that all orbits of Xu inV \ {u} have length a multiple

of pR−1
k
. Now there exists an orbit of Xu inV \ {u} of length b(pa −1) (the set of

b-tuples with exactly one entry different from γ ), and so

b(pa − 1) ≥ pR − 1

k
. (4.2)

Combining inequalities (4.1) and (4.2), we obtain

2 ≥ (pa − 1)2−1. (4.3)

Since pa ≥ 5, the inequality (4.3) holds if and only if 2 = 1, and hence pR−1
k

=
b(pa −1) as claimed. This implies that k = pR−1

b(pa−1) = a(pR−1)
R(pa−1) , which is a contra-

diction. Thus X is a primitive subgroup of AGL(R,p).

5. The Case Where k|(p − 1): Proof of Theorem 1.2(4)

Let 	 = GPaley
(
q, q−1

k

) = Cay(V, S), where q = pR and where V and S are as
in Definition 1.1, and suppose that k divides p−1. Let A := Aut(	). Recall from
Section 1 that A contains X := T � 〈W,α〉 as an arc-transitive subgroup, where
W = 〈ω̂k〉. We will prove that A = X.

If k = 2, then 	 = GPaley
(
pR, p

R−1
2

)
is a Paley graph and (see e.g. [16]) A =

X. Thus we may assume that k ≥ 3. Then, since p − 1 ≥ k ≥ 3, we have p ≥ 5.
Suppose thatR = abwith b > 1. Then pR−1

pa−1 = (pa)b−1+pR−2a+· · ·+pa+1>
pa(b−1) ≥ p > k. Hence, by Theorem 1.2(1), 	 is connected and so, by Theo-
rem 2.2,W is irreducible on V. Also, if k = pR−1

b(pa−1) then
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b = pR − 1

k(pa − 1)
>

pR − 1

p(pa − 1)
> pab−a−1 ≥ pa(b−2).

It follows, since p ≥ 5, that b = 2, a = 1, and k = p+1
2 . However, this contra-

dicts the assumption k |(p − 1). Thus it follows from Theorem 1.2(3) that A =
T � A0 ≤ AGL(R,p), where 〈W,α〉 ≤ A0 ≤ GL(R,p). Note that A0 preserves
S ⊂ V and hence A0 does not contain SL(R,p).

We identify V = FpR with an R-dimensional vector space over the prime field
Fp. Let a be minimal such that a ≥ 1, a |R, and A0 preserves on V the structure
of an a-dimensional vector space over a field of order q0 = pR/a. Then A0 ≤
	L(a, q0) acting on V = F a

q0
. Let Z := 〈ω̂(q−1)/(q0−1)〉 = Z(GL(a, q0)) ∼= Zq0−1.

Lemma 5.1. If a ≤ 2 then A = X.

Proof. Suppose first that a = 1. Then A0 ≤ 	L(1,pR) = 〈ω̂,α〉. Since 〈ω̂〉 is
regular on V ∗ and since A0 leaves S = 〈ωk〉 invariant, it follows that A0 ∩ 〈ω̂〉 =
〈ω̂k〉. Hence A0 = W and A = X.

Suppose now that a = 2. Consider the canonical homomorphism

ϕ : GL(2, q0) → PGL(2, q0),

and for H ≤ GL(2, q0) let H := ϕ(H ) = HZ/Z. Now A0 � PSL(2, q0) since
A0 � SL(2, q0). AlsoW = WZ/Z, and, since k |(p−1),WZ = 〈ω̂k, ω̂q0+1〉 has

order q2
0 − 1 if k is odd and

q2
0−1

2 if k is even. Hence

〈W,α〉 ∼=
{
D2(q0+1) if k is odd,

Dq0+1 if k is even.

It follows from the classification of the subgroups of PGL(2, q0) and PSL(2, q0)

(see [19, p. 417]) that either A0 ≤ 〈ω̂,α〉 ∼= D2(q0+1) or A0 ∈ {A4, S4,A5}. In the
former case, A0 ≤ 〈ω̂,α〉 = A	L(1, q) and a = 1, which is a contradiction. In
the latter case, since A0 ≥ Z(q0+1)/2 and p ≥ 5, it follows that q0 = p = 5 or 7.
Moreover, since A0 ≥ Dp+1 and A0 � PSL(2,p), it follows that A0 = S4 and in
both casesA0 is transitive on 1-spaces. Thus S consists of, say, s points from each

1-space and |S| = (p + 1)s. Since |S| = |V ∗|
k

, we have k = |V ∗|
(p+1)s = p−1

s
. Also,

since 	 is an undirected Cayley graph, S = 〈ωk〉 = −S and hence S contains −1
and s ≥ 2. Thus k ≤ p−1

2 and, since k ≥ 3, we have p = 7, k = 3, and s = 2.
This is impossible because in this case W = 〈ω̂3〉 ∼= Z16 projects to W ∼= Z8 yet
A0 = S4 has no such subgroup.

From now on we will assume that a ≥ 3, k ≥ 3, and p ≥ 5. Then, by an old re-
sult of Zsigmondy [21] (or see [9]), there is a prime divisor r of pR − 1 such that
r does not divide pc − 1 for any c < R. Then p has multiplicative order R mod-
ulo r, and in particular R divides r − 1. Thus r = Rs + 1 for some s ≥ 1. Such a
prime r is called a primitive prime divisor of pR − 1.

Let A1 := A0 ∩ GL(a, q0). SinceW ⊆ GL(a, q0), it follows thatW ⊆ A1, so r
divides |A1| and A1 is irreducible. By the minimality of a, A1 is not contained in a
proper “extension field subgroup” of GL(a, q0). Also, since k |(p − 1), the order
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ofW is divisible by pR−1
p−1 ; it follows thatW, and hence also A1, cannot be realized

over a proper subfield of Fq0 . By [9, Main Theorem] (noting that the groups in [9,
Ex. 2.2–2.4] do not have all of these properties), either

(A) A1 belongs to one of the families of Examples 2.1 or 2.5 in [9], or
(B) A1 is nearly simple; that is, L ≤ A1/(A1 ∩Z) ≤ Aut(L) for some nonabelian

simple group L, with L as in one of Examples 2.6–2.9 in [9].

Lemma 5.2. The group A1 satisfies condition (B).

Proof. Suppose that A1 is a subgroup of GL(a, q0) in [9, Ex. 2.1]. Then A1 is a
classical group containing Y = SL(a, q0), or (for a even) Sp(a, q0) or7±(a, q0),
or (if aq0 is odd) 7(a, q0), or (if q0 is a square) SU(a, q0). Since A1 is not tran-
sitive on V ∗, A1 cannot contain SL(a, q0) or Sp(a, q0). Also, A1 contains the ir-
reducible element ω̂p−1 of order pr−1

p−1 , whereas (see [1] or [10]) for the remaining
groups Y we have |〈ω̂〉 ∩NGL(a,q0)(Y )| ≤ (q

a/2
0 + 1)(q0 − 1).

Next suppose that A1 is as in [9, Ex. 2.5]. Then a = 2m, r = a + 1, and A1 is
contained in Z � (S · M0), where S and M0 are as listed in Table 1. Also, since
r ≥ R + 1, it follows that a = R, and so r = R + 1 = 2m + 1 ≥ 5 and q0 =
p. Elements in S and M0 have orders at most 4 and 22m − 1 = R2 − 1, respec-
tively (see [1, Proof of Lemma 2]), and S ∩ Z ∼= Z2. Thus elements of A1 have
order at most 2(R2 − 1)(p − 1) and, since A1 contains ω̂p−1 of order pR−1

p−1 , we
have pR−1

p−1 ≤ 2(R2 − 1)(p − 1). Since p ≥ 5 and R ≥ 4,

5R−2 − 1 ≤ pR−2 − 1<
pR − 1

(p − 1)2
≤ 2(R2 − 1).

Since R ≥ 4, this implies that (R,p) = (4, 5). However, r = R + 1 = 5 does not
divide 54 − 1, contradicting the definition of r.

Thus case (B) holds, and we need to consider the possibilities for A1 from Ex-
amples 2.6–2.9 in [9] (see also Tables 2–5) with order divisible by the primitive
prime divisor r of pR − 1, where R = ab (a ≥ 3) and q0 = pb ≥ 5b. Here L ≤
A1/(A1 ∩ Z) ≤ Aut(L) for some nonabelian simple group L. Note that, when
applying the results of [9], the dimension a is equal to d = e in [9] and b is the
parameter a in [9]. Also, most of the examples in Tables 2–5 have additional con-
ditions for q0, p, r, or a. We will not mention these conditions except when they
are necessary for our calculations.

Table 1

S M0 p

4 � 21+2m = Z4 �D8 � · · · �D8 Sp(2m, 2) p ≡ 1 (mod 4)

21+2m
− = D8 � · · · �D8 �Q8 O−(2m, 2)

21+2m
+ = D8 � · · · �D8 O+(2m, 2)
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Table 2

Example 2.6(b) of [9]

n 7 6 5 5 7 7
a 4 4 2 4 3 6
r 5 5 5 5 7 7
b 1 1 2 1 2 1

Table 3

Example 2.7 of [9]

L M11 M12 M22 M23 J2 J3 Ru Suz

a 10 10 10 22 6 18 28 12
r 11 11 11 23 7 19 29 13

Table 4

Example 2.9 of [9, Table 7]

L G2(4) PSU(4, 2) PSU(4, 3) PSL(3, 4)
a 12 4 6 6
r 13 5 7 7

Table 5

Example 2.9 of [9, Table 8]

L PSL(n, s) PSU(n, s) PSp(2n, s) PSL(2, s) PSL(2, s)

n ≥ 3, n prime n ≥ 3, n prime n = 2c ≥ 2 s ≥ 7 s ≥ 7

a
sn−1
s−1 − 1 sn+1

s+1 − 1 1
2 (s

n − 1) s, s − 1, or 1
2 (s − 1) 1

2 (s − 1)

r a + 1 a + 1 a + 1 a + 1 2a + 1

Lemma 5.3. The group A1 does not satisfy condition (B).

Proof. Recall that r ≥ R + 1 ≥ a + 1 ≥ 4 and p ≥ 5. Also ω̂p−1 ∈A1 has order
pR−1
p−1 , a multiple of r. Let max(A1) denote the maximum order of an element of
A1 whose order is a multiple of r. An easy calculation shows that
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max(A1) ≥ pR − 1

p − 1
>




2(p2 − 1)(R + 1) if either R ≥ 5 and p ≥ 5
or R = 4 and p ≥ 11

(p2 − 1)(R + 1) if R = 4 and p = 7

2(p − 1)(R + 1) if R ≥ 4 and p ≥ 5.

(5.1)

Case [9, Example 2.6]. Suppose first that An ≤ A1 ≤ Sn × Z with n = a + 1
or a + 2 and with r = a + 1, so R = a and q0 = p. Then any element of Sn
whose order is a multiple of r is an r-cycle, and therefore ω̂p−1 has order at most
r(p − 1). Hence (R + 1)(p − 1) = r(p − 1) ≥ pR−1

p−1 , contradicting (5.1). Thus
L = An with n, a, r, b as in one of the columns of Table 2 (see [9, Tables 2–4]).
In all cases r = ab + 1 = R + 1 and r ≥ n − δ, where δ = 1 (except for col-
umn 1, where δ = 2). Thus any element of Sn whose order is a multiple of r has
order at most δr. Hence an element ofA1 of order a multiple of r has order at most
δr(q0 −1) = δ(pb −1)(R+1). By (5.1), column 3 of Table 2 holds but with r =
p = 5, contradicting the definition of r.

Case [9, Example 2.7]. See Table 3, which contains the examples from [9, Ta-
ble 5] for which r is a primitive prime divisor of pR − 1. In all cases, q = p and
r = R + 1. An element of Aut(L) of order a multiple of r has order at most 2r =
2(R + 1) (see [6]), so max(A1) ≤ 2(p − 1)(R + 1), contradicting (5.1).

Case [9, Example 2.8]. These examples are listed in [9, Table 6], and the only
ones for which r is a primitive prime divisor of pR − 1 are L = G2(q0) with
(a,p) = (6, 2) and L = Sz(q0) with (a,p) = (4, 2). However, these are not ex-
amples for us because p ≥ 5.

Case [9, Example 2.9]. See Tables 4 and 5, which contain the examples from
Tables 7 and 8 (respectively) of [9] for which r is a primitive prime divisor of
pR − 1 and p ≥ 5. We deal with Table 4 first. Here R = a and r = R + 1.
An element of Aut(L) of order a multiple of r has order at most δr, where δ is 1,
2, 4, and 3 for the columns of Table 4, respectively (see [6]). Thus max(A1) ≤
δ(p − 1)(R + 1), contradicting (5.1) in all four cases.

Now we turn to the examples in Table 5. In all cases gcd(s,p) = 1, and we
have s = sc0 for some prime s0 �= p and c ≥ 1. Following the notation used in
[1], we let m(K) denote the maximum of the orders of the elements of a finite

group K. Then, by (5.1), m(A1) ≥ max(A1) ≥ pR−1
p−1 ≥ qa0 −1

q0−1 > qa−1
0 . Moreover,

in all cases, m(A1) ≤ (q0 − 1)m(Aut(L)), so

m(Aut(L)) > qa−2
0 . (5.2)

In column 1 of Table 5, a ≥ s2 + s ≥ 6 and m(Aut(L)) ≤ m(GL(n, s)) · 2c =
2c(sn−1) = 2c(s−1)(a+1) < s(s−1)(a+1) < a(a+1); it then follows from
(5.2) that qa−2

0 < a(a + 1), which is a contradiction since a ≥ 6 and q0 ≥ 5.
In column 2 of Table 5, a ≥ s2 − s ≥ s ≥ c and

m(Aut(L)) ≤ m(GL(n, s2)) · 2c = 2c(s2n − 1) < 2c(sn + 1)2

= 2c(s + 1)2(a + 1)2 ≤ 2a(a + 1)4.
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By (5.2), qa−2
0 < 2a(a+1)4 and, since q0 ≥ 5, this implies that a ≤ 9.Also, since

r = sn+1
s+1 = a + 1 is prime, n is odd, and 3 ≤ a ≤ 9, it follows that (r, a, s, n) =

(7, 6, 3, 3) and L = PSU(3, 3). By [6], m(Aut(PSU(3, 3)) = 12 and we have a
contradiction to (5.2).

In column 3 of Table 5, a ≥ s +1> c and m(Aut(L)) ≤ m(GL(2n, s)) · 2c =
2c(s2n − 1) = 2c · 2a(2a + 2) < 8a2(a + 1). By (5.2), qa−2

0 < 8a2(a + 1) and,

since q0 ≥ 5, this implies that a ≤ 6. Also, since r = sn+1
2 = a + 1 is prime, n ≥

2, and 3 ≤ a ≤ 6, it follows that (r, a, s, n) = (5, 4, 3, 2) and L = PSp(4, 3). By
[6], m(Aut(PSp(4, 3)) = 12 and we have a contradiction to (5.2).

In columns 4 and 5 of Table 5, L = PSL(2, s) with s ≥ 7, s �= p, and a ≥
s−1

2 ≥ 3. Thenm(Aut(L)) = s+1 (see [1]) and hence (5.2) yields qa−2
0 < s+1 ≤

2a + 2. Since q ≥ 5 and a ≥ s−1
2 ≥ 3, this implies that a = 3 = s−1

2 and q0 ≤ 7.
Thus L = PSL(2, 7) and p �= s = 7. So q0 = p = 5 (since p ≥ 5) and a = R =
3. However, the only primitive prime divisor of pR − 1 = 53 − 1 is 31 whereas,
by Table 5, r ≤ s = 7.

It follows from the discussion and results of this section that Theorem 1.2(4) is
proved.
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