Distance-Regular Graphs of q-Racah Type and the q-Tetrahedron Algebra

Tatsuro Ito \& Paul Terwilliger
In memory of Donald Higman

1. Introduction

In [20], Hartwig and the second author gave a presentation of the three-point $\mathfrak{s l}_{2}$ loop algebra via generators and relations. To obtain this presentation they defined a Lie algebra \boxtimes by generators and relations and then displayed an isomorphism from \boxtimes to the three-point $\mathfrak{s l}_{2}$ loop algebra. The algebra \boxtimes is called the tetrahedron algebra [20, Def. 1.1]. In [24] we introduced a q-deformation \boxtimes_{q} of \boxtimes called the q-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irreducible \boxtimes_{q}-modules. In [26, Sec. 4] we displayed four homomorphisms into \boxtimes_{q} from the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. In [26, Sec. 12] we found a homomorphism from \boxtimes_{q} into the subconstituent algebra of a distance-regular graph that is self-dual with classical parameters. In this paper we do something similar for a distance-regular graph that is said to have q-Racah type. This type is described as follows. Let Γ denote a distance-regular graph with diameter $D \geq 3$ (See Section 4 for formal definitions). We say that Γ has q-Racah type whenever Γ has a Q-polynomial structure with eigenvalue sequence $\left\{\theta_{i}\right\}_{i=0}^{D}$ and dual eigenvalue sequence $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ that satisfy, for $0 \leq i \leq D$,

$$
\begin{aligned}
\theta_{i} & =\eta+u q^{2 i-D}+v q^{D-2 i} \quad \text { and } \\
\theta_{i}^{*} & =\eta^{*}+u^{*} q^{2 i-D}+v^{*} q^{D-2 i}
\end{aligned}
$$

where q, u, v, u^{*}, v^{*} are nonzero and $q^{2 i} \neq 1$ for $1 \leq i \leq D$. Assume that Γ has q-Racah type.

Fix a vertex x of Γ and let $T=T(x)$ denote the corresponding subconstituent algebra [32, Def. 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency matrix $A^{*}=A^{*}(x)$ [32, Def. 3.10]. An irreducible T-module W is called thin whenever the intersection of W with each eigenspace of A and each eigenspace of A^{*} has dimension at most 1 [32, Def. 3.5]. Assuming that each irreducible T-module is thin, we display invertible central elements Φ and Ψ of T and a homomorphism $\vartheta: \boxtimes_{q} \rightarrow T$ such that

$$
\begin{aligned}
A & =\eta I+u \Phi \Psi^{-1} \vartheta\left(x_{01}\right)+v \Psi \Phi^{-1} \vartheta\left(x_{12}\right) \quad \text { and } \\
A^{*} & =\eta^{*} I+u^{*} \Phi \Psi \vartheta\left(x_{23}\right)+v^{*} \Psi^{-1} \Phi^{-1} \vartheta\left(x_{30}\right),
\end{aligned}
$$

[^0]where the $x_{i j}$ are the standard generators of \boxtimes_{q}. It follows that T is generated by the image $\vartheta\left(\boxtimes_{q}\right)$ together with Φ and Ψ. In particular, T is generated by $\vartheta\left(\boxtimes_{q}\right)$ together with the center $Z(T)$. Our result settles [26, Conj. 13.10] for the case in which every irreducible T-module is thin.

The paper is organized as follows. In Section 2 we recall the definition of \boxtimes_{q}, and in Section 3 we describe how \boxtimes_{q} is related to $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. In Section 4 we recall the basic theory of a distance-regular graph Γ, focusing on the Q-polynomial property and the subconstituent algebra. In Section 5 we discuss the split decomposition of Γ, and in Section 6 we give our main results.

Throughout the paper, \mathbb{C} denotes the field of complex numbers.

2. The \boldsymbol{q}-Tetrahedron Algebra \boxtimes_{q}

In this section we recall the q-tetrahedron algebra. We fix a nonzero scalar $q \in \mathbb{C}$ such that $q^{2} \neq 1$ and define

$$
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}, \quad n=0,1,2, \ldots
$$

We let $\mathbb{Z}_{4}=\mathbb{Z} / 4 \mathbb{Z}$ denote the cyclic group of order 4 .
Definition 2.1 [24, Def. 10.1]. Let \boxtimes_{q} denote the unital associative \mathbb{C}-algebra that has generators

$$
\left\{x_{i j} \mid i, j \in \mathbb{Z}_{4}, j-i=1 \text { or } j-i=2\right\}
$$

and the following relations.
(i) For $i, j \in \mathbb{Z}_{4}$ such that $j-i=2$,

$$
x_{i j} x_{j i}=1
$$

(ii) For $h, i, j \in \mathbb{Z}_{4}$ such that the pair $(i-h, j-i)$ is one of $(1,1),(1,2)$, and $(2,1)$,

$$
\frac{q x_{h i} x_{i j}-q^{-1} x_{i j} x_{h i}}{q-q^{-1}}=1
$$

(iii) For $h, i, j, k \in \mathbb{Z}_{4}$ such that $i-h=j-i=k-j=1$,

$$
\begin{equation*}
x_{h i}^{3} x_{j k}-[3]_{q} x_{h i}^{2} x_{j k} x_{h i}+[3]_{q} x_{h i} x_{j k} x_{h i}^{2}-x_{j k} x_{h i}^{3}=0 \tag{1}
\end{equation*}
$$

We call \boxtimes_{q} the q-tetrahedron algebra or " q-tet" for short. We refer to the $x_{i j}$ as the standard generators for \boxtimes_{q}.

Note 2.2. The equations (1) are the cubic q-Serre relations [29, p. 10].
We make some observations as follows.
Lemma 2.3 [24, Lemma 6.3]. There exists a \mathbb{C}-algebra automorphism ϱ of \boxtimes_{q} that sends each generator $x_{i j}$ to $x_{i+1, j+1}$. Moreover, $\varrho^{4}=1$.

Lemma 2.4 [24, Lemma 6.5]. There exists a \mathbb{C}-algebra automorphism of \boxtimes_{q} that sends each generator $x_{i j}$ to $-x_{i j}$.

3. The Quantum Affine Algebra $\boldsymbol{U}_{\boldsymbol{q}}\left(\widehat{\mathfrak{s l}}_{\mathbf{2}}\right)$

In this section we consider how \boxtimes_{q} is related to the quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. We start with a definition.

Definition 3.1 [7, p. 266]. The quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ is the unital associative \mathbb{C}-algebra with generators $K_{i}^{ \pm 1}$ and $e_{i}^{ \pm}, i \in\{0,1\}$, and the following relations:

$$
\begin{aligned}
& K_{i} K_{i}^{-1}=K_{i}^{-1} K_{i}=1 ; \\
& K_{0} K_{1}=K_{1} K_{0} ; \\
& K_{i} e_{i}^{ \pm} K_{i}^{-1}=q^{ \pm 2} e_{i}^{ \pm} ; \\
& K_{i} e_{j}^{ \pm} K_{i}^{-1}=q^{\mp 2} e_{j}^{ \pm}, \quad i \neq j ; \\
& {\left[e_{i}^{+}, e_{i}^{-}\right] }=\frac{K_{i}-K_{i}^{-1}}{q-q^{-1}} ; \\
& {\left[e_{0}^{ \pm}, e_{1}^{\mp}\right] }=0 ; \\
&\left(e_{i}^{ \pm}\right)^{3} e_{j}^{ \pm}-[3]_{q}\left(e_{i}^{ \pm}\right)^{2} e_{j}^{ \pm} e_{i}^{ \pm}+[3]_{q} e_{i}^{ \pm} e_{j}^{ \pm}\left(e_{i}^{ \pm}\right)^{2}-e_{j}^{ \pm}\left(e_{i}^{ \pm}\right)^{3}=0, \quad i \neq j
\end{aligned}
$$

The following presentation of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ will be useful.
Proposition 3.2 [23, Thm. 2.1;38]. The quantum affine algebra $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ is isomorphic to the unital associative \mathbb{C}-algebra with generators $x_{i}^{ \pm 1}, y_{i}, z_{i}, i \in\{0,1\}$, and the following relations:

$$
\begin{gathered}
x_{i} x_{i}^{-1}=x_{i}^{-1} x_{i}=1 ; \\
x_{0} x_{1} \text { is central } ; \\
\frac{q x_{i} y_{i}-q^{-1} y_{i} x_{i}}{q-q^{-1}}=1 ; \\
\frac{q y_{i} z_{i}-q^{-1} z_{i} y_{i}}{q-q^{-1}}=1 ; \\
\frac{q z_{i} x_{i}-q^{-1} x_{i} z_{i}}{q-q^{-1}}=1 ; \\
\frac{q z_{i} y_{j}-q^{-1} y_{j} z_{i}}{q-q^{-1}}=x_{0}^{-1} x_{1}^{-1}, \quad i \neq j ; \\
y_{i}^{3} y_{j}-[3]_{q} y_{i}^{2} y_{j} y_{i}+[3]_{q} y_{i} y_{j} y_{i}^{2}-y_{j} y_{i}^{3}=0, \quad i \neq j ; \\
z_{i}^{3} z_{j}-[3]_{q} z_{i}^{2} z_{j} z_{i}+[3]_{q} z_{i} z_{j} z_{i}^{2}-z_{j} z_{i}^{3}=0, \quad i \neq j .
\end{gathered}
$$

An isomorphism with the presentation in Definition 3.1 is given by:

$$
\begin{aligned}
x_{i}^{ \pm 1} & \mapsto K_{i}^{ \pm 1} \\
y_{i} & \mapsto K_{i}^{-1}+e_{i}^{-} \\
z_{i} & \mapsto K_{i}^{-1}-K_{i}^{-1} e_{i}^{+} q\left(q-q^{-1}\right)^{2}
\end{aligned}
$$

The inverse of this isomorphism is given by:

$$
\begin{aligned}
K_{i}^{ \pm 1} & \mapsto x_{i}^{ \pm 1} \\
e_{i}^{-} & \mapsto y_{i}-x_{i}^{-1} \\
e_{i}^{+} & \mapsto\left(1-x_{i} z_{i}\right) q^{-1}\left(q-q^{-1}\right)^{-2}
\end{aligned}
$$

Theorem 3.3 [26, Prop. 4.3]. For $i \in \mathbb{Z}_{4}$ there exists a \mathbb{C}-algebra homomorphism from $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ to \boxtimes_{q} that sends

$$
\begin{array}{ll}
x_{1} \mapsto x_{i, i+2}, & x_{1}^{-1} \mapsto x_{i+2, i}, \quad y_{1} \mapsto x_{i+2, i+3}, \quad z_{1} \mapsto x_{i+3, i}, \\
x_{0} \mapsto x_{i+2, i}, & x_{0}^{-1} \mapsto x_{i, i+2}, \quad y_{0} \mapsto x_{i, i+1}, \quad z_{0} \mapsto x_{i+1, i+2} .
\end{array}
$$

Proof. Compare the defining relations for $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ given in Proposition 3.2 with the relations in Definition 2.1.

4. Distance-Regular Graphs: Preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the basic definitions we recall the Q-polynomial property and the subconstituent algebra. For more information we refer the reader to $[1 ; 3 ; 19 ; 32]$.

Let X denote a nonempty finite set. Let $\operatorname{Mat}_{X}(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. Let $V=\mathbb{C}^{X}$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We observe that $\operatorname{Mat}_{X}(\mathbb{C})$ acts on V by left multiplication. We call V the standard module. We endow V with the Hermitean inner product $\langle\cdot, \cdot\rangle$ that satisfies $\langle u, v\rangle=u^{t} \bar{v}$ for $u, v \in V$, where t denotes transpose and ${ }^{-}$denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe that $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V.

Let $\Gamma=(X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function for Γ, and set $D:=\max \{\partial(x, y) \mid x, y \in X\}$. We call D the diameter of Γ. For an integer $k \geq 0$ we say that Γ is regular with valency k whenever each vertex of Γ is adjacent to exactly k distinct vertices of Γ. We say that Γ is distance-regular whenever, for all integers $h, i, j(0 \leq h, i, j \leq D)$ and for all vertices $x, y \in X$ with $\partial(x, y)=h$, the number

$$
p_{i j}^{h}=|\{z \in X \mid \partial(x, z)=i, \partial(z, y)=j\}|
$$

is independent of x and y. The $p_{i j}^{h}$ are called the intersection numbers of Γ. We abbreviate $c_{i}=p_{1, i-1}^{i}(1 \leq i \leq D), b_{i}=p_{1, i+1}^{i}(0 \leq i \leq D-1)$, and $a_{i}=p_{1 i}^{i}$ ($0 \leq i \leq D$).

For the rest of this paper we assume Γ is distance-regular; to avoid trivialities we always assume $D \geq 3$. Note that Γ is regular with valency $k=b_{0}$. Moreover, $k=c_{i}+a_{i}+b_{i}$ for $0 \leq i \leq D$, where $c_{0}=0$ and $b_{D}=0$.

We mention a fact for later use. By the triangle inequality, for $0 \leq h, i, j \leq D$ we have $p_{i j}^{h}=0\left(\right.$ resp. $\left.p_{i j}^{h} \neq 0\right)$ whenever one of h, i, j is greater than (resp. equal to) the sum of the other two.

We recall the Bose-Mesner algebra of Γ. For $0 \leq i \leq D$, let A_{i} denote the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (x, y)-entry

$$
\left(A_{i}\right)_{x y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i \\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

We call A_{i} the i th distance matrix of Γ. We abbreviate $A=A_{1}$ and call this the adjacency matrix of Γ. We observe the following: (i) $A_{0}=I$; (ii) $\sum_{i=0}^{D} A_{i}=$ J; (iii) $\overline{A_{i}}=A_{i}(0 \leq i \leq D)$; (iv) $A_{i}^{t}=A_{i}(0 \leq i \leq D)$; and (v) $A_{i} A_{j}=$ $\sum_{h=0}^{D} p_{i j}^{h} A_{h}(0 \leq i, j \leq D)$, where I (resp. J) denotes the identity matrix (resp. all-1 matrix) in $\operatorname{Mat}_{X}(\mathbb{C})$. Using these facts, we find that $\left\{A_{i}\right\}_{i=0}^{D}$ is a basis for a commutative subalgebra M of $\operatorname{Mat}_{X}(\mathbb{C})$, called the Bose-Mesner algebra of Γ. It turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis $\left\{E_{i}\right\}_{i=0}^{D}$ such that: (i) $E_{0}=|X|^{-1} J$; (ii) $\sum_{i=0}^{D} E_{i}=I$; (iii) $\overline{E_{i}}=E_{i}(0 \leq i \leq D)$; (iv) $E_{i}^{t}=E_{i}(0 \leq i \leq D)$; and (v) $E_{i} E_{j}=\delta_{i j} E_{i}(0 \leq i, j \leq D)$. We call $\left\{E_{i}\right\}_{i=0}^{D}$ the primitive idempotents of Γ.

We recall the eigenvalues of Γ. Since $\left\{E_{i}\right\}_{i=0}^{D}$ form a basis for M, there exist complex scalars $\left\{\theta_{i}\right\}_{i=0}^{D}$ such that $A=\sum_{i=0}^{D} \theta_{i} E_{i}$. Observe that $A E_{i}=E_{i} A=$ $\theta_{i} E_{i}$ for $0 \leq i \leq D$. By [1, p. 197] the scalars $\left\{\theta_{i}\right\}_{i=0}^{D}$ are in \mathbb{R}. Observe that $\left\{\theta_{i}\right\}_{i=0}^{D}$ are mutually distinct because A generates M. We call θ_{i} the eigenvalue of Γ associated with $E_{i}(0 \leq i \leq D)$. Observe that

$$
V=E_{0} V+E_{1} V+\cdots+E_{D} V \quad \text { (orthogonal direct sum). }
$$

For $0 \leq i \leq D$, the space $E_{i} V$ is the eigenspace of A associated with θ_{i}.
We now recall the Krein parameters. Let \circ denote the entrywise product in $\operatorname{Mat}_{X}(\mathbb{C})$. Observe that $A_{i} \circ A_{j}=\delta_{i j} A_{i}$ for $0 \leq i, j \leq D$, so M is closed under ○. Thus there exist complex scalars $q_{i j}^{h}(0 \leq h, i, j \leq D)$ such that

$$
E_{i} \circ E_{j}=|X|^{-1} \sum_{h=0}^{D} q_{i j}^{h} E_{h} \quad(0 \leq i, j \leq D)
$$

By [2, p. 170], $q_{i j}^{h}$ is real and nonnegative for $0 \leq h, i, j \leq D$. The $q_{i j}^{h}$ are called the Krein parameters of Γ. The graph Γ is said to be Q-polynomial (with respect to the given ordering $\left\{E_{i}\right\}_{i=0}^{D}$ of the primitive idempotents) if, for $0 \leq h, i, j \leq$ D, we have $q_{i j}^{h}=0$ (resp. $q_{i j}^{h} \neq 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 235]. See $[4 ; 5 ; 6 ; 8 ; 11 ; 14 ; 15 ; 30]$ for background information on the Q-polynomial property. From now on we assume Γ is Q-polynomial with respect to $\left\{E_{i}\right\}_{i=0}^{D}$. We call the sequence $\left\{\theta_{i}\right\}_{i=0}^{D}$ the eigenvalue sequence for this Q-polynomial structure.

We recall the dual Bose-Mesner algebra of Γ. For the rest of this paper we fix a vertex $x \in X$. We view x as a "base vertex". For $0 \leq i \leq D$, let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i \tag{2}\\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

We call E_{i}^{*} the i th dual idempotent of Γ with respect to x [32, p. 378]. We observe that (i) $\sum_{i=0}^{D} E_{i}^{*}=I$; (ii) $\overline{E_{i}^{*}}=E_{i}^{*}(0 \leq i \leq D)$; (iii) $E_{i}^{* t}=E_{i}^{*}(0 \leq$ $i \leq D)$; and (iv) $E_{i}^{*} E_{j}^{*}=\delta_{i j} E_{i}^{*}(0 \leq i, j \leq D)$. By these facts, $\left\{E_{i}^{*}\right\}_{i=0}^{D}$ form a basis for a commutative subalgebra $M^{*}=M^{*}(x)$ of $\operatorname{Mat}_{X}(\mathbb{C})$. We call M^{*} the dual Bose-Mesner algebra of Γ with respect to x [32, p. 378]. For $0 \leq i \leq D$, let $A_{i}^{*}=A_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with (y, y)-entry $\left(A_{i}^{*}\right)_{y y}=$ $|X|\left(E_{i}\right)_{x y}$ for $y \in X$. Then $\left\{A_{i}^{*}\right\}_{i=0}^{D}$ is a basis for M^{*} [32, p. 379]. Moreover, (i) $A_{0}^{*}=I$; (ii) $\overline{A_{i}^{*}}=A_{i}^{*}(0 \leq i \leq D)$; (iii) $A_{i}^{* t}=A_{i}^{*}(0 \leq i \leq D)$; and (iv) $A_{i}^{*} A_{j}^{*}=\sum_{h=0}^{D} q_{i j}^{h} A_{h}^{*}(0 \leq i, j \leq D)$ [32, p. 379]. We call $\left\{A_{i}^{*}\right\}_{i=0}^{D}$ the dual distance matrices of Γ with respect to x. We abbreviate $A^{*}=A_{1}^{*}$ and call this the dual adjacency matrix of Γ with respect to x. The matrix A^{*} generates $M^{*}[32$, Lemma 3.11].

We recall the dual eigenvalues of Γ. Since $\left\{E_{i}^{*}\right\}_{i=0}^{D}$ form a basis for M^{*}, there exist complex scalars $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ such that $A^{*}=\sum_{i=0}^{D} \theta_{i}^{*} E_{i}^{*}$. Observe that $A^{*} E_{i}^{*}=$ $E_{i}^{*} A^{*}=\theta_{i}^{*} E_{i}^{*}$ for $0 \leq i \leq D$. By [32, Lemma 3.11] the scalars $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ are in \mathbb{R}. The scalars $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ are mutually distinct because A^{*} generates M^{*}. We call θ_{i}^{*} the dual eigenvalue of Γ associated with $E_{i}^{*}(0 \leq i \leq D)$. We call the sequence $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ the dual eigenvalue sequence for the given Q-polynomial structure.

We recall the subconstituents of Γ. From (2) we find

$$
\begin{equation*}
E_{i}^{*} V=\operatorname{span}\{\hat{y} \mid y \in X, \partial(x, y)=i\} \quad(0 \leq i \leq D) \tag{3}
\end{equation*}
$$

By (3) and since $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V, we find

$$
V=E_{0}^{*} V+E_{1}^{*} V+\cdots+E_{D}^{*} V \quad \text { (orthogonal direct sum). }
$$

For $0 \leq i \leq D$, the space $E_{i}^{*} V$ is the eigenspace of A^{*} associated with θ_{i}^{*}. We call $E_{i}^{*} V$ the i th subconstituent of Γ with respect to x.

We recall the subconstituent algebra of Γ. Let $T=T(x)$ denote the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by M and M^{*}. We call T the subconstituent algebra (or Terwilliger algebra) of Γ with respect to x [32, Def. 3.3]. Observe that T has finite dimension. Moreover, T is semisimple because it is closed under the conjugate transponse map [13, p. 157]. We note that A, A^{*} together generate T. By [32, Lemma 3.2], the following are relations in T. For $0 \leq h, i, j \leq D$,

$$
\begin{array}{cll}
E_{h}^{*} A_{i} E_{j}^{*}=0 & \text { iff } & p_{i j}^{h}=0 \\
E_{h} A_{i}^{*} E_{j}=0 & \text { iff } & q_{i j}^{h}=0 \tag{5}
\end{array}
$$

See $[9 ; 10 ; 12 ; 16 ; 17 ; 18 ; 21 ; 31 ; 32 ; 33 ; 34]$ for more information on the subconstituent algebra.

We recall the T-modules. By a T-module we mean a subspace $W \subseteq V$ such that $B W \subseteq W$ for all $B \in T$. Let W denote a T-module and let W^{\prime} denote a T-module contained in W. Then the orthogonal complement of W^{\prime} in W is a T-module [18, p. 802]. It follows that each T-module is an orthogonal direct sum of irreducible T-modules. In particular, V is an orthogonal direct sum of irreducible T-modules.

Let W denote an irreducible T-module. Observe that W is the direct sum of the nonzero spaces among $E_{0}^{*} W, \ldots, E_{D}^{*} W$. Similarly, W is the direct sum of the nonzero spaces among $E_{0} W, \ldots, E_{D} W$. By the endpoint of W we mean $\min \left\{i \mid 0 \leq i \leq D, E_{i}^{*} W \neq 0\right\}$. By the diameter of W we mean $\mid\{i \mid 0 \leq i \leq D$, $\left.E_{i}^{*} W \neq 0\right\} \mid-1$. By the dual endpoint of W we mean $\min \{i \mid 0 \leq i \leq D$, $\left.E_{i} W \neq 0\right\}$. By the dual diameter of W we mean $\left|\left\{i \mid 0 \leq i \leq D, E_{i} W \neq 0\right\}\right|-1$. It turns out that the diameter of W is equal to the dual diameter of W [30, Cor. 3.3]. By [32, Lemma 3.4], $\operatorname{dim} E_{i}^{*} W \leq 1$ for $0 \leq i \leq D$ if and only if $\operatorname{dim} E_{i} W \leq 1$ for $0 \leq i \leq D$; in this case, W is called thin.

We finish this section with two lemmas.
Lemma 4.1 [32, Lemmas $3.4,3.9,3.12$]. Let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. Then ρ, τ, d are nonnegative integers such that $\rho+d \leq D$ and $\tau+d \leq D$. Moreover, the following statements hold:
(i) $E_{i}^{*} W \neq 0$ if and only if $\rho \leq i \leq \rho+d(0 \leq i \leq D)$;
(ii) $W=\sum_{h=0}^{d} E_{\rho+h}^{*} W$ (orthogonal direct sum);
(iii) $E_{i} W \neq 0$ if and only if $\tau \leq i \leq \tau+d(0 \leq i \leq D)$;
(iv) $W=\sum_{h=0}^{d} E_{\tau+h} W$ (orthogonal direct sum).

Lemma 4.2 [26, Lemma 12.1]. For $Y \in \operatorname{Mat}_{X}(\mathbb{C})$, the following are equivalent:
(i) $Y \in T$;
(ii) $Y W \subseteq W$ for all irreducible T-modules W.

5. The Split Decomposition

We shall make use of a certain decomposition of V called the split decomposition. The split decomposition was defined in [37] and discussed further in [26; 28]. In this section we recall some results on this topic.

Definition 5.1 [37, Def. 5.1]. For $-1 \leq i, j \leq D$ we define

$$
\begin{aligned}
V_{i, j}^{\downarrow \downarrow} & =\left(E_{0}^{*} V+\cdots+E_{i}^{*} V\right) \cap\left(E_{0} V+\cdots+E_{j} V\right), \\
V_{i, j}^{\downarrow \uparrow} & =\left(E_{0}^{*} V+\cdots+E_{i}^{*} V\right) \cap\left(E_{D} V+\cdots+E_{D-j} V\right) .
\end{aligned}
$$

In these two equations we interpret the right-hand side to be 0 if $i=-1$ or $j=-1$.
Definition 5.2 [37, Def. 5.5]. With reference to Definition 5.1, for $(\mu, v)=$ (\downarrow, \downarrow) or $(\mu, \nu)=(\downarrow, \uparrow)$ we have $V_{i-1, j}^{\mu \nu} \subseteq V_{i, j}^{\mu \nu}$ and $V_{i, j-1}^{\mu \nu} \subseteq V_{i, j}^{\mu \nu}$. Therefore

$$
V_{i-1, j}^{\mu \nu}+V_{i, j-1}^{\mu \nu} \subseteq V_{i, j}^{\mu \nu}
$$

With reference to this inclusion, we define $\tilde{V}_{i, j}^{\mu \nu}$ to be the orthogonal complement of the left-hand side in the right-hand side; that is,

$$
\tilde{V}_{i, j}^{\mu \nu}=\left(V_{i-1, j}^{\mu \nu}+V_{i, j-1}^{\mu \nu}\right)^{\perp} \cap V_{i, j}^{\mu \nu}
$$

The next lemma is a mild generalization of [37, Cor. 5.8].
Lemma 5.3. With reference to Definition 5.2, the following holds for $(\mu, \nu)=$ (\downarrow, \downarrow) and $(\mu, \nu)=(\downarrow, \uparrow)$:

$$
\begin{equation*}
V=\sum_{i=0}^{D} \sum_{j=0}^{D} \tilde{V}_{i, j}^{\mu \nu} \quad \text { (direct sum) } \tag{6}
\end{equation*}
$$

Proof. For $(\mu, v)=(\downarrow, \downarrow)$, this is just [37, Cor. 5.8]. For $(\mu, v)=(\downarrow, \uparrow)$, in the proof of $\left[37\right.$, Cor. 5.8] replace the sequence $\left\{E_{i}\right\}_{i=0}^{D}$ by $\left\{E_{D-i}\right\}_{i=0}^{D}$.

Note 5.4. Following [28, Def. 6.4], we call the sum (6) the (μ, ν)-split decomposition of V.

We now recall how split decompositions are related to irreducible T-modules. We begin with a definition.

Definition 5.5 [37, Def. 4.1]. Let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. By the displacement of W of the first kind we mean the scalar $\rho+\tau+d-D$. By the displacement of W of the second kind we mean the scalar $\rho-\tau$. By the inequalities in Lemma 4.1, each kind of displacement is at least $-D$ and at most D.

Lemma 5.6 [37, Thm. 6.2]. For $-D \leq \delta \leq D$, the following coincide:
(i) the subspace of V spanned by the irreducible T-modules for which δ is the displacement of the first kind; and
(ii) $\sum \tilde{V}_{i j}^{\downarrow \downarrow}$, where the sum is over all ordered pairs $i, j(0 \leq i, j \leq D)$ such that $i+j=\delta+D$.

Lemma 5.7. For $-D \leq \delta \leq D$, the following coincide:
(i) the subspace of V spanned by the irreducible T-modules for which δ is the displacement of the second kind; and
(ii) $\sum \tilde{V}_{i j}^{\downarrow \uparrow}$, where the sum is over all ordered pairs $i, j(0 \leq i, j \leq D)$ such that $i+j=\delta+D$.

Proof. In the proof of [37, Thm. 6.2], replace the sequence $\left\{E_{i}\right\}_{i=0}^{D}$ with the sequence $\left\{E_{D-i}\right\}_{i=0}^{D}$.

6. A Homomorphism $\vartheta: \boxtimes_{q} \rightarrow T$

We now impose an assumption on Γ.
Assumption 6.1. We fix complex scalars $q, \eta, \eta^{*}, u, u^{*}, v, v^{*}$ with q, u, u^{*}, v, v^{*} nonzero and $q^{2 i} \neq 1$ for $1 \leq i \leq D$. We assume that Γ has a Q-polynomial structure with eigenvalue sequence

$$
\theta_{i}=\eta+u q^{2 i-D}+v q^{D-2 i} \quad(0 \leq i \leq D)
$$

and dual eigenvalue sequence

$$
\theta_{i}^{*}=\eta^{*}+u^{*} q^{2 i-D}+v^{*} q^{D-2 i} \quad(0 \leq i \leq D)
$$

Moreover, we assume that each irreducible T-module is thin.
Remark 6.2. In the notation of Bannai and Ito [1, p. 263], the Q-polynomial structure from Assumption 6.1 is type I with $s \neq 0$ and $s^{*} \neq 0$. We caution the reader that the scalar denoted q in $[1, \mathrm{p} .263]$ is the same as our scalar q^{2}.

Example 6.3 [3]. The ordinary cycles are the only known distance-regular graphs that satisfy Assumption 6.1.

Under Assumption 6.1 we will display a \mathbb{C}-algebra homomorphism $\vartheta: \boxtimes_{q} \rightarrow T$. To describe this homomorphism we define two matrices in $\mathrm{Mat}_{X}(\mathbb{C})$, called Φ and Ψ.

Definition 6.4. With reference to Lemma 5.3 and Assumption 6.1, let Φ (resp. $\Psi)$ denote the unique matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ that acts on $\tilde{V}_{i j}^{\downarrow \downarrow}\left(\operatorname{resp} . \tilde{V}_{i j}^{\downarrow \uparrow}\right)$ as $q^{i+j-D} I$ for $0 \leq i, j \leq D$. Observe that each of Φ, Ψ is invertible.

Lemma 6.5. Under Assumption 6.1, let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. Then Φ and Ψ act on W as $q^{\rho+\tau+d-D} I$ and $q^{\rho-\tau} I$, respectively.

Proof. Concerning Φ, abbreviate $\delta=\rho+\tau+d-D$ and recall that this is the displacement of W of the first kind. We show that Φ acts on W as $q^{\delta} I$. Let V_{δ} denote the common subspace from parts (i) and (ii) of Lemma 5.6. By Lemma 5.6(i) we have $W \subseteq V_{\delta}$. In Lemma 5.6(ii), V_{δ} is expressed as a sum. The matrix Φ acts on each term of this sum as $q^{\delta} I$ by Definition 6.4 , so Φ acts on V_{δ} as $q^{\delta} I$. By these comments, Φ acts on W as $q^{\delta} I$ and this proves our assertion concerning Φ. Our assertion concerning Ψ is similarly proved using the displacement of the second kind and Lemma 5.7.

Lemma 6.6. Under Assumption 6.1, the matrices Φ and Ψ are central elements of T.

Proof. The matrices Φ and Ψ are contained in T by Lemma 4.2 and Lemma 6.5. These matrices are central in T because, by Lemma 6.5, they act as a scalar multiple of the identity on every irreducible T-module.

The following theorem is our main result.
Theorem 6.7. Under Assumption 6.1, there exists a \mathbb{C}-algebra homomorphism $\vartheta: \boxtimes_{q} \rightarrow T$ such that

$$
\begin{align*}
A & =\eta I+u \Phi \Psi^{-1} \vartheta\left(x_{01}\right)+v \Psi \Phi^{-1} \vartheta\left(x_{12}\right) \quad \text { and } \tag{7}\\
A^{*} & =\eta^{*} I+u^{*} \Phi \Psi \vartheta\left(x_{23}\right)+v^{*} \Psi^{-1} \Phi^{-1} \vartheta\left(x_{30}\right) . \tag{8}
\end{align*}
$$

The proof is an easy consequence of the following two lemmas.
Lemma 6.8. Under Assumption 6.1, let W denote an irreducible T-module with endpoint ρ, dual endpoint τ, and diameter d. Then there exists $a \boxtimes_{q}$-module structure on W such that the adjacency matrix A acts as $\eta I+u q^{2 \tau+d-D} x_{01}+$ $v q^{D-d-2 \tau} x_{12}$ and the dual adjacency matrix A^{*} acts as $\eta^{*} I+u^{*} q^{2 \rho+d-D} x_{23}+$ $v^{*} q^{D-d-2 \rho} x_{30}$. This \boxtimes_{q}-module structure is irreducible.

Proof. By [22, Ex. 1.4] and since the T-module W is thin, the pair A, A^{*} acts on W as a Leonard pair in the sense of [35, Def. 1.1]. In the notation of [35, Def. 5.1], this Leonard pair has an eigenvalue sequence $\left\{\theta_{\tau+i}\right\}_{i=0}^{d}$ and a dual eigenvalue sequence $\left\{\theta_{\rho+i}^{*}\right\}_{i=0}^{d}$ in view of Lemma 4.1. To motivate what follows we note that

$$
\begin{aligned}
& \theta_{\tau+i}=\eta+u q^{2 \tau+d-D} q^{2 i-d}+v q^{D-d-2 \tau} q^{d-2 i} \quad \text { and } \\
& \theta_{\rho+i}^{*}=\eta^{*}+u^{*} q^{2 \rho+d-D} q^{2 i-d}+v^{*} q^{D-d-2 \rho} q^{d-2 i}
\end{aligned}
$$

for $0 \leq i \leq d$. In both of these equations, the coefficients of $q^{2 i-d}$ and $q^{d-2 i}$ are nonzero; hence the action of A, A^{*} on W is a Leonard pair of q-Racah type in the sense of [36, Ex. 5.3]. Referring to this Leonard pair, let $\left\{\varphi_{i}\right\}_{i=1}^{d}$ (resp. $\left\{\phi_{i}\right\}_{i=1}^{d}$) denote the first (resp. second) split sequence [35, Sec. 7] associated with the eigenvalue sequence $\left\{\theta_{\tau+i}\right\}_{i=0}^{d}$ and the dual eigenvalue sequence $\left\{\theta_{\rho+i}^{*}\right\}_{i=0}^{d}$. By [35, Sec. 7], each of φ_{i}, ϕ_{i} is nonzero for $1 \leq i \leq d$. By [36, Ex. 5.3], there exists a nonzero $r \in \mathbb{C}$ such that, for $1 \leq i \leq d$:

$$
\begin{aligned}
\varphi_{i}= & \left(q^{i}-q^{-i}\right)\left(q^{d-i+1}-q^{i-d-1}\right) \\
& \times\left(q^{d-i}-r^{-1} q^{i-1}\right)\left(u u^{*} r q^{2 \tau+2 \rho+d+i-2 D}-v v^{*} q^{2 D-2 d-2 \tau-2 \rho+1-i}\right) \\
\phi_{i}= & \left(q^{i}-q^{-i}\right)\left(q^{d-i+1}-q^{i-d-1}\right) \\
& \times\left(u r q^{2 \tau+d-D+1-i}-v q^{D-2 d-2 \tau+i}\right)\left(u^{*} q^{2 \rho+d-D+i-1}-v^{*} r^{-1} q^{D-2 \rho-i}\right)
\end{aligned}
$$

Observe that r is not among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$ because each of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{d}$ is nonzero. By [35, Sec. 7] there exists a basis $\left\{v_{i}\right\}_{i=0}^{d}$ of W such that

$$
\begin{aligned}
A v_{i} & =\theta_{\tau+d-i} v_{i}+v_{i+1} & (0 \leq i \leq d-1), \quad A v_{d}=\theta_{\tau} v_{d} \\
A^{*} v_{i} & =\theta_{\rho+i}^{*} v_{i}+\phi_{i} v_{i-1} & (1 \leq i \leq d), \quad A^{*} v_{0}=\theta_{\rho}^{*} v_{0}
\end{aligned}
$$

For convenience we adjust this basis slightly. For $1 \leq i \leq d$ define

$$
\gamma_{i}=\left(q^{i}-q^{-i}\right)\left(u r q^{2 \tau+d-D+1-i}-v q^{D-2 d-2 \tau+i}\right)
$$

In this equation the right-hand side is nonzero because it is a factor of ϕ_{i}, so $\gamma_{i} \neq$ 0 . Define $u_{i}=\left(\gamma_{1} \gamma_{2} \cdots \gamma_{i}\right)^{-1} v_{i}$ for $0 \leq i \leq d$ and note that $\left\{u_{i}\right\}_{i=0}^{d}$ is a basis for W. By the construction, we have

$$
\begin{aligned}
A u_{i} & =\theta_{\tau+d-i} u_{i}+\gamma_{i+1} u_{i+1} \quad(0 \leq i \leq d-1), \quad A u_{d}=\theta_{\tau} u_{d} \\
A^{*} u_{i} & =\theta_{\rho+i}^{*} u_{i}+\phi_{i} \gamma_{i}^{-1} u_{i-1} \quad(1 \leq i \leq d), \quad A^{*} u_{0}=\theta_{\rho}^{*} u_{0}
\end{aligned}
$$

We let each standard generator of \boxtimes_{q} act linearly on W; to define this action, we specify what it does to the basis $\left\{u_{i}\right\}_{i=0}^{d}$. Here are the details:

$$
\begin{aligned}
& x_{01} \cdot u_{i}=q^{d-2 i} u_{i}+\left(q^{d}-q^{d-2 i-2}\right) q^{1-d} r u_{i+1} \quad(0 \leq i \leq d-1), \quad x_{01} \cdot u_{d}=q^{-d} u_{d} ; \\
& x_{12} \cdot u_{i}=q^{2 i-d} u_{i}+\left(q^{-d}-q^{2 i+2-d}\right) u_{i+1} \quad(0 \leq i \leq d-1), \quad x_{12} \cdot u_{d}=q^{d} u_{d} ; \\
& x_{23} \cdot u_{i}=q^{2 i-d} u_{i}+\left(q^{d}-q^{2 i-2-d}\right) u_{i-1} \quad(1 \leq i \leq d), \quad x_{23} \cdot u_{0}=q^{-d} u_{0} ; \\
& x_{30} \cdot u_{i}=q^{d-2 i} u_{i}+\left(q^{-d}-q^{d-2 i+2}\right) q^{d-1} r^{-1} u_{i-1} \quad(1 \leq i \leq d), \quad x_{30} \cdot u_{0}=q^{d} u_{0} ; \\
& x_{13} \cdot u_{i}=q^{2 i-d} u_{i} \quad(0 \leq i \leq d) ; \\
& x_{31} \cdot u_{i}=q^{d-2 i} u_{i} \quad(0 \leq i \leq d) ; \\
& x_{02} . u_{i}=\left(1-r q^{-d-1}\right) \frac{\left(1-q^{2 d-2 i+2}\right)\left(1-q^{2 d-2 i+4}\right) \cdots\left(1-q^{2 d}\right) q^{d-2 i}}{\left(1-r q^{d-1-2 i}\right)\left(1-r q^{d+1-2 i}\right) \cdots\left(1-r q^{d-1}\right)} u_{0} \\
& +\left(1-r q^{d+1}\right)\left(1-r q^{-d-1}\right) \\
& \times \sum_{h=1}^{i} \frac{\left(1-q^{2 d-2 i+2}\right)\left(1-q^{2 d-2 i+4}\right) \cdots\left(1-q^{2 d-2 h}\right) q^{d-2 i}}{\left(1-r q^{d-1-2 i}\right)\left(1-r q^{d+1-2 i}\right) \cdots\left(1-r q^{d+1-2 h}\right)} u_{h} \\
& +\frac{\left(q^{2 i+2}-1\right) r}{q^{2 i+1}\left(1-r q^{d-1-2 i}\right)} u_{i+1} \quad(0 \leq i \leq d-1) ; \\
& x_{02} \cdot u_{d}=\frac{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 d}\right) q^{-d}}{\left(1-r q^{1-d}\right)\left(1-r q^{3-d}\right) \cdots\left(1-r q^{d-1}\right)} u_{0} \\
& +\left(1-r q^{d+1}\right) \sum_{h=1}^{d} \frac{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 d-2 h}\right) q^{-d}}{\left(1-r q^{1-d}\right)\left(1-r q^{3-d}\right) \cdots\left(1-r q^{d+1-2 h}\right)} u_{h} ; \\
& x_{20} \cdot u_{0}=\left(1-r q^{d+1}\right) \sum_{h=0}^{d-1} \frac{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 h}\right) r^{h} q^{h-d h-d}}{\left(1-r q^{1-d}\right)\left(1-r q^{3-d}\right) \cdots\left(1-r q^{2 h-d+1}\right)} u_{h} \\
& +\frac{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 d}\right) r^{d} q^{-d^{2}}}{\left(1-r q^{1-d}\right)\left(1-r q^{3-d}\right) \cdots\left(1-r q^{d-1}\right)} u_{d} ; \\
& x_{20} . u_{i}=\frac{q^{d}-q^{2 i-2-d}}{1-r q^{2 i-d-1}} u_{i-1}+\left(1-r q^{d+1}\right)\left(1-r q^{-d-1}\right) \\
& \times \sum_{h=i}^{d-1} \frac{\left(1-q^{2 i+2}\right)\left(1-q^{2 i+4}\right) \cdots\left(1-q^{2 h}\right) r^{h-i} q^{(d+1) i-(d-1) h-d}}{\left(1-r q^{2 i-d-1}\right)\left(1-r q^{2 i-d+1}\right) \cdots\left(1-r q^{2 h-d+1}\right)} u_{h} \\
& +\left(1-r q^{-d-1}\right) \\
& \times \frac{\left(1-q^{2 i+2}\right)\left(1-q^{2 i+4}\right) \cdots\left(1-q^{2 d}\right) r^{d-i} q^{d i+i-d^{2}}}{\left(1-r q^{2 i-d-1}\right)\left(1-r q^{2 i-d+1}\right) \cdots\left(1-r q^{d-1}\right)} u_{d} \quad(1 \leq i \leq d) .
\end{aligned}
$$

In the preceding formulas, the denominators are nonzero because r is not among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$. One may check (or see [27]) that the actions just described satisfy the defining relations for \boxtimes_{q} from Definition 2.1 , so these actions induce a \boxtimes_{q}-module structure on W. Comparing the action of A (resp. A^{*}) on $\left\{u_{i}\right\}_{i=0}^{d}$ with the actions of x_{01}, x_{12} (resp. x_{23}, x_{30}) on $\left\{u_{i}\right\}_{i=0}^{d}$, we find that

$$
\begin{aligned}
A & =\eta I+u q^{2 \tau+d-D} x_{01}+v q^{D-d-2 \tau} x_{12} \quad \text { and } \\
A^{*} & =\eta^{*} I+u^{*} q^{2 \rho+d-D} x_{23}+v^{*} q^{D-d-2 \rho} x_{30}
\end{aligned}
$$

on W. By these equations and since the T-module W is irreducible, we find that the \boxtimes_{q}-module W is irreducible. The result follows.

Lemma 6.9. Under Assumption 6.1, let W denote an irreducible T-module and consider the \boxtimes_{q}-action on W from Lemma 6.8. Then the following equations hold on W :

$$
\begin{aligned}
A & =\eta I+u \Phi \Psi^{-1} x_{01}+v \Psi \Phi^{-1} x_{12} \\
A^{*} & =\eta^{*} I+u^{*} \Phi \Psi x_{23}+v^{*} \Psi^{-1} \Phi^{-1} x_{30}
\end{aligned}
$$

Proof. Combine Lemma 6.5 and Lemma 6.8.
Proof of Theorem 6.7. We start with a comment. Let W and W^{\prime} denote irreducible T-modules, and consider the \boxtimes_{q}-module structure on W and W^{\prime} from Lemma 6.8. From the construction we may assume that if the T-modules W and W^{\prime} are isomorphic then the \boxtimes_{q}-modules W and W^{\prime} are isomorphic. With that comment out of the way, we proceed to the main argument. The standard module V decomposes into a direct sum of irreducible T-modules. By Lemma 6.8, each irreducible T module in this decomposition supports a \boxtimes_{q}-module structure. Combining these \boxtimes_{q}-modules yields a \boxtimes_{q}-module structure on V. This module structure induces a \mathbb{C}-algebra homomorphism $\vartheta: \boxtimes_{q} \rightarrow \operatorname{Mat}_{X}(\mathbb{C})$. The map ϑ satisfies (7) and (8) in view of Lemma 6.9. To finish the proof it suffices to show that $\vartheta\left(\boxtimes_{q}\right) \subseteq$ T. Toward this end we pick $\zeta \in \boxtimes_{q}$ and show $\vartheta(\zeta) \in T$. Since T is semisimple (and by our preliminary comment) there exists a $B \in T$ that acts on each irreducible T-module in the preceding decomposition as $\vartheta(\zeta)$. The T-modules in this decomposition span V, so $\vartheta(\zeta)$ coincides with B on V; hence $\vartheta(\zeta)=B$ and, in particular, $\vartheta(\zeta) \in T$ as desired. We have now shown that $\vartheta\left(\boxtimes_{q}\right) \subseteq T$, and the result follows.

Remark 6.10. In Theorem 6.7 we obtained a \mathbb{C}-algebra homomorphism ϑ : $\boxtimes_{q} \rightarrow T$. In Theorem 3.3 we displayed four \mathbb{C}-algebra homomorphisms from $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ into \boxtimes_{q}. Composing these homomorphisms with ϑ yields four \mathbb{C}-algebra homomorphisms from $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ into T.

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken Assumption 6.1 by no longer requiring that each irreducible T-module be thin.

References

[1] E. Bannai and T. Ito, Algebraic combinatorics I: Association schemes, Benjamin/Cummings, Menlo Park, CA, 1984.
[2] N. Biggs, Algebraic graph theory, 2nd ed., Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1993.
[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989.
[4] A. E. Brouwer, C. D. Godsil, J. H. Koolen, and W. J. Martin, Width and dual width of subsets in polynomial association schemes, J. Combin. Theory Ser. A 102 (2003), 255-271.
[5] J. S. Caughman IV, Spectra of bipartite P - and Q-polynomial association schemes, Graphs Combin. 14 (1998), 321-343.
[6] -The Terwilliger algebras of bipartite P - and Q-polynomial association schemes, Discrete Math. 196 (1999), 65-95.
[7] V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), 261-283.
[8] B. Curtin, 2-homogeneous bipartite distance-regular graphs, Discrete Math. 187 (1998), 39-70.
[9] -, Bipartite distance-regular graphs I, Graphs Combin. 15 (1999), 143-158.
[10] ——, Bipartite distance-regular graphs II, Graphs Combin. 15 (1999), 377-391.
[11] ——, Distance-regular graphs which support a spin model are thin, 16th British combinatorial conference (London, 1997), Discrete Math. 197/198 (1999), 205-216.
[12] B. Curtin and K. Nomura, Distance-regular graphs related to the quantum enveloping algebra of $\mathrm{sl}(2)$, J. Algebraic Combin. 12 (2000), 25-36.
[13] C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure Appl. Math., 11, Wiley, New York, 1962.
[14] G. Dickie, Twice Q-polynomial distance-regular graphs are thin, European J. Combin. 16 (1995), 555-560.
[15] G. Dickie and P. Terwilliger, A note on thin P-polynomial and dual-thin Q-polynomial symmetric association schemes, J. Algebraic Combin. 7 (1998), 5-15.
[16] E. Egge, A generalization of the Terwilliger algebra, J. Algebra 233 (2000), 213-252.
[17] J. T. Go, The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399-429.
[18] J. T. Go and P. Terwilliger, Tight distance-regular graphs and the subconstituent algebra, European J. Combin. 23 (2002), 793-816.
[19] C. D. Godsil, Algebraic combinatorics, Chapman \& Hall, New York, 1993.
[20] B. Hartwig and P. Terwilliger, The Tetrahedron algebra, the Onsager algebra, and the $\mathfrak{s l}_{2}$ loop algebra, J. Algebra 308 (2007), 840-863.
[21] S. A. Hobart and T. Ito, The structure of nonthin irreducible T-modules of endpoint 1: Ladder bases and classical parameters, J. Algebraic Combin. 7 (1998), 53-75.
[22] T. Ito, K. Tanabe, and P. Terwilliger, Some algebra related to P - and Q-polynomial association schemes, Codes and association schemes (Piscataway, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, pp. 167-192, Amer. Math. Soc., Providence, RI, 2001.
[23] T. Ito and P. Terwilliger, Tridiagonal pairs and the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$, Ramanujan J. 13 (2007), 39-62.
[24] ——,The q-tetrahedron algebra and its finite-dimensional irreducible modules, Comm. Algebra 35 (2007), 3415-3439.
[25] ——, q-inverting pairs of linear transformations and the q-tetrahedron algebra, Linear Algebra Appl. 426 (2007), 516-532.
[26] -, Distance-regular graphs and the q-tetrahedron algebra, European J. Combin. (to appear), 〈arXiv:math.CO/0608694〉.
[27] -, Evaluation modules for the q-tetrahedron algebra (in preparation).
[28] J. Kim, A duality between pairs of split decompositions for a Q-polynomial distance-regular graph, Ars Math. Contemp. (submitted).
[29] G. Lusztig, Introduction to quantum groups, Birkhäuser, Boston, 1990.
[30] A. A. Pascasio, On the multiplicities of the primitive idempotents of a Q-polynomial distance-regular graph, European J. Combin. 23 (2002), 1073-1078.
[31] K. Tanabe, The irreducible modules of the Terwilliger algebras of Doob schemes, J. Algebraic Combin. 6 (1997), 173-195.
[32] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992), 363-388.
[33] -, The subconstituent algebra of an association scheme II, J. Algebraic Combin. 2 (1993), 73-103.
[34] -, The subconstituent algebra of an association scheme III, J. Algebraic Combin. 2 (1993), 177-210.
[35] ——, Leonard pairs and the q-Racah polynomials, Linear Algebra Appl. 387 (2004), 235-276.
[36] , Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005) 307-332.
[37] ——, The displacement and split decompositions for a Q-polynomial distanceregular graph, Graphs Combin. 21 (2005), 263-276.
[38] ——, The equitable presentation for the quantum group $U_{q}(\mathfrak{g})$ associated with a symmetrizable Kac-Moody algebra \mathfrak{g}, J. Algebra 298 (2006), 302-319.
T. Ito

Department of Computational Science Faculty of Science
Kanazawa University
Kakuma-machi
Kanazawa 920-1192
Japan
tatsuro@kenroku.kanazawa-u.ac.jp
P. Terwilliger

Department of Mathematics
University of Wisconsin Madison, WI 53706
terwilli@math.wisc.edu

[^0]: Received August 17, 2007. Revision received March 6, 2008.
 The first author was supported in part by JSPS grant 18340022.

