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1. Introduction

In [20], Hartwig and the second author gave a presentation of the three-point sl2

loop algebra via generators and relations. To obtain this presentation they defined
a Lie algebra � by generators and relations and then displayed an isomorphism
from � to the three-point sl2 loop algebra. The algebra � is called the tetrahedron
algebra [20, Def. 1.1]. In [24] we introduced a q-deformation �q of � called the
q-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irre-
ducible �q-modules. In [26, Sec. 4] we displayed four homomorphisms into �q

from the quantum affine algebra Uq(ŝl2). In [26, Sec. 12] we found a homomor-
phism from �q into the subconstituent algebra of a distance-regular graph that is
self-dual with classical parameters. In this paper we do something similar for a
distance-regular graph that is said to have q-Racah type. This type is described
as follows. Let � denote a distance-regular graph with diameter D ≥ 3 (See Sec-
tion 4 for formal definitions). We say that � has q-Racah type whenever � has
a Q-polynomial structure with eigenvalue sequence {θi}Di=0 and dual eigenvalue
sequence {θ∗

i }Di=0 that satisfy, for 0 ≤ i ≤ D,

θi = η + uq2i−D + vqD−2i and

θ∗
i = η∗ + u∗q2i−D + v∗qD−2i,

where q, u, v, u∗, v∗ are nonzero and q2i 	= 1 for 1 ≤ i ≤ D. Assume that � has
q-Racah type.

Fix a vertex x of � and let T = T(x) denote the corresponding subconstituent
algebra [32, Def. 3.3]. Recall that T is generated by the adjacency matrix A and
the dual adjacency matrix A∗ = A∗(x) [32, Def. 3.10]. An irreducible T-module
W is called thin whenever the intersection of W with each eigenspace of A and
each eigenspace of A∗ has dimension at most 1 [32, Def. 3.5]. Assuming that each
irreducible T-module is thin, we display invertible central elements � and � of T
and a homomorphism ϑ : �q → T such that

A = ηI + u��−1ϑ(x01) + v��−1ϑ(x12) and

A∗ = η∗I + u∗��ϑ(x23) + v∗�−1�−1ϑ(x30),
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where the xij are the standard generators of �q . It follows that T is generated by
the image ϑ(�q) together with � and �. In particular, T is generated by ϑ(�q)

together with the center Z(T ). Our result settles [26, Conj. 13.10] for the case in
which every irreducible T-module is thin.

The paper is organized as follows. In Section 2 we recall the definition of �q ,
and in Section 3 we describe how �q is related to Uq(ŝl2). In Section 4 we re-
call the basic theory of a distance-regular graph �, focusing on the Q-polynomial
property and the subconstituent algebra. In Section 5 we discuss the split decom-
position of �, and in Section 6 we give our main results.

Throughout the paper, C denotes the field of complex numbers.

2. The q-Tetrahedron Algebra ���q

In this section we recall the q-tetrahedron algebra. We fix a nonzero scalar q ∈ C

such that q2 	= 1 and define

[n]q = qn − q−n

q − q−1
, n = 0,1, 2, . . . .

We let Z4 = Z/4Z denote the cyclic group of order 4.

Definition 2.1 [24, Def. 10.1]. Let �q denote the unital associative C-algebra
that has generators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2}
and the following relations.

(i) For i, j ∈ Z4 such that j − i = 2,

xij xji = 1.

(ii) For h, i, j ∈ Z4 such that the pair (i − h, j − i) is one of (1,1), (1, 2), and
(2,1),

qxhi xij − q−1xij xhi

q − q−1
= 1.

(iii) For h, i, j, k ∈ Z4 such that i − h = j − i = k − j = 1,

x3
hi xjk − [3]qx

2
hi xjk xhi + [3]qxhi xjk x

2
hi − xjk x

3
hi = 0. (1)

We call �q the q-tetrahedron algebra or “q-tet” for short. We refer to the xij as
the standard generators for �q .

Note 2.2. The equations (1) are the cubic q-Serre relations [29, p. 10].

We make some observations as follows.

Lemma 2.3 [24, Lemma 6.3]. There exists a C-algebra automorphism � of �q

that sends each generator xij to xi+1,j+1. Moreover, �4 = 1.

Lemma 2.4 [24, Lemma 6.5]. There exists a C-algebra automorphism of �q

that sends each generator xij to −xij .
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3. The Quantum Affine Algebra Uq(ŝl2)

In this section we consider how �q is related to the quantum affine algebraUq(ŝl2).

We start with a definition.

Definition 3.1 [7, p. 266]. The quantum affine algebra Uq(ŝl2) is the unital
associative C-algebra with generators K±1

i and e±
i , i ∈ {0,1}, and the following

relations:
KiK

−1
i = K−1

i Ki = 1;
K0K1 = K1K0;

Kie
±
i K

−1
i = q±2e±

i ;
Kie

±
j K−1

i = q∓2e±
j , i 	= j ;

[e+
i , e−

i ] = Ki − K−1
i

q − q−1
;

[e±
0 , e∓

1 ] = 0;
(e±

i )3e±
j − [3]q(e

±
i )2e±

j e±
i + [3]qe

±
i e±

j (e±
i )2 − e±

j (e±
i )3 = 0, i 	= j.

The following presentation of Uq(ŝl2) will be useful.

Proposition 3.2 [23, Thm. 2.1; 38]. The quantum affine algebra Uq(ŝl2) is iso-
morphic to the unital associative C-algebra with generators x±1

i , yi, zi, i ∈ {0,1},
and the following relations:

xi x
−1
i = x−1

i xi = 1;
x0x1 is central;

qxiyi − q−1yi xi

q − q−1
= 1;

qyizi − q−1ziyi

q − q−1
= 1;

qzi xi − q−1xizi

q − q−1
= 1;

qziyj − q−1yjzi

q − q−1
= x−1

0 x−1
1 , i 	= j ;

y3
i yj − [3]qy

2
i yjyi + [3]qyiyjy

2
i − yjy

3
i = 0, i 	= j ;

z3
i zj − [3]qz

2
i zj zi + [3]qzizj z

2
i − zj z

3
i = 0, i 	= j.

An isomorphism with the presentation in Definition 3.1 is given by:

x±1
i �→ K±1

i ;
yi �→ K−1

i + e−
i ;

zi �→ K−1
i − K−1

i e+
i q(q − q−1)2.
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The inverse of this isomorphism is given by:

K±1
i �→ x±1

i ;
e−
i �→ yi − x−1

i ;
e+
i �→ (1 − xizi)q

−1(q − q−1)−2.

Theorem 3.3 [26, Prop. 4.3]. For i ∈ Z4 there exists a C-algebra homomor-
phism from Uq(ŝl2) to �q that sends

x1 �→ xi,i+2, x−1
1 �→ xi+2,i, y1 �→ xi+2,i+3, z1 �→ xi+3,i,

x0 �→ xi+2,i, x−1
0 �→ xi,i+2, y0 �→ xi,i+1, z0 �→ xi+1,i+2.

Proof. Compare the defining relations for Uq(ŝl2) given in Proposition 3.2 with
the relations in Definition 2.1.

4. Distance-Regular Graphs: Preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the
basic definitions we recall the Q-polynomial property and the subconstituent al-
gebra. For more information we refer the reader to [1; 3; 19; 32].

Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra consist-
ing of all matrices whose rows and columns are indexed by X and whose entries
are in C. Let V = C

X denote the vector space over C consisting of column vec-
tors whose coordinates are indexed by X and whose entries are in C. We observe
that MatX(C) acts on V by left multiplication. We call V the standard module.
We endow V with the Hermitean inner product 〈·, ·〉 that satisfies 〈u, v〉 = utv̄ for
u, v ∈ V, where t denotes transpose and ¯ denotes complex conjugation. For all
y ∈X, let ŷ denote the element of V with a 1 in the y coordinate and 0 in all other
coordinates. We observe that {ŷ | y ∈X} is an orthonormal basis for V.

Let � = (X,R) denote a finite, undirected, connected graph, without loops or
multiple edges, with vertex set X and edge set R. Let ∂ denote the path-length
distance function for �, and set D := max{∂(x, y) | x, y ∈ X}. We call D the
diameter of �. For an integer k ≥ 0 we say that � is regular with valency k when-
ever each vertex of � is adjacent to exactly k distinct vertices of �. We say that �
is distance-regular whenever, for all integers h, i, j (0 ≤ h, i, j ≤ D) and for all
vertices x, y ∈X with ∂(x, y) = h, the number

ph
ij = |{z∈X | ∂(x, z) = i, ∂(z, y) = j}|

is independent of x and y. The ph
ij are called the intersection numbers of �. We

abbreviate ci = pi
1,i−1 (1 ≤ i ≤ D), bi = pi

1,i+1 (0 ≤ i ≤ D − 1), and ai = pi
1i

(0 ≤ i ≤ D).

For the rest of this paper we assume � is distance-regular; to avoid trivialities
we always assume D ≥ 3. Note that � is regular with valency k = b0. Moreover,
k = ci + ai + bi for 0 ≤ i ≤ D, where c0 = 0 and bD = 0.
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We mention a fact for later use. By the triangle inequality, for 0 ≤ h, i, j ≤ D

we have ph
ij = 0 (resp. ph

ij 	= 0) whenever one of h, i, j is greater than (resp. equal
to) the sum of the other two.

We recall the Bose–Mesner algebra of �. For 0 ≤ i ≤ D, let Ai denote the
matrix in MatX(C) with (x, y)-entry

(Ai)xy =
{

1 if ∂(x, y) = i

0 if ∂(x, y) 	= i
(x, y ∈X).

We call Ai the ith distance matrix of �. We abbreviate A = A1 and call this the
adjacency matrix of �. We observe the following: (i) A0 = I ; (ii)

∑D
i=0 Ai =

J ; (iii) Ai = Ai (0 ≤ i ≤ D); (iv) At
i = Ai (0 ≤ i ≤ D); and (v) AiAj =∑D

h=0 p
h
ijAh (0 ≤ i, j ≤ D), where I (resp. J ) denotes the identity matrix (resp.

all-1 matrix) in MatX(C). Using these facts, we find that {Ai}Di=0 is a basis for a
commutative subalgebra M of MatX(C), called the Bose–Mesner algebra of �.

It turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis
{Ei}Di=0 such that: (i)E0 = |X|−1J ; (ii)

∑D
i=0 Ei = I ; (iii)Ei = Ei (0 ≤ i ≤ D);

(iv) Et
i = Ei (0 ≤ i ≤ D); and (v) EiEj = δijEi (0 ≤ i, j ≤ D). We call {Ei}Di=0

the primitive idempotents of �.

We recall the eigenvalues of �. Since {Ei}Di=0 form a basis for M, there exist
complex scalars {θi}Di=0 such that A = ∑D

i=0 θiEi. Observe that AEi = EiA =
θiEi for 0 ≤ i ≤ D. By [1, p. 197] the scalars {θi}Di=0 are in R. Observe that
{θi}Di=0 are mutually distinct because A generates M. We call θi the eigenvalue of
� associated with Ei (0 ≤ i ≤ D). Observe that

V = E0V + E1V + · · · + EDV (orthogonal direct sum).

For 0 ≤ i ≤ D, the space EiV is the eigenspace of A associated with θi .

We now recall the Krein parameters. Let � denote the entrywise product in
MatX(C). Observe that Ai � Aj = δijAi for 0 ≤ i, j ≤ D, so M is closed under
�. Thus there exist complex scalars qh

ij (0 ≤ h, i, j ≤ D) such that

Ei � Ej = |X|−1
D∑

h=0

qh
ijEh (0 ≤ i, j ≤ D).

By [2, p. 170], qh
ij is real and nonnegative for 0 ≤ h, i, j ≤ D. The qh

ij are called
the Krein parameters of �. The graph � is said to be Q-polynomial (with respect
to the given ordering {Ei}Di=0 of the primitive idempotents) if, for 0 ≤ h, i, j ≤
D, we have qh

ij = 0 (resp. qh
ij 	= 0) whenever one of h, i, j is greater than (resp.

equal to) the sum of the other two [3, p. 235]. See [4; 5; 6; 8; 11; 14; 15; 30] for
background information on the Q-polynomial property. From now on we assume
� is Q-polynomial with respect to {Ei}Di=0. We call the sequence {θi}Di=0 the eigen-
value sequence for this Q-polynomial structure.

We recall the dual Bose–Mesner algebra of �. For the rest of this paper we fix
a vertex x ∈ X. We view x as a “base vertex”. For 0 ≤ i ≤ D, let E∗

i = E∗
i (x)

denote the diagonal matrix in MatX(C) with (y, y)-entry
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(E∗
i )yy =

{
1 if ∂(x, y) = i

0 if ∂(x, y) 	= i
(y ∈X). (2)

We call E∗
i the ith dual idempotent of � with respect to x [32, p. 378]. We ob-

serve that (i)
∑D

i=0 E
∗
i = I ; (ii) E∗

i = E∗
i (0 ≤ i ≤ D); (iii) E∗t

i = E∗
i (0 ≤

i ≤ D); and (iv) E∗
i E

∗
j = δijE

∗
i (0 ≤ i, j ≤ D). By these facts, {E∗

i }Di=0 form a
basis for a commutative subalgebra M ∗ = M ∗(x) of MatX(C). We call M ∗ the
dual Bose–Mesner algebra of � with respect to x [32, p. 378]. For 0 ≤ i ≤ D, let
A∗

i = A∗
i(x) denote the diagonal matrix in MatX(C) with (y, y)-entry (A∗

i )yy =
|X|(Ei)xy for y ∈ X. Then {A∗

i}Di=0 is a basis for M ∗ [32, p. 379]. Moreover,
(i) A∗

0 = I ; (ii) A∗
i = A∗

i (0 ≤ i ≤ D); (iii) A∗t
i = A∗

i (0 ≤ i ≤ D); and
(iv) A∗

iA
∗
j = ∑D

h=0 qh
ijA

∗
h (0 ≤ i, j ≤ D) [32, p. 379]. We call {A∗

i}Di=0 the dual
distance matrices of � with respect to x. We abbreviate A∗ = A∗

1 and call this the
dual adjacency matrix of � with respect to x. The matrix A∗ generates M ∗ [32,
Lemma 3.11].

We recall the dual eigenvalues of �. Since {E∗
i }Di=0 form a basis for M ∗, there

exist complex scalars {θ∗
i }Di=0 such that A∗ = ∑D

i=0 θ∗
i E

∗
i . Observe that A∗E∗

i =
E∗

i A
∗ = θ∗

i E
∗
i for 0 ≤ i ≤ D. By [32, Lemma 3.11] the scalars {θ∗

i }Di=0 are in
R. The scalars {θ∗

i }Di=0 are mutually distinct because A∗ generates M ∗. We call θ∗
i

the dual eigenvalue of � associated with E∗
i (0 ≤ i ≤ D). We call the sequence

{θ∗
i }Di=0 the dual eigenvalue sequence for the given Q-polynomial structure.
We recall the subconstituents of �. From (2) we find

E∗
i V = span{ŷ | y ∈X, ∂(x, y) = i} (0 ≤ i ≤ D). (3)

By (3) and since {ŷ | y ∈X} is an orthonormal basis for V, we find

V = E∗
0V + E∗

1 V + · · · + E∗
DV (orthogonal direct sum).

For 0 ≤ i ≤ D, the space E∗
i V is the eigenspace of A∗ associated with θ∗

i . We
call E∗

i V the ith subconstituent of � with respect to x.

We recall the subconstituent algebra of �. Let T = T(x) denote the subalge-
bra of MatX(C) generated by M and M ∗. We call T the subconstituent algebra
(or Terwilliger algebra) of � with respect to x [32, Def. 3.3]. Observe that T has
finite dimension. Moreover, T is semisimple because it is closed under the conju-
gate transponse map [13, p. 157]. We note that A,A∗ together generate T. By [32,
Lemma 3.2], the following are relations in T. For 0 ≤ h, i, j ≤ D,

E∗
hAiE

∗
j = 0 iff ph

ij = 0; (4)

EhA
∗
iEj = 0 iff qh

ij = 0. (5)

See [9; 10; 12; 16; 17; 18; 21; 31; 32; 33; 34] for more information on the subcon-
stituent algebra.

We recall the T-modules. By a T-module we mean a subspaceW ⊆ V such that
BW ⊆ W for all B ∈ T. Let W denote a T-module and let W ′ denote a T-module
contained in W. Then the orthogonal complement of W ′ in W is a T-module [18,
p. 802]. It follows that each T-module is an orthogonal direct sum of irreducible
T-modules. In particular,V is an orthogonal direct sum of irreducible T-modules.
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Let W denote an irreducible T-module. Observe that W is the direct sum
of the nonzero spaces among E∗

0W, . . . ,E∗
DW. Similarly, W is the direct sum

of the nonzero spaces among E0W, . . . ,EDW. By the endpoint of W we mean
min{i | 0 ≤ i ≤ D, E∗

i W 	= 0}. By the diameter of W we mean |{i | 0 ≤ i ≤ D,
E∗

i W 	= 0}| − 1. By the dual endpoint of W we mean min{i | 0 ≤ i ≤ D,
EiW 	= 0}. By the dual diameter of W we mean |{i | 0 ≤ i ≤ D, EiW 	= 0}| −1.
It turns out that the diameter of W is equal to the dual diameter of W [30, Cor. 3.3].
By [32, Lemma 3.4], dimE∗

i W ≤ 1 for 0 ≤ i ≤ D if and only if dimEiW ≤ 1
for 0 ≤ i ≤ D; in this case, W is called thin.

We finish this section with two lemmas.

Lemma 4.1 [32, Lemmas 3.4, 3.9, 3.12]. Let W denote an irreducible T-module
with endpoint ρ, dual endpoint τ, and diameter d. Then ρ, τ, d are nonnegative
integers such that ρ +d ≤ D and τ +d ≤ D. Moreover, the following statements
hold :

(i) E∗
i W 	= 0 if and only if ρ ≤ i ≤ ρ + d (0 ≤ i ≤ D);

(ii) W = ∑d
h=0 E

∗
ρ+hW (orthogonal direct sum);

(iii) EiW 	= 0 if and only if τ ≤ i ≤ τ + d (0 ≤ i ≤ D);
(iv) W = ∑d

h=0 Eτ+hW (orthogonal direct sum).

Lemma 4.2 [26, Lemma 12.1]. For Y ∈ MatX(C), the following are equivalent :

(i) Y ∈ T ;
(ii) YW ⊆ W for all irreducible T-modules W.

5. The Split Decomposition

We shall make use of a certain decomposition of V called the split decomposition.
The split decomposition was defined in [37] and discussed further in [26; 28]. In
this section we recall some results on this topic.

Definition 5.1 [37, Def. 5.1]. For −1 ≤ i, j ≤ D we define

V
↓↓
i,j = (E∗

0V + · · · + E∗
i V ) ∩ (E0V + · · · + EjV ),

V
↓↑
i,j = (E∗

0V + · · · + E∗
i V ) ∩ (EDV + · · · + ED−jV ).

In these two equations we interpret the right-hand side to be 0 if i = −1 or j = −1.

Definition 5.2 [37, Def. 5.5]. With reference to Definition 5.1, for (µ, ν) =
(↓, ↓) or (µ, ν) = (↓, ↑) we have V

µν

i−1,j ⊆ V
µν

i,j and V
µν

i,j−1 ⊆ V
µν

i,j . Therefore

V
µν

i−1,j +V
µν

i,j−1 ⊆ V
µν

i,j .

With reference to this inclusion, we define Ṽ
µν

i,j to be the orthogonal complement
of the left-hand side in the right-hand side; that is,

Ṽ
µν

i,j = (V
µν

i−1,j + V
µν

i,j−1)
⊥ ∩V

µν

i,j .
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The next lemma is a mild generalization of [37, Cor. 5.8].

Lemma 5.3. With reference to Definition 5.2, the following holds for (µ, ν) =
(↓, ↓) and (µ, ν) = (↓, ↑):

V =
D∑
i=0

D∑
j=0

Ṽ
µν

i,j (direct sum). (6)

Proof. For (µ, ν) = (↓, ↓), this is just [37, Cor. 5.8]. For (µ, ν) = (↓, ↑), in the
proof of [37, Cor. 5.8] replace the sequence {Ei}Di=0 by {ED−i}Di=0.

Note 5.4. Following [28, Def. 6.4], we call the sum (6) the (µ, ν)-split decom-
position of V.

We now recall how split decompositions are related to irreducible T-modules. We
begin with a definition.

Definition 5.5 [37, Def. 4.1]. LetW denote an irreducible T-module with end-
point ρ, dual endpoint τ, and diameter d. By the displacement of W of the first
kind we mean the scalar ρ + τ + d − D. By the displacement of W of the sec-
ond kind we mean the scalar ρ − τ. By the inequalities in Lemma 4.1, each kind
of displacement is at least −D and at most D.

Lemma 5.6 [37, Thm. 6.2]. For −D ≤ δ ≤ D, the following coincide:

(i) the subspace of V spanned by the irreducible T-modules for which δ is the
displacement of the first kind ; and

(ii)
∑

Ṽ
↓↓
ij , where the sum is over all ordered pairs i, j (0 ≤ i, j ≤ D) such that

i + j = δ + D.

Lemma 5.7. For −D ≤ δ ≤ D, the following coincide:

(i) the subspace of V spanned by the irreducible T-modules for which δ is the
displacement of the second kind ; and

(ii)
∑

Ṽ
↓↑
ij , where the sum is over all ordered pairs i, j (0 ≤ i, j ≤ D) such that

i + j = δ + D.

Proof. In the proof of [37, Thm. 6.2], replace the sequence {Ei}Di=0 with the se-
quence {ED−i}Di=0.

6. A Homomorphism ϑ : ���q → T

We now impose an assumption on �.

Assumption 6.1. We fix complex scalars q, η, η∗, u, u∗, v, v∗ with q, u, u∗, v, v∗
nonzero and q2i 	= 1 for 1 ≤ i ≤ D. We assume that � has a Q-polynomial struc-
ture with eigenvalue sequence

θi = η + uq2i−D + vqD−2i (0 ≤ i ≤ D)
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and dual eigenvalue sequence

θ∗
i = η∗ + u∗q2i−D + v∗qD−2i (0 ≤ i ≤ D).

Moreover, we assume that each irreducible T-module is thin.

Remark 6.2. In the notation of Bannai and Ito [1, p. 263], the Q-polynomial
structure from Assumption 6.1 is type I with s 	= 0 and s∗ 	= 0. We caution the
reader that the scalar denoted q in [1, p. 263] is the same as our scalar q2.

Example 6.3 [3]. The ordinary cycles are the only known distance-regular graphs
that satisfy Assumption 6.1.

Under Assumption 6.1 we will display a C-algebra homomorphism ϑ : �q → T.

To describe this homomorphism we define two matrices in MatX(C), called �

and �.

Definition 6.4. With reference to Lemma 5.3 and Assumption 6.1, let � (resp.
�) denote the unique matrix in MatX(C) that acts on Ṽ

↓↓
ij (resp. Ṽ ↓↑

ij ) as q i+j−DI

for 0 ≤ i, j ≤ D. Observe that each of �,� is invertible.

Lemma 6.5. Under Assumption 6.1, let W denote an irreducible T-module with
endpoint ρ, dual endpoint τ, and diameter d. Then � and � act on W as
qρ+τ+d−DI and qρ−τ I, respectively.

Proof. Concerning �, abbreviate δ = ρ+ τ +d −D and recall that this is the dis-
placement of W of the first kind. We show that � acts on W as qδI. LetVδ denote
the common subspace from parts (i) and (ii) of Lemma 5.6. By Lemma 5.6(i) we
have W ⊆ Vδ. In Lemma 5.6(ii), Vδ is expressed as a sum. The matrix � acts on
each term of this sum as qδI by Definition 6.4, so � acts on Vδ as qδI. By these
comments, � acts on W as qδI and this proves our assertion concerning �. Our
assertion concerning � is similarly proved using the displacement of the second
kind and Lemma 5.7.

Lemma 6.6. Under Assumption 6.1, the matrices � and � are central elements
of T.

Proof. The matrices � and � are contained in T by Lemma 4.2 and Lemma 6.5.
These matrices are central in T because, by Lemma 6.5, they act as a scalar mul-
tiple of the identity on every irreducible T-module.

The following theorem is our main result.

Theorem 6.7. Under Assumption 6.1, there exists a C-algebra homomorphism
ϑ : �q → T such that

A = ηI + u��−1ϑ(x01) + v��−1ϑ(x12) and (7)

A∗ = η∗I + u∗��ϑ(x23) + v∗�−1�−1ϑ(x30). (8)
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The proof is an easy consequence of the following two lemmas.

Lemma 6.8. Under Assumption 6.1, let W denote an irreducible T-module with
endpoint ρ, dual endpoint τ, and diameter d. Then there exists a �q-module
structure on W such that the adjacency matrix A acts as ηI + uq2τ+d−Dx01 +
vqD−d−2τx12 and the dual adjacency matrix A∗ acts as η∗I + u∗q2ρ+d−Dx23 +
v∗qD−d−2ρx30. This �q-module structure is irreducible.

Proof. By [22, Ex. 1.4] and since the T-module W is thin, the pair A,A∗ acts on
W as a Leonard pair in the sense of [35, Def. 1.1]. In the notation of [35, Def. 5.1],
this Leonard pair has an eigenvalue sequence {θτ+i}di=0 and a dual eigenvalue se-
quence {θ∗

ρ+i}di=0 in view of Lemma 4.1. To motivate what follows we note that

θτ+i = η + uq2τ+d−Dq2i−d + vqD−d−2τq d−2i and

θ∗
ρ+i = η∗ + u∗q2ρ+d−Dq2i−d + v∗qD−d−2ρq d−2i

for 0 ≤ i ≤ d. In both of these equations, the coefficients of q2i−d and q d−2i

are nonzero; hence the action of A,A∗ on W is a Leonard pair of q-Racah type
in the sense of [36, Ex. 5.3]. Referring to this Leonard pair, let {ϕi}di=1 (resp.
{φi}di=1) denote the first (resp. second) split sequence [35, Sec. 7] associated with
the eigenvalue sequence {θτ+i}di=0 and the dual eigenvalue sequence {θ∗

ρ+i}di=0. By
[35, Sec. 7], each of ϕi,φi is nonzero for 1 ≤ i ≤ d. By [36, Ex. 5.3], there exists
a nonzero r ∈ C such that, for 1 ≤ i ≤ d:

ϕi = (q i − q−i )(q d−i+1 − q i−d−1)

× (q d−i − r−1q i−1)(uu∗rq2τ+2ρ+d+i−2D − vv∗q2D−2d−2τ−2ρ+1−i );
φi = (q i − q−i )(q d−i+1 − q i−d−1)

× (urq2τ+d−D+1−i − vqD−2d−2τ+i )(u∗q2ρ+d−D+i−1 − v∗r−1qD−2ρ−i ).

Observe that r is not among q d−1, q d−3, . . . , q1−d because each of ϕ1,ϕ2, . . . ,ϕd

is nonzero. By [35, Sec. 7] there exists a basis {vi}di=0 of W such that

Avi = θτ+d−ivi + vi+1 (0 ≤ i ≤ d − 1), Avd = θτvd ,

A∗vi = θ∗
ρ+ivi + φivi−1 (1 ≤ i ≤ d), A∗v0 = θ∗

ρ v0.

For convenience we adjust this basis slightly. For 1 ≤ i ≤ d define

γi = (q i − q−i )(urq2τ+d−D+1−i − vqD−2d−2τ+i ).

In this equation the right-hand side is nonzero because it is a factor of φi, so γi 	=
0. Define ui = (γ1γ2 · · · γi)

−1vi for 0 ≤ i ≤ d and note that {ui}di=0 is a basis for
W. By the construction, we have

Aui = θτ+d−iui + γi+1ui+1 (0 ≤ i ≤ d − 1), Aud = θτud ,

A∗ui = θ∗
ρ+iui + φiγ

−1
i ui−1 (1 ≤ i ≤ d), A∗u0 = θ∗

ρ u0.

We let each standard generator of �q act linearly on W ; to define this action,
we specify what it does to the basis {ui}di=0. Here are the details:
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x01.ui = q d−2iui + (q d − q d−2i−2)q1−drui+1 (0 ≤ i ≤ d − 1), x01.ud = q−dud;
x12.ui = q2i−dui + (q−d − q2i+2−d)ui+1 (0 ≤ i ≤ d − 1), x12.ud = q dud;
x23.ui = q2i−dui + (q d − q2i−2−d)ui−1 (1 ≤ i ≤ d ), x23.u0 = q−du0;
x30.ui = q d−2iui + (q−d − q d−2i+2)q d−1r−1ui−1 (1 ≤ i ≤ d ), x30.u0 = q du0;
x13.ui = q2i−dui (0 ≤ i ≤ d );
x31.ui = q d−2iui (0 ≤ i ≤ d );

x02.ui = (1 − rq−d−1)
(1 − q2d−2i+2)(1 − q2d−2i+4 ) · · · (1 − q2d)q d−2i

(1 − rq d−1−2i )(1 − rq d+1−2i ) · · · (1 − rq d−1)
u0

+ (1 − rq d+1)(1 − rq−d−1)

×
i∑

h=1

(1 − q2d−2i+2)(1 − q2d−2i+4 ) · · · (1 − q2d−2h)q d−2i

(1 − rq d−1−2i )(1 − rq d+1−2i ) · · · (1 − rq d+1−2h)
uh

+ (q2i+2 − 1)r

q2i+1(1 − rq d−1−2i )
ui+1 (0 ≤ i ≤ d − 1);

x02.ud = (1 − q2)(1 − q4 ) · · · (1 − q2d)q−d

(1 − rq1−d)(1 − rq3−d) · · · (1 − rq d−1)
u0

+ (1 − rq d+1)

d∑
h=1

(1 − q2)(1 − q4 ) · · · (1 − q2d−2h)q−d

(1 − rq1−d)(1 − rq3−d) · · · (1 − rq d+1−2h)
uh;

x20.u0 = (1 − rq d+1)

d−1∑
h=0

(1 − q2)(1 − q4 ) · · · (1 − q2h)r hqh−dh−d

(1 − rq1−d)(1 − rq3−d) · · · (1 − rq2h−d+1)
uh

+ (1 − q2)(1 − q4 ) · · · (1 − q2d)r dq−d2

(1 − rq1−d)(1 − rq3−d) · · · (1 − rq d−1)
ud;

x20.ui = q d − q2i−2−d

1 − rq2i−d−1
ui−1 + (1 − rq d+1)(1 − rq−d−1)

×
d−1∑
h=i

(1 − q2i+2)(1 − q2i+4 ) · · · (1 − q2h)r h−iq(d+1)i−(d−1)h−d

(1 − rq2i−d−1)(1 − rq2i−d+1) · · · (1 − rq2h−d+1)
uh

+ (1 − rq−d−1)

× (1 − q2i+2)(1 − q2i+4 ) · · · (1 − q2d)r d−iq di+i−d2

(1 − rq2i−d−1)(1 − rq2i−d+1) · · · (1 − rq d−1)
ud (1 ≤ i ≤ d ).

In the preceding formulas, the denominators are nonzero because r is not among
q d−1, q d−3, . . . , q1−d. One may check (or see [27]) that the actions just described
satisfy the defining relations for �q from Definition 2.1, so these actions induce a
�q-module structure on W. Comparing the action of A (resp. A∗) on {ui}di=0 with
the actions of x01, x12 (resp. x23, x30) on {ui}di=0, we find that

A = ηI + uq2τ+d−Dx01 + vqD−d−2τx12 and

A∗ = η∗I + u∗q2ρ+d−Dx23 + v∗qD−d−2ρx30
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on W. By these equations and since the T-module W is irreducible, we find that
the �q-module W is irreducible. The result follows.

Lemma 6.9. Under Assumption 6.1, let W denote an irreducible T-module and
consider the �q-action on W from Lemma 6.8. Then the following equations hold
on W :

A = ηI + u��−1x01 + v��−1x12;
A∗ = η∗I + u∗��x23 + v∗�−1�−1x30.

Proof. Combine Lemma 6.5 and Lemma 6.8.

Proof of Theorem 6.7. We start with a comment. Let W and W ′ denote irreducible
T-modules, and consider the �q-module structure onW and W ′ from Lemma 6.8.
From the construction we may assume that if the T-modulesW and W ′ are isomor-
phic then the �q-modules W and W ′ are isomorphic. With that comment out of
the way, we proceed to the main argument. The standard module V decomposes
into a direct sum of irreducible T-modules. By Lemma 6.8, each irreducible T-
module in this decomposition supports a �q-module structure. Combining these
�q-modules yields a �q-module structure on V. This module structure induces
a C-algebra homomorphism ϑ : �q → MatX(C). The map ϑ satisfies (7) and
(8) in view of Lemma 6.9. To finish the proof it suffices to show that ϑ(�q) ⊆
T. Toward this end we pick ζ ∈ �q and show ϑ(ζ) ∈ T. Since T is semisimple
(and by our preliminary comment) there exists a B ∈ T that acts on each irre-
ducible T-module in the preceding decomposition as ϑ(ζ). The T-modules in this
decomposition span V, so ϑ(ζ) coincides with B on V ; hence ϑ(ζ) = B and, in
particular, ϑ(ζ)∈ T as desired. We have now shown that ϑ(�q) ⊆ T, and the re-
sult follows.

Remark 6.10. In Theorem 6.7 we obtained a C-algebra homomorphism ϑ :
�q → T. In Theorem 3.3 we displayed four C-algebra homomorphisms from
Uq(ŝl2) into �q . Composing these homomorphisms with ϑ yields four C-algebra
homomorphisms from Uq(ŝl2) into T.

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken As-
sumption 6.1 by no longer requiring that each irreducible T-module be thin.
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