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1. Introduction

In [20], Hartwig and the second author gave a presentation of the three-point sl,
loop algebra via generators and relations. To obtain this presentation they defined
a Lie algebra X by generators and relations and then displayed an isomorphism
from X to the three-point s[, loop algebra. The algebra X is called the tetrahedron
algebra [20, Def. 1.1]. In [24] we introduced a g-deformation X, of X called the
g-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irre-
ducible X,-modules. In [26, Sec. 4] we displayed four homomorphisms into X,
from the quantum affine algebra U, (?[2). In [26, Sec. 12] we found a homomor-
phism from X, into the subconstituent algebra of a distance-regular graph that is
self-dual with classical parameters. In this paper we do something similar for a
distance-regular graph that is said to have g-Racah type. This type is described
as follows. Let I" denote a distance-regular graph with diameter D > 3 (See Sec-
tion 4 for formal definitions). We say that I" has g-Racah type whenever I" has
a Q-polynomial structure with eigenvalue sequence {6;}” and dual eigenvalue
sequence {Gi*}f.): o that satisfy, for 0 <i < D,

Qi =7 + uq2i—D + qu72i and
91* — n* + u*qu—D + U*qD_Zi,

where g, u, v, u*, v* are nonzero and q2i # 1forl <i < D. Assume that I" has
g-Racah type.

Fix a vertex x of I" and let T = T (x) denote the corresponding subconstituent
algebra [32, Def. 3.3]. Recall that T is generated by the adjacency matrix A and
the dual adjacency matrix A* = A*(x) [32, Def. 3.10]. An irreducible T-module
W is called thin whenever the intersection of W with each eigenspace of A and
each eigenspace of A* has dimension at most 1 [32, Def. 3.5]. Assuming that each
irreducible T-module is thin, we display invertible central elements ® and W of T
and a homomorphism ¥ : X, — T such that

A=l +ud¥Y'9(xo) + v¥P '¥(xn) and
A* = "] + uFOWY (x03) + v U9 (x30),
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where the x;; are the standard generators of X,. It follows that 7" is generated by
the image ©#(KX,) together with ® and W. In particular, T is generated by 1(IX,)
together with the center Z(7'). Our result settles [26, Conj. 13.10] for the case in
which every irreducible 7T-module is thin.

The paper is organized as follows. In Section 2 we recall the definition of X,
and in Section 3 we describe how X, is related to U, (5[2) In Section 4 we re-
call the basic theory of a distance-regular graph T, focusmg on the Q-polynomial
property and the subconstituent algebra. In Section 5 we discuss the split decom-
position of T, and in Section 6 we give our main results.

Throughout the paper, C denotes the field of complex numbers.

2. The g-Tetrahedron Algebra X,

In this section we recall the g-tetrahedron algebra. We fix a nonzero scalar g € C
such that g% # 1 and define

n —n

q
q—
We let Z4 = 7Z/4Z denote the cyclic group of order 4.

—9q

—, n=0,1,2,....

[”]q =

DerFINITION 2.1 [24, Def. 10.1]. Let X, denote the unital associative C-algebra
that has generators
(x;j|i,j€Zs, j—i=1lorj—i=2}
and the following relations.
(i) Fori,je€Z4suchthat j —i =2,
Xij Xji = 1.
(ii) For h,i, j € Z4 such that the pair (i — h, j — i) is one of (1,1), (1,2), and
2,1,
qxpiXij — q_lxijxhi
qg—q7"

(iii) For h,i, j,k€Z4suchthati —h=j—i=k—j =1,

=1

3 2 2 3
XpiXjke — [BlgXji Xje Xni + [B1gXni Xjk Xjp; — XjeXj; = 0. (1

We call X, the g-tetrahedron algebra or “q-tet” for short. We refer to the x;; as
the standard generators for X, .

NotE 2.2. The equations (1) are the cubic g-Serre relations [29, p. 10].
We make some observations as follows.

LEMMA 2.3 [24, Lemma 6.3]. There exists a C-algebra automorphism g of X,
that sends each generator x;j to X1, j+1. Moreover, of=1.

LEMMA 2.4 [24, Lemma 6.5]. There exists a C-algebra automorphism of X,
that sends each generator x;; to —x;;.
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3. The Quantum Affine Algebra U, (E:\lz)

In this section we consider how X, is related to the quantum affine algebra U, (;[2 ).
We start with a definition.

DEFINITION 3.1 [7, p. 266]. The quantum affine algebra U,,(?[z) is the unital
associative C-algebra with generators Kiil and el.i, i € {0,1}, and the following
relations:

KK '=K'Ki =1;
KoK = KiKo;
K,-eiiKi_l = qﬂeii;
KiejiKi_l = qﬁeji, i # j;
Ki— K"
q—q7""’

le7,ef]1=0;

e
[e,‘ve,’]—

(e)ef = Blg(ef)ef e + Blyeef () — e (e)* =0, i # .
The following presentation of Uq(glz) will be useful.

ProPOSITION 3.2 [23,Thm. 2.1; 38]. The quantum affine algebra Uq(g[z) is iso-
morphic to the unital associative C-algebra with generators xiﬂ, Vi, Zi, 1 € {0,1},
and the following relations:

x,-)cf1 = xflxi =1

XoX1 Is central;

gxiyi —q " 'yixi I
q-q7 7
9yizi =4~y _ |
g—q7
qzixi —q iz 1
g-q 7
qzi); _q,ijZi zx(;lxl—l, i+
q9—4q

Yivi = Blyy?yiyi + Blgyiviy? — yiyi =0, i # Jj;

ziz; — 131427 7jzi + Blgzizjz; — 22 =0, i # J.

An isomorphism with the presentation in Definition 3.1 is given by:
xiil — Kl.il;

yi = Klfl +e;
Zi > Kl-_] — Ki_le;rq(q —q¢hH2
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The inverse of this isomorphism is given by:

Kiil — xiil;

— -1,
e, =y —X;

ef > (=xiz)g (g —q D72
THEOREM 3.3 [26, Prop. 4.3].  For i € Z4 there exists a C-algebra homomor-
phism from U,(sly) to W, that sends

1
X1 > Xii42, X B> Xig2i, Y1 P> Xig2,i43, 21> Xi43,

-1
X0 > Xit2,i, Xo > Xii+2, Yot Xii+1, 20> Xig1,i42-

Proof. Compare the defining relations for U, (;[2) given in Proposition 3.2 with
the relations in Definition 2.1. OJ

4. Distance-Regular Graphs: Preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the
basic definitions we recall the Q-polynomial property and the subconstituent al-
gebra. For more information we refer the reader to [1; 3; 19; 32].

Let X denote a nonempty finite set. Let Maty (C) denote the C-algebra consist-
ing of all matrices whose rows and columns are indexed by X and whose entries
are in C. Let V = CX denote the vector space over C consisting of column vec-
tors whose coordinates are indexed by X and whose entries are in C. We observe
that Maty (C) acts on V by left multiplication. We call V the standard module.
We endow V with the Hermitean inner product (-, -} that satisfies (u, v) = u'® for
u,v € V, where ¢ denotes transpose and ~ denotes complex conjugation. For all
y € X, let y denote the element of V with a 1 in the y coordinate and 0 in all other
coordinates. We observe that {y | y € X} is an orthonormal basis for V.

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or
multiple edges, with vertex set X and edge set R. Let d denote the path-length
distance function for I', and set D := max{d(x,y) | x,y € X}. We call D the
diameter of T'. For an integer k > O we say that I" is regular with valency k when-
ever each vertex of I' is adjacent to exactly k distinct vertices of . We say that "
is distance-regular whenever, for all integers 4,1, j (0 < h,i, j < D) and for all
vertices x, y € X with d(x, y) = h, the number

plh=NzeX|d(x,2) =i, 0(z,y) = j}|

is independent of x and y. The pf‘j are called the intersection numbers of I'. We
abbreviate ¢; = piifl 1<i<D),b; = pi,i+1 O0O<i<D-1),anda; = py;
0 <i<D).

For the rest of this paper we assume I' is distance-regular; to avoid trivialities
we always assume D > 3. Note that I" is regular with valency k = by. Moreover,
k=c;+a;+b;for0 <i < D, wherecy=0and bp =0.
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We mention a fact for later use. By the triangle inequality, for 0 < h,i,j < D
we have pihj = 0 (resp. p[-hj # 0) whenever one of &, 7, j is greater than (resp. equal
to) the sum of the other two.

We recall the Bose—Mesner algebra of I'. For 0 < i < D, let A; denote the
matrix in Maty (C) with (x, y)-entry

1 if 9 =1

(A = { PO = e,

0 if d(x,y) #1i
We call A; the ith distance matrix of I'. We abbreviate A = A; and call this the
adjacency matrix of I'. We observe the following: (i) Ay = I; (i) Z?:o A =
J; (i) A; = A; (0 < i < D); (iv) A] = A; (0 < i < D); and (v) AjA; =
Zf:() pithh (0 <i,j < D), where I (resp. J) denotes the identity matrix (resp.
all-1 matrix) in Maty (C). Using these facts, we find that {A i}l’.jzo is a basis for a
commutative subalgebra M of Matx (C), called the Bose—Mesner algebra of T'.
It turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis
{E,-}P:O suchthat: (i) Eq = |X|7'J; (ii)Zl.D:O E;=1I;(iii))E; = E; (0 <i < D);
(iv)E! =E; (0 <i < D);and (v) E;E; = §;;E; (0 < i, j < D). Wecall {E,-}lD:0
the primitive idempotents of T.

We recall the eigenvalues of I'. Since {E;}2 , form a basis for M, there exist
complex scalars {9,<}?=0 such that A = Z,’D=o 0;E;. Observe that AE; = E;A =
0,E; for 0 < i < D. By [1, p. 197] the scalars {Gi}lpzo are in R. Observe that
{6:}2_, are mutually distinct because A generates M. We call 6; the eigenvalue of
I" associated with E; (0 <i < D). Observe that

V=E\W +E\V +---+ EpV (orthogonal direct sum).

For 0 <i < D, the space E;V is the eigenspace of A associated with 6;.

We now recall the Krein parameters. Let o denote the entrywise product in
Maty (C). Observe that A; o A; = §;;A; for 0 < i, j < D, so M is closed under
o. Thus there exist complex scalars qi}} (0 < h,i,j < D) such that

D
EioEj=IX|"') qfEx (0<i,j<D).
h=0

By [2, p. 170], qihj is real and nonnegative for 0 < h,i,j < D. The qihj are called
the Krein parameters of T'. The graph I' is said to be Q-polynomial (with respect
to the given ordering {E,-}lD:0 of the primitive idempotents) if, for 0 < h,i,j <
D, we have qihj = 0 (resp. qi”j # 0) whenever one of 4, i, j is greater than (resp.
equal to) the sum of the other two [3, p. 235]. See [4; 5; 6; 8; 11; 14; 15; 30] for
background information on the Q-polynomial property. From now on we assume
I is Q-polynomial with respect to { E;}2_,. We call the sequence {6}, the eigen-
value sequence for this Q-polynomial structure.

We recall the dual Bose—Mesner algebra of I'. For the rest of this paper we fix
a vertex x € X. We view x as a “base vertex”. For0 <i < D, let Ef = E}(x)
denote the diagonal matrix in Maty (C) with (y, y)-entry
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1 if a(x,y) =1
(Ef)yy = { . . (yeX). ()
0 if d(x,y) #1i
We call Ef the ith dual idempotent of I with respect to x [32, p. 378]. We ob-
serve that (i) ZIDZO Er =1; (i) E_l* = E (0 <i < D); (iii) E} = Ef (0 <
i < D); and (iv) Ei*Ej* =8;E! (0 <i,j < D). By these facts, {Elfk}f)=0 form a
basis for a commutative subalgebra M* = M*(x) of Maty (C). We call M* the
dual Bose—-Mesner algebra of I" with respect to x [32, p. 378]. For0 <i < D, let
A% = A%(x) denote the diagonal matrix in Maty (C) with (y, y)-entry (A%),, =
|X|(E;)yy for y € X. Then {A’;}lp=0 is a basis for M* [32, p. 379]. Moreover,
(1) Ay = I; (i) A = AT (0 <i < D); (ili) AY = AT (0 <i < D); and
(iv) ATAT = Z;?:o qu‘.A*;l (0 <i,j < D)I[32,p.379]. We call {A%}2, the dual
distance matrices of I" with respect to x. We abbreviate A* = A} and call this the
dual adjacency matrix of T with respect to x. The matrix A* generates M * [32,
Lemma 3.11].

We recall the dual eigenvalues of I. Since {E}? ; form a basis for M*, there
exist complex scalars {67} such that A* = Z?:o OFE}. Observe that A*E} =
EfA* = 0FE} for 0 < i < D. By [32, Lemma 3.11] the scalars {Qf}iDzo are in
R. The scalars {81-*}?:0 are mutually distinct because A* generates M *. We call 6}
the dual eigenvalue of T" associated with E} (0 < i < D). We call the sequence
{0:‘}1’;’:0 the dual eigenvalue sequence for the given Q-polynomial structure.

We recall the subconstituents of I". From (2) we find

E!V =span{y | ye X, d(x,y) =i} (0<i<D). 3)
By (3) and since {y | y € X} is an orthonormal basis for V, we find
V =EjV+EV+---+ E}V (orthogonal direct sum).

For 0 < i < D, the space E;V is the eigenspace of A* associated with 6. We
call E}V the ith subconstituent of I' with respect to x.

We recall the subconstituent algebra of I'. Let T = T'(x) denote the subalge-
bra of Maty (C) generated by M and M* We call T the subconstituent algebra
(or Terwilliger algebra) of " with respect to x [32, Def. 3.3]. Observe that T has
finite dimension. Moreover, T is semisimple because it is closed under the conju-
gate transponse map [13, p. 157]. We note that A, A* together generate 7. By [32,
Lemma 3.2], the following are relations in 7. For 0 < h,i, j < D,

EfAEF =0 iff p}=0; 4)
EyAE; =0 iff g} =0. ®)

See [9; 10; 12; 16; 17; 18; 21; 31; 32; 33; 34] for more information on the subcon-
stituent algebra.

We recall the T-modules. By a T-module we mean a subspace W C V such that
BW C W forall B €T. Let W denote a T-module and let W’ denote a T-module
contained in W. Then the orthogonal complement of W’ in W is a T-module [18,
p- 802]. It follows that each T-module is an orthogonal direct sum of irreducible
T-modules. In particular, V is an orthogonal direct sum of irreducible 7T-modules.
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Let W denote an irreducible 7T-module. Observe that W is the direct sum
of the nonzero spaces among E;W,..., EfW. Similarly, W is the direct sum
of the nonzero spaces among EoW, ..., EpW. By the endpoint of W we mean
min{i | 0 <i < D, E}W # 0}. By the diameter of W we mean |[{i |0 <i < D,
EfW # 0}| — 1. By the dual endpoint of W we mean min{i | 0 < i < D,
E;W # 0}. By the dual diameter of W wemean |{i |0 <i < D, E;W # 0} — 1.
It turns out that the diameter of W is equal to the dual diameter of W [30, Cor. 3.3].
By [32, Lemma 3.4], dim E;W < 1for 0 < i < D if and only if dim E;W <1
for 0 < i < D; in this case, W is called thin.

We finish this section with two lemmas.

LEmMA 4.1 [32, Lemmas 3.4, 3.9, 3.12]. Let W denote an irreducible T-module
with endpoint p, dual endpoint t, and diameter d. Then p, t,d are nonnegative
integers such that p+d < D and T +d < D. Moreover, the following statements
hold:

(i) EfYW #0ifandonlyifp <i <p+d (0 =<i < D);
(ii)) W = Z?f:o p+hW (orthogonal direct sum);
(iii) E;W #£Oifandonlyif t <i <1+4+d (0 <i < D);
(iv) W = ZZ:O E. yW (orthogonal direct sum).
LEmMA 4.2 [26, Lemma 12.1]. For Y € Maty (C), the following are equivalent:
(i) YeT;
(i) YW C W for all irreducible T-modules W.

5. The Split Decomposition

We shall make use of a certain decomposition of V called the split decomposition.
The split decomposition was defined in [37] and discussed further in [26; 28]. In
this section we recall some results on this topic.

DEeFINITION 5.1 [37, Def. 5.1]. For —1 < i, j < D we define
Vi = (EJV 4+ EfV)N(EV + -+ EV),
V,}j = (E{V 4+ EV)N(EpV +---+ Ep_;V).
In these two equations we interpret the right-hand sidetobe 0ifi = —lor j = —1.

DerINITION 5.2 [37, Def. 5.5]. With reference to Definition 5.1, for (u,v) =

(},4) or (u,v) = (I, 1) we have V", i S Vl“j and VZMJ , S VI’LJV Therefore

VL S

l]l— i,j

With reference to this inclusion, we define V“j” to be the orthogonal complement
of the left-hand side in the right-hand side; that is,

v““_(v“” V‘“ )N vl.ftj”.
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The next lemma is a mild generalization of [37, Cor. 5.8].

LEMMA 5.3.  With reference to Definition 5.2, the following holds for (u,v) =
() and (,v) = (1, 1):

D D
V= Z Z ‘71”1” (direct sum). (6)

Proof. For (u,v) = ({, ), this is just [37, Cor. 5.8]. For (©,v) = ({, 1), in the
proof of [37, Cor. 5.8] replace the sequence {E;}2_, by {Ep_i}2.,. O

Note 5.4. Following [28, Def. 6.4], we call the sum (6) the (u, v)-split decom-
position of V.

We now recall how split decompositions are related to irreducible 7-modules. We
begin with a definition.

DEFINITION 5.5 [37, Def. 4.1]. Let W denote an irreducible T-module with end-
point p, dual endpoint t, and diameter d. By the displacement of W of the first
kind we mean the scalar p + t 4+ d — D. By the displacement of W of the sec-
ond kind we mean the scalar p — 7. By the inequalities in Lemma 4.1, each kind
of displacement is at least —D and at most D.

LEmMA 5.6 [37, Thm. 6.2]. For —D < & < D, the following coincide:

(i) the subspace of V spanned by the irreducible T-modules for which § is the
displacement of the first kind ; and

(i) > Vij“, where the sum is over all ordered pairs i, j (0 < i, j < D) such that
i+j=486+D.

LEmMA 5.7. For —D < § < D, the following coincide:

(i) the subspace of V spanned by the irreducible T-modules for which § is the
displacement of the second kind; and

(i) > \70“, where the sum is over all ordered pairs i, j (0 < i, j < D) such that
i+j=46+D.

Proof. In the proof of [37, Thm. 6.2], replace the sequence {E;}7 with the se-
quence {Ep_;}7 . O
6. A Homomorphism ¢#: X, — T

We now impose an assumption on I.

AssUMPTION 6.1.  We fix complex scalars ¢, n, n*, u, u*, v,v* with q,u,u*, v, v*
nonzero and q2i # lfor1 <i < D. We assume that I has a Q-polynomial struc-
ture with eigenvalue sequence

0; =n4+uqg* P +vgP* (0<i<D)
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and dual eigenvalue sequence
9[* — n* + u*q2i—D + U*qD—Zi (O S i S D).
Moreover, we assume that each irreducible 7-module is thin.

REMARK 6.2. In the notation of Bannai and Ito [1, p. 263], the Q-polynomial
structure from Assumption 6.1 is type [ with s 7% 0 and s* # 0. We caution the
reader that the scalar denoted g in [1, p. 263] is the same as our scalar g>.

ExamPLE 6.3 [3]. Theordinary cycles are the only known distance-regular graphs
that satisfy Assumption 6.1.

Under Assumption 6.1 we will display a C-algebra homomorphism 9 : X, — T.
To describe this homomorphism we define two matrices in Maty (C), called ®
and W.

DEFINITION 6.4.  With reference to Lemma 5.3 and Assumption 6.1, let ® (resp.
W) denote the unique matrix in Maty (C) that acts on VljN (resp. Vijm) asq't/i—Pf
for 0 < i, j < D. Observe that each of ®, WV is invertible.

LEmMMA 6.5. Under Assumption 6.1, let W denote an irreducible T-module with
endpoint p, dual endpoint t, and diameter d. Then ® and ¥ act on W as
q°T =PI and q°~7 I, respectively.

Proof. Concerning ®, abbreviate § = p + v +d — D and recall that this is the dis-
placement of W of the first kind. We show that ® acts on W as ¢°I. Let V; denote
the common subspace from parts (i) and (ii) of Lemma 5.6. By Lemma 5.6(i) we
have W C V;. In Lemma 5.6(ii), Vs is expressed as a sum. The matrix ¢ acts on
each term of this sum as ¢’/ by Definition 6.4, so ® acts on Vs as ¢°I. By these
comments, ® acts on W as ¢°I and this proves our assertion concerning ®. Our
assertion concerning W is similarly proved using the displacement of the second
kind and Lemma 5.7. U

LEMMA 6.6. Under Assumption 6.1, the matrices ® and V are central elements
of T.

Proof. The matrices ® and W are contained in 7 by Lemma 4.2 and Lemma 6.5.
These matrices are central in 7 because, by Lemma 6.5, they act as a scalar mul-
tiple of the identity on every irreducible 7-module. O

The following theorem is our main result.

THEOREM 6.7. Under Assumption 6.1, there exists a C-algebra homomorphism
v: X, — T such that

A=nl +ud¥ 'O (xq) +v¥P ¥ (xpp) and (7)
A= 0" + OV (x23) + vV D9 (x3). (8)
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The proof is an easy consequence of the following two lemmas.

LEMMA 6.8. Under Assumption 6.1, let W denote an irreducible T-module with
endpoint p, dual endpoint t, and diameter d. Then there exists a X ,-module
structure on W such that the adjacency matrix A acts as nI + ug® 9 Pxy +
vgP~4"2"x 1, and the dual adjacency matrix A* acts as n*I + u*q** T4 Pxs3 +

v*qD_d_2px30. This K ,-module structure is irreducible.

Proof. By [22, Ex. 1.4] and since the T-module W is thin, the pair A, A* acts on
W as a Leonard pair in the sense of [35, Def. 1.1]. In the notation of [35, Def. 5.1],
this Leonard pair has an eigenvalue sequence {9t+,-}§’=0 and a dual eigenvalue se-
quence {6 A +l}d o in view of Lemma 4.1. To motivate what follows we note that

9r+i =n+ uq21+d7Dq2i7d 4 qufd72rqd72i and

2p+d— D, 2i— D—d—2p _d—2i

0 =n"+u'q ‘+v'q q

for 0 < i < d. In both of these equations, the coefficients of ¢g>~¢ and g9~

are nonzero; hence the action of A, A* on W is a Leonard pair of g-Racah type
in the sense of [36, Ex. 5.3]. Referring to this Leonard pair, let {ga,-}j’zl (resp.
{d: }l 1) denote the first (resp. second) split sequence [35, Sec. 7] associated with
the eigenvalue sequence {9,+,}l o and the dual eigenvalue sequence {6 i i= 0 By
[35, Sec. 7], each of ¢;, ¢; is nonzero for 1 <i < d. By [36, Ex. 5.3], there exists
anonzero r € C such that, for1 <i < d:

— (ql _ qfi)(qd*l'#»l _qifdfl)
W (g7 — g (g TR S2D g 2D=2d-20-2p 1.
¢i =(q' —q g =g
« (urq A= DHIm g D=2d=2rtiy (e 2pbd=Dei=l _ e o D=2p—i)
Observe that r is not among g9, ¢?3,...,¢'~? because each of ¢, ¢s, ..., ¢4

is nonzero. By [35, Sec. 7] there exists a basis {v,-}j’=O of W such that
A'Ul‘ = 9-[+d_ivi + Vi+1 (0 <i< d— 1)7 Avd = G‘Evd7

A*v Qp_HU, +ovio; (1<i<d), A*vy = 9;1]0.

For convenience we adjust this basis slightly. For 1 <i < d define

Y = (ql _ qfi)(urq21+d7D+17i _ qu72d72‘E+i).

In this equation the right-hand side is nonzero because it is a factor of ¢;, so y; #
0. Define u; = (y1y2--- y;) "v; for 0 < i < d and note that {ui}flzo is a basis for
W. By the construction, we have

Auj =0y g iui +viqiuiy1 (0<i <d-1, Aug = 0:ugq,

Au 9p+1ul +¢;V, ui—y (1 <i<d), A*ug = 9:140_

We let each standard generator of X, act linearly on W; to define this action,
we specify what it does to the basis {ui}fzo. Here are the details:
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Xop.Ui = qdfz"u,- + @ = ¢ g uy (0<i<d-1, xor.Ug = q ug;
xpti =q" i (g = Dy O <i<d-, xp.ttg = qug;
xosett; = g7 " ui+ (@ — ¢ D (1< <), x23.10 = g up;

xs0.u; = q i + (g =g g r e (1< <), x30.10 = quo;

X =q7 Ny (0<i <d);

X31.U; = qd—Ziul_ (0 <i=< d),

( _ q2d 21+2)(1 2d—2i+4) . (1 _ q2d)qd72i

o —d 1
Xo2.U; a- ) rqd 1- 21)(1_rqd+l—2i),,,(1_rqd—l) 4o
+(1- rq"“)(l —rqg~™
N Z (1 2d72i+2)(1 _ Zzi—2i+4) ( _ q2d—2h)qd72iu
(1 _ rqd 1— 21)(1 _ rqd+1 2:) (1 _ rqd+l—2h) h

(q21+2 _ 1)}’
q2i+l(l _ rqd—l—Zi)

1—g>HA—g* - 1—g*Hg™

uiyp 0<i<d-1y

Y02 ld = ey — rqH) (U —rg )"
(1_ 2)(1_ 4)(1_ 2d—2h) —d
d+1)2 g4 ! PER ! dq|—z/ Uns
(11— (11— ) (L —=rgd*i=2h)
a— 2)(1 gty (1 = g2y phighdi—d
_ d 1
x20.u0 = (1 — * ) Z 1 d)(] _ rq3 d) - ,.qzhfdﬂ) Un
(=g —g") A =g)r'g "
(U =rg DI —rg*D (I —rg™H""
d_ 2i-2d
Xoo.Uj = 4 19 uisi+ A —rg™A—rg™™

1 — rq2i-d-1

G2y (1 — g2y ph-ig@hi-@-ni-d

(] 2z+2)(1
x Z 2i—d—1 2i—d+1 2h—d+1 Un
L (1= g2 (1 = g2 45 - (L= rg? =)
+(1—rg™™h
(1 _ q2i+2)(1 _ q2i+4) . (1 _ qu)},d—iqdiJrifd2

- - 1<i<d).
(1 _ qut—d—l)(l _ rq2!—d+|) .. (1 _ rqd—l) Ua ( =i= )

In the preceding formulas, the denominators are nonzero because r is not among
g% ', q973,...,q" 7% One may check (or see [27]) that the actions just described
satisfy the defining relations for X, from Definition 2.1, so these actions induce a
X,-module structure on W. Comparing the action of A (resp. A*) on {ui}?zo with
the actions of xq, X1 (resp. x23,x30) on {u,-}f:O, we find that

A= 771 + uq2r+d7Dx0] + qufdfz‘[xlz and

2p+d—D D—d—2
A =0T +u*q?" Pz 4+ v'g Px30
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on W. By these equations and since the T-module W is irreducible, we find that
the X,-module W is irreducible. The result follows. U

LEmMMA 6.9. Under Assumption 6.1, let W denote an irreducible T-module and
consider the X -action on W from Lemma 6.8. Then the following equations hold
on W:

A=l +udV 'xo + WP lxpy;

A* = "] + uFdWxys + v W D iy,
Proof. Combine Lemma 6.5 and Lemma 6.8. OJ

Proof of Theorem 6.7. We start with acomment. Let W and W’ denote irreducible
T-modules, and consider the X ,-module structure on W and W' from Lemma 6.8.
From the construction we may assume that if the 7-modules W and W' are isomor-
phic then the X ,-modules W and W' are isomorphic. With that comment out of
the way, we proceed to the main argument. The standard module V decomposes
into a direct sum of irreducible 7-modules. By Lemma 6.8, each irreducible 7-
module in this decomposition supports a X,-module structure. Combining these
X,-modules yields a X,-module structure on V. This module structure induces
a C-algebra homomorphism ¢ : X, — Matx(C). The map ¥ satisfies (7) and
(8) in view of Lemma 6.9. To finish the proof it suffices to show that (X, ) C
T. Toward this end we pick ¢ € X, and show ¥(¢) € T. Since T is semisimple
(and by our preliminary comment) there exists a B € T that acts on each irre-
ducible T-module in the preceding decomposition as ¥(¢). The T-modules in this
decomposition span V, so ¥(¢) coincides with B on V; hence ¥(¢) = B and, in
particular, #(¢) € T as desired. We have now shown that #(X,) C T, and the re-
sult follows. U

REMARK 6.10. In Theorem 6.7 we obtained a C-algebra homomorphism ¥:
X, — T. In Theorem 3.3 we displayed four C-algebra homomorphisms from
Uq(s/‘\lz) into X, . Composing these homomorphisms with ¥ yields four C-algebra
homomorphisms from Uq(glg) into T.

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken As-
sumption 6.1 by no longer requiring that each irreducible 7T-module be thin.
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