Distance-Regular Graphs of *q*-Racah Type and the *q*-Tetrahedron Algebra

TATSURO ITO & PAUL TERWILLIGER

In memory of Donald Higman

1. Introduction

In [20], Hartwig and the second author gave a presentation of the three-point \mathfrak{sl}_2 loop algebra via generators and relations. To obtain this presentation they defined a Lie algebra \boxtimes by generators and relations and then displayed an isomorphism from \boxtimes to the three-point \mathfrak{sl}_2 loop algebra. The algebra \boxtimes is called the *tetrahedron* algebra [20, Def. 1.1]. In [24] we introduced a q-deformation \boxtimes_q of \boxtimes called the q-tetrahedron algebra. In [24] and [25] we described the finite-dimensional irreducible \boxtimes_q -modules. In [26, Sec. 4] we displayed four homomorphisms into \boxtimes_q from the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$. In [26, Sec. 12] we found a homomorphism from \boxtimes_q into the subconstituent algebra of a distance-regular graph that is self-dual with classical parameters. In this paper we do something similar for a distance-regular graph that is said to have q-Racah type. This type is described as follows. Let Γ denote a distance-regular graph with diameter $D \geq 3$ (See Section 4 for formal definitions). We say that Γ has q-Racah type whenever Γ has a Q-polynomial structure with eigenvalue sequence $\{\theta_i\}_{i=0}^D$ and dual eigenvalue sequence $\{\theta_i^*\}_{i=0}^D$ that satisfy, for $0 \leq i \leq D$,

$$\theta_i = \eta + uq^{2i-D} + vq^{D-2i}$$
 and
 $\theta_i^* = \eta^* + u^*q^{2i-D} + v^*q^{D-2i},$

where q, u, v, u^*, v^* are nonzero and $q^{2i} \neq 1$ for $1 \leq i \leq D$. Assume that Γ has q-Racah type.

Fix a vertex x of Γ and let T = T(x) denote the corresponding subconstituent algebra [32, Def. 3.3]. Recall that T is generated by the adjacency matrix A and the dual adjacency matrix $A^* = A^*(x)$ [32, Def. 3.10]. An irreducible T-module W is called *thin* whenever the intersection of W with each eigenspace of A and each eigenspace of A^* has dimension at most 1 [32, Def. 3.5]. Assuming that each irreducible T-module is thin, we display invertible central elements Φ and Ψ of T and a homomorphism $\vartheta : \boxtimes_a \to T$ such that

$$A = \eta I + u \Phi \Psi^{-1} \vartheta(x_{01}) + v \Psi \Phi^{-1} \vartheta(x_{12}) \quad \text{and}$$
$$A^* = \eta^* I + u^* \Phi \Psi \vartheta(x_{23}) + v^* \Psi^{-1} \Phi^{-1} \vartheta(x_{30}),$$

Received August 17, 2007. Revision received March 6, 2008.

The first author was supported in part by JSPS grant 18340022.

where the x_{ij} are the standard generators of \boxtimes_q . It follows that T is generated by the image $\vartheta(\boxtimes_q)$ together with Φ and Ψ . In particular, T is generated by $\vartheta(\boxtimes_q)$ together with the center Z(T). Our result settles [26, Conj. 13.10] for the case in which every irreducible T-module is thin.

The paper is organized as follows. In Section 2 we recall the definition of \boxtimes_q , and in Section 3 we describe how \boxtimes_q is related to $U_q(\widehat{\mathfrak{sl}}_2)$. In Section 4 we recall the basic theory of a distance-regular graph Γ , focusing on the *Q*-polynomial property and the subconstituent algebra. In Section 5 we discuss the split decomposition of Γ , and in Section 6 we give our main results.

Throughout the paper, \mathbb{C} denotes the field of complex numbers.

2. The *q*-Tetrahedron Algebra \boxtimes_q

In this section we recall the *q*-tetrahedron algebra. We fix a nonzero scalar $q \in \mathbb{C}$ such that $q^2 \neq 1$ and define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}, \quad n = 0, 1, 2, \dots$$

We let $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$ denote the cyclic group of order 4.

DEFINITION 2.1 [24, Def. 10.1]. Let \boxtimes_q denote the unital associative \mathbb{C} -algebra that has generators

$${x_{ij} \mid i, j \in \mathbb{Z}_4, j-i=1 \text{ or } j-i=2}$$

and the following relations.

(i) For $i, j \in \mathbb{Z}_4$ such that j - i = 2,

$$x_{ij} x_{ji} = 1.$$

(ii) For $h, i, j \in \mathbb{Z}_4$ such that the pair (i - h, j - i) is one of (1, 1), (1, 2), and (2, 1),

$$\frac{qx_{hi}x_{ij} - q^{-1}x_{ij}x_{hi}}{q - q^{-1}} = 1.$$

(iii) For $h, i, j, k \in \mathbb{Z}_4$ such that i - h = j - i = k - j = 1,

$$x_{hi}^3 x_{jk} - [3]_q x_{hi}^2 x_{jk} x_{hi} + [3]_q x_{hi} x_{jk} x_{hi}^2 - x_{jk} x_{hi}^3 = 0.$$
(1)

We call \boxtimes_q the *q*-tetrahedron algebra or "*q*-tet" for short. We refer to the x_{ij} as the standard generators for \boxtimes_q .

NOTE 2.2. The equations (1) are the cubic q-Serre relations [29, p. 10].

We make some observations as follows.

LEMMA 2.3 [24, Lemma 6.3]. There exists a \mathbb{C} -algebra automorphism ϱ of \boxtimes_q that sends each generator x_{ij} to $x_{i+1, j+1}$. Moreover, $\varrho^4 = 1$.

LEMMA 2.4 [24, Lemma 6.5]. There exists a \mathbb{C} -algebra automorphism of \boxtimes_q that sends each generator x_{ij} to $-x_{ij}$.

3. The Quantum Affine Algebra $U_q(\widehat{\mathfrak{sl}}_2)$

In this section we consider how \boxtimes_q is related to the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$. We start with a definition.

DEFINITION 3.1 [7, p. 266]. The quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ is the unital associative \mathbb{C} -algebra with generators $K_i^{\pm 1}$ and e_i^{\pm} , $i \in \{0, 1\}$, and the following relations:

$$K_{i}K_{i}^{-1} = K_{i}^{-1}K_{i} = 1;$$

$$K_{0}K_{1} = K_{1}K_{0};$$

$$K_{i}e_{i}^{\pm}K_{i}^{-1} = q^{\pm 2}e_{i}^{\pm};$$

$$K_{i}e_{j}^{\pm}K_{i}^{-1} = q^{\mp 2}e_{j}^{\pm}, \quad i \neq j;$$

$$[e_{i}^{+}, e_{i}^{-}] = \frac{K_{i} - K_{i}^{-1}}{q - q^{-1}};$$

$$[e_{0}^{\pm}, e_{1}^{\mp}] = 0;$$

$$(e_{i}^{\pm})^{3}e_{j}^{\pm} - [3]_{q}(e_{i}^{\pm})^{2}e_{j}^{\pm}e_{i}^{\pm} + [3]_{q}e_{i}^{\pm}e_{j}^{\pm}(e_{i}^{\pm})^{2} - e_{j}^{\pm}(e_{i}^{\pm})^{3} = 0, \quad i \neq j.$$

The following presentation of $U_q(\widehat{\mathfrak{sl}}_2)$ will be useful.

PROPOSITION 3.2 [23, Thm. 2.1; 38]. The quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$ is isomorphic to the unital associative \mathbb{C} -algebra with generators $x_i^{\pm l}$, y_i , z_i , $i \in \{0, 1\}$, and the following relations:

$$x_i x_i^{-1} = x_i^{-1} x_i = 1;$$

 x_0x_1 is central;

$$\begin{aligned} \frac{qx_iy_i - q^{-1}y_ix_i}{q - q^{-1}} &= 1; \\ \frac{qy_iz_i - q^{-1}z_iy_i}{q - q^{-1}} &= 1; \\ \frac{qz_ix_i - q^{-1}x_iz_i}{q - q^{-1}} &= 1; \\ \frac{qz_iy_j - q^{-1}y_jz_i}{q - q^{-1}} &= x_0^{-1}x_1^{-1}, \quad i \neq j; \\ y_i^3y_j - [3]_q y_i^2y_jy_i + [3]_q y_iy_jy_i^2 - y_jy_i^3 &= 0, \quad i \neq j; \\ z_i^3z_j - [3]_q z_i^2z_jz_i + [3]_q z_iz_jz_i^2 - z_jz_i^3 &= 0, \quad i \neq j. \end{aligned}$$

An isomorphism with the presentation in Definition 3.1 is given by:

$$\begin{aligned} x_i^{\pm 1} &\mapsto K_i^{\pm 1}; \\ y_i &\mapsto K_i^{-1} + e_i^{-}; \\ z_i &\mapsto K_i^{-1} - K_i^{-1} e_i^{+} q (q - q^{-1})^2. \end{aligned}$$

The inverse of this isomorphism is given by:

$$K_i^{\pm 1} \mapsto x_i^{\pm 1};$$

 $e_i^- \mapsto y_i - x_i^{-1};$
 $e_i^+ \mapsto (1 - x_i z_i) q^{-1} (q - q^{-1})^{-2}.$

THEOREM 3.3 [26, Prop. 4.3]. For $i \in \mathbb{Z}_4$ there exists a \mathbb{C} -algebra homomorphism from $U_q(\widehat{\mathfrak{sl}}_2)$ to \boxtimes_q that sends

$$\begin{aligned} x_1 &\mapsto x_{i,i+2}, \quad x_1^{-1} &\mapsto x_{i+2,i}, \quad y_1 &\mapsto x_{i+2,i+3}, \quad z_1 &\mapsto x_{i+3,i}, \\ x_0 &\mapsto x_{i+2,i}, \quad x_0^{-1} &\mapsto x_{i,i+2}, \quad y_0 &\mapsto x_{i,i+1}, \quad z_0 &\mapsto x_{i+1,i+2}. \end{aligned}$$

Proof. Compare the defining relations for $U_q(\widehat{\mathfrak{sl}}_2)$ given in Proposition 3.2 with the relations in Definition 2.1.

4. Distance-Regular Graphs: Preliminaries

We now turn our attention to distance-regular graphs. After a brief review of the basic definitions we recall the Q-polynomial property and the subconstituent algebra. For more information we refer the reader to [1; 3; 19; 32].

Let *X* denote a nonempty finite set. Let $Mat_X(\mathbb{C})$ denote the \mathbb{C} -algebra consisting of all matrices whose rows and columns are indexed by *X* and whose entries are in \mathbb{C} . Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by *X* and whose entries are in \mathbb{C} . We observe that $Mat_X(\mathbb{C})$ acts on *V* by left multiplication. We call *V* the *standard module*. We endow *V* with the Hermitean inner product $\langle \cdot, \cdot \rangle$ that satisfies $\langle u, v \rangle = u^t \overline{v}$ for $u, v \in V$, where *t* denotes transpose and $\overline{}$ denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of *V* with a 1 in the *y* coordinate and 0 in all other coordinates. We observe that $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for *V*.

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set *X* and edge set *R*. Let ∂ denote the path-length distance function for Γ , and set $D := \max\{\partial(x, y) \mid x, y \in X\}$. We call *D* the *diameter* of Γ . For an integer $k \ge 0$ we say that Γ is *regular with valency k* whenever each vertex of Γ is adjacent to exactly *k* distinct vertices of Γ . We say that Γ is *distance-regular* whenever, for all integers h, i, j ($0 \le h, i, j \le D$) and for all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X \mid \partial(x, z) = i, \, \partial(z, y) = j\}|$$

is independent of x and y. The p_{ij}^h are called the *intersection numbers* of Γ . We abbreviate $c_i = p_{1,i-1}^i$ $(1 \le i \le D)$, $b_i = p_{1,i+1}^i$ $(0 \le i \le D - 1)$, and $a_i = p_{1i}^i$ $(0 \le i \le D)$.

For the rest of this paper we assume Γ is distance-regular; to avoid trivialities we always assume $D \ge 3$. Note that Γ is regular with valency $k = b_0$. Moreover, $k = c_i + a_i + b_i$ for $0 \le i \le D$, where $c_0 = 0$ and $b_D = 0$.

We mention a fact for later use. By the triangle inequality, for $0 \le h, i, j \le D$ we have $p_{ij}^h = 0$ (resp. $p_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two.

We recall the Bose–Mesner algebra of Γ . For $0 \le i \le D$, let A_i denote the matrix in Mat_{*X*}(\mathbb{C}) with (*x*, *y*)-entry

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x, y) = i \\ 0 & \text{if } \partial(x, y) \neq i \end{cases} \quad (x, y \in X).$$

We call A_i the *i*th *distance matrix* of Γ . We abbreviate $A = A_1$ and call this the *adjacency matrix* of Γ . We observe the following: (i) $A_0 = I$; (ii) $\sum_{i=0}^{D} A_i = J$; (iii) $\overline{A_i} = A_i$ ($0 \le i \le D$); (iv) $A_i^t = A_i$ ($0 \le i \le D$); and (v) $A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h$ ($0 \le i, j \le D$), where I (resp. J) denotes the identity matrix (resp. all-1 matrix) in Mat_X(\mathbb{C}). Using these facts, we find that $\{A_i\}_{i=0}^{D}$ is a basis for a commutative subalgebra M of Mat_X(\mathbb{C}), called the *Bose–Mesner algebra* of Γ . It turns out that A generates M [1, p. 190]. By [3, p. 45], M has a second basis $\{E_i\}_{i=0}^{D}$ such that: (i) $E_0 = |X|^{-1}J$; (ii) $\sum_{i=0}^{D} E_i = I$; (iii) $\overline{E_i} = E_i$ ($0 \le i \le D$); (iv) $E_i^t = E_i$ ($0 \le i \le D$); and (v) $E_i E_j = \delta_{ij} E_i$ ($0 \le i, j \le D$). We call $\{E_i\}_{i=0}^{D}$ the primitive idempotents of Γ .

We recall the eigenvalues of Γ . Since $\{E_i\}_{i=0}^{D}$ form a basis for M, there exist complex scalars $\{\theta_i\}_{i=0}^{D}$ such that $A = \sum_{i=0}^{D} \theta_i E_i$. Observe that $AE_i = E_i A = \theta_i E_i$ for $0 \le i \le D$. By [1, p. 197] the scalars $\{\theta_i\}_{i=0}^{D}$ are in \mathbb{R} . Observe that $\{\theta_i\}_{i=0}^{D}$ are mutually distinct because A generates M. We call θ_i the *eigenvalue* of Γ associated with E_i ($0 \le i \le D$). Observe that

$$V = E_0 V + E_1 V + \dots + E_D V$$
 (orthogonal direct sum).

For $0 \le i \le D$, the space $E_i V$ is the eigenspace of A associated with θ_i .

We now recall the Krein parameters. Let \circ denote the entrywise product in $Mat_X(\mathbb{C})$. Observe that $A_i \circ A_j = \delta_{ij}A_i$ for $0 \le i, j \le D$, so M is closed under \circ . Thus there exist complex scalars q_{ij}^h ($0 \le h, i, j \le D$) such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q_{ij}^h E_h \quad (0 \le i, j \le D).$$

By [2, p. 170], q_{ij}^h is real and nonnegative for $0 \le h, i, j \le D$. The q_{ij}^h are called the *Krein parameters* of Γ . The graph Γ is said to be *Q*-polynomial (with respect to the given ordering $\{E_i\}_{i=0}^D$ of the primitive idempotents) if, for $0 \le h, i, j \le D$, we have $q_{ij}^h = 0$ (resp. $q_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two [3, p. 235]. See [4; 5; 6; 8; 11; 14; 15; 30] for background information on the *Q*-polynomial property. From now on we assume Γ is *Q*-polynomial with respect to $\{E_i\}_{i=0}^D$. We call the sequence $\{\theta_i\}_{i=0}^D$ the *eigenvalue sequence* for this *Q*-polynomial structure.

We recall the dual Bose–Mesner algebra of Γ . For the rest of this paper we fix a vertex $x \in X$. We view x as a "base vertex". For $0 \le i \le D$, let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x, y) = i \\ 0 & \text{if } \partial(x, y) \neq i \end{cases} \quad (y \in X).$$
(2)

We call E_i^* the *i*th *dual idempotent* of Γ with respect to x [32, p. 378]. We observe that (i) $\sum_{i=0}^{D} E_i^* = I$; (ii) $\overline{E_i^*} = E_i^*$ ($0 \le i \le D$); (iii) $E_i^{*t} = E_i^*$ ($0 \le i \le D$); and (iv) $E_i^* E_j^* = \delta_{ij} E_i^*$ ($0 \le i, j \le D$). By these facts, $\{E_i^*\}_{i=0}^{D}$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{C})$. We call M^* the *dual Bose–Mesner algebra* of Γ with respect to x [32, p. 378]. For $0 \le i \le D$, let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry $(A_i^*)_{yy} = |X|(E_i)_{xy}$ for $y \in X$. Then $\{A_i^*\}_{i=0}^{D}$ is a basis for M^* [32, p. 379]. Moreover, (i) $A_0^* = I$; (ii) $\overline{A_i^*} = A_i^*$ ($0 \le i \le D$); (iii) $A_i^{*t} = A_i^*$ ($0 \le i \le D$); and (iv) $A_i^*A_j^* = \sum_{h=0}^{D} q_{h}^h A_h^*$ ($0 \le i, j \le D$) [32, p. 379]. We call $\{A_i^*\}_{i=0}^{D}$ the *dual distance matrices* of Γ with respect to x. We abbreviate $A^* = A_1^*$ and call this the *dual adjacency matrix* of Γ with respect to x. The matrix A^* generates M^* [32, Lemma 3.11].

We recall the dual eigenvalues of Γ . Since $\{E_i^*\}_{i=0}^D$ form a basis for M^* , there exist complex scalars $\{\theta_i^*\}_{i=0}^D$ such that $A^* = \sum_{i=0}^D \theta_i^* E_i^*$. Observe that $A^* E_i^* = E_i^* A^* = \theta_i^* E_i^*$ for $0 \le i \le D$. By [32, Lemma 3.11] the scalars $\{\theta_i^*\}_{i=0}^D$ are in \mathbb{R} . The scalars $\{\theta_i^*\}_{i=0}^D$ are mutually distinct because A^* generates M^* . We call θ_i^* the *dual eigenvalue* of Γ associated with E_i^* ($0 \le i \le D$). We call the sequence $\{\theta_i^*\}_{i=0}^D$ the *dual eigenvalue sequence* for the given Q-polynomial structure.

We recall the subconstituents of Γ . From (2) we find

$$E_i^* V = \operatorname{span}\{\hat{y} \mid y \in X, \ \partial(x, y) = i\} \quad (0 \le i \le D).$$
(3)

By (3) and since $\{\hat{y} \mid y \in X\}$ is an orthonormal basis for V, we find

$$V = E_0^* V + E_1^* V + \dots + E_D^* V$$
 (orthogonal direct sum).

For $0 \le i \le D$, the space $E_i^* V$ is the eigenspace of A^* associated with θ_i^* . We call $E_i^* V$ the *i*th *subconstituent* of Γ with respect to *x*.

We recall the subconstituent algebra of Γ . Let T = T(x) denote the subalgebra of $Mat_X(\mathbb{C})$ generated by M and M^* . We call T the *subconstituent algebra* (or *Terwilliger algebra*) of Γ with respect to x [32, Def. 3.3]. Observe that T has finite dimension. Moreover, T is semisimple because it is closed under the conjugate transponse map [13, p. 157]. We note that A, A^* together generate T. By [32, Lemma 3.2], the following are relations in T. For $0 \le h, i, j \le D$,

$$E_{h}^{*}A_{i}E_{i}^{*} = 0 \quad \text{iff} \quad p_{ii}^{h} = 0; \tag{4}$$

$$E_h A_i^* E_j = 0 \quad \text{iff} \quad q_{ij}^h = 0.$$
 (5)

See [9; 10; 12; 16; 17; 18; 21; 31; 32; 33; 34] for more information on the subconstituent algebra.

We recall the *T*-modules. By a *T*-module we mean a subspace $W \subseteq V$ such that $BW \subseteq W$ for all $B \in T$. Let *W* denote a *T*-module and let *W'* denote a *T*-module contained in *W*. Then the orthogonal complement of *W'* in *W* is a *T*-module [18, p. 802]. It follows that each *T*-module is an orthogonal direct sum of irreducible *T*-modules. In particular, *V* is an orthogonal direct sum of irreducible *T*-modules.

Let W denote an irreducible T-module. Observe that W is the direct sum of the nonzero spaces among E_0^*W, \ldots, E_D^*W . Similarly, W is the direct sum of the nonzero spaces among E_0W, \ldots, E_DW . By the *endpoint* of W we mean $\min\{i \mid 0 \le i \le D, E_i^* W \ne 0\}$. By the *diameter* of W we mean $|\{i \mid 0 \le i \le D, i \le n\}$ $E_i^*W \neq 0\}|-1$. By the dual endpoint of W we mean min $\{i \mid 0 \le i \le D,$ $E_i W \neq 0$ }. By the *dual diameter* of W we mean $|\{i \mid 0 \le i \le D, E_i W \neq 0\}| - 1$. It turns out that the diameter of W is equal to the dual diameter of W [30, Cor. 3.3]. By [32, Lemma 3.4], dim $E_i^*W \le 1$ for $0 \le i \le D$ if and only if dim $E_iW \le 1$ for $0 \le i \le D$; in this case, W is called *thin*.

We finish this section with two lemmas.

LEMMA 4.1 [32, Lemmas 3.4, 3.9, 3.12]. Let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. Then ρ, τ, d are nonnegative integers such that $\rho + d \leq D$ and $\tau + d \leq D$. Moreover, the following statements hold:

(i) $E_i^*W \neq 0$ if and only if $\rho \leq i \leq \rho + d$ $(0 \leq i \leq D)$;

(ii) $W = \sum_{h=0}^{d} E_{\rho+h}^{*}W$ (orthogonal direct sum); (iii) $E_{i}W \neq 0$ if and only if $\tau \leq i \leq \tau + d$ $(0 \leq i \leq D)$;

(iv) $W = \sum_{h=0}^{d} E_{\tau+h} W$ (orthogonal direct sum).

LEMMA 4.2 [26, Lemma 12.1]. For $Y \in Mat_X(\mathbb{C})$, the following are equivalent: (i) $Y \in T$:

(ii) $YW \subseteq W$ for all irreducible T-modules W.

5. The Split Decomposition

We shall make use of a certain decomposition of V called the *split decomposition*. The split decomposition was defined in [37] and discussed further in [26; 28]. In this section we recall some results on this topic.

DEFINITION 5.1 [37, Def. 5.1]. For $-1 \le i, j \le D$ we define

$$V_{i,j}^{\downarrow\downarrow} = (E_0^*V + \dots + E_i^*V) \cap (E_0V + \dots + E_jV),$$

$$V_{i,j}^{\downarrow\uparrow} = (E_0^*V + \dots + E_i^*V) \cap (E_DV + \dots + E_{D-j}V).$$

In these two equations we interpret the right-hand side to be 0 if i = -1 or j = -1.

DEFINITION 5.2 [37, Def. 5.5]. With reference to Definition 5.1, for $(\mu, \nu) =$ (\downarrow,\downarrow) or $(\mu,\nu) = (\downarrow,\uparrow)$ we have $V_{i-1,j}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$ and $V_{i,j-1}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$. Therefore

$$V_{i-1,j}^{\mu\nu} + V_{i,j-1}^{\mu\nu} \subseteq V_{i,j}^{\mu\nu}$$

With reference to this inclusion, we define $\tilde{V}_{i,i}^{\mu\nu}$ to be the orthogonal complement of the left-hand side in the right-hand side; that is,

$$\tilde{V}_{i,j}^{\mu\nu} = (V_{i-1,j}^{\mu\nu} + V_{i,j-1}^{\mu\nu})^{\perp} \cap V_{i,j}^{\mu\nu}.$$

The next lemma is a mild generalization of [37, Cor. 5.8].

LEMMA 5.3. With reference to Definition 5.2, the following holds for $(\mu, \nu) = (\downarrow, \downarrow)$ and $(\mu, \nu) = (\downarrow, \uparrow)$:

$$V = \sum_{i=0}^{D} \sum_{j=0}^{D} \tilde{V}_{i,j}^{\mu\nu} \quad (direct \ sum).$$
(6)

Proof. For $(\mu, \nu) = (\downarrow, \downarrow)$, this is just [37, Cor. 5.8]. For $(\mu, \nu) = (\downarrow, \uparrow)$, in the proof of [37, Cor. 5.8] replace the sequence $\{E_i\}_{i=0}^D$ by $\{E_{D-i}\}_{i=0}^D$.

NOTE 5.4. Following [28, Def. 6.4], we call the sum (6) the (μ, ν) -split decomposition of V.

We now recall how split decompositions are related to irreducible *T*-modules. We begin with a definition.

DEFINITION 5.5 [37, Def. 4.1]. Let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. By the displacement of W of the first kind we mean the scalar $\rho + \tau + d - D$. By the displacement of W of the second kind we mean the scalar $\rho - \tau$. By the inequalities in Lemma 4.1, each kind of displacement is at least -D and at most D.

LEMMA 5.6 [37, Thm. 6.2]. For $-D \le \delta \le D$, the following coincide:

- (i) the subspace of V spanned by the irreducible T-modules for which δ is the displacement of the first kind; and
- (ii) $\sum_{i,j} \tilde{V}_{ij}^{\downarrow\downarrow}$, where the sum is over all ordered pairs $i, j \ (0 \le i, j \le D)$ such that $i + j = \delta + D$.

LEMMA 5.7. For $-D \leq \delta \leq D$, the following coincide:

- (i) the subspace of V spanned by the irreducible T-modules for which δ is the displacement of the second kind; and
- (ii) $\sum_{ij} \tilde{V}_{ij}^{\downarrow\uparrow}$, where the sum is over all ordered pairs $i, j \ (0 \le i, j \le D)$ such that $i + j = \delta + D$.

Proof. In the proof of [37, Thm. 6.2], replace the sequence $\{E_i\}_{i=0}^D$ with the sequence $\{E_{D-i}\}_{i=0}^D$.

6. A Homomorphism $\vartheta : \boxtimes_q \to T$

We now impose an assumption on Γ .

Assumption 6.1. We fix complex scalars $q, \eta, \eta^*, u, u^*, v, v^*$ with q, u, u^*, v, v^* nonzero and $q^{2i} \neq 1$ for $1 \leq i \leq D$. We assume that Γ has a *Q*-polynomial structure with eigenvalue sequence

$$\theta_i = \eta + uq^{2i-D} + vq^{D-2i} \quad (0 \le i \le D)$$

and dual eigenvalue sequence

$$\theta_i^* = \eta^* + u^* q^{2i-D} + v^* q^{D-2i} \quad (0 \le i \le D).$$

Moreover, we assume that each irreducible T-module is thin.

REMARK 6.2. In the notation of Bannai and Ito [1, p. 263], the *Q*-polynomial structure from Assumption 6.1 is type I with $s \neq 0$ and $s^* \neq 0$. We caution the reader that the scalar denoted *q* in [1, p. 263] is the same as our scalar q^2 .

EXAMPLE 6.3 [3]. The ordinary cycles are the only known distance-regular graphs that satisfy Assumption 6.1.

Under Assumption 6.1 we will display a \mathbb{C} -algebra homomorphism $\vartheta : \boxtimes_q \to T$. To describe this homomorphism we define two matrices in $Mat_X(\mathbb{C})$, called Φ and Ψ .

DEFINITION 6.4. With reference to Lemma 5.3 and Assumption 6.1, let Φ (resp. Ψ) denote the unique matrix in $\operatorname{Mat}_X(\mathbb{C})$ that acts on $\tilde{V}_{ij}^{\downarrow\downarrow}$ (resp. $\tilde{V}_{ij}^{\downarrow\uparrow}$) as $q^{i+j-D}I$ for $0 \le i, j \le D$. Observe that each of Φ, Ψ is invertible.

LEMMA 6.5. Under Assumption 6.1, let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. Then Φ and Ψ act on W as $q^{\rho+\tau+d-D}I$ and $q^{\rho-\tau}I$, respectively.

Proof. Concerning Φ , abbreviate $\delta = \rho + \tau + d - D$ and recall that this is the displacement of W of the first kind. We show that Φ acts on W as $q^{\delta}I$. Let V_{δ} denote the common subspace from parts (i) and (ii) of Lemma 5.6. By Lemma 5.6(i) we have $W \subseteq V_{\delta}$. In Lemma 5.6(ii), V_{δ} is expressed as a sum. The matrix Φ acts on each term of this sum as $q^{\delta}I$ by Definition 6.4, so Φ acts on V_{δ} as $q^{\delta}I$. By these comments, Φ acts on W as $q^{\delta}I$ and this proves our assertion concerning Φ . Our assertion concerning Ψ is similarly proved using the displacement of the second kind and Lemma 5.7.

LEMMA 6.6. Under Assumption 6.1, the matrices Φ and Ψ are central elements of *T*.

Proof. The matrices Φ and Ψ are contained in *T* by Lemma 4.2 and Lemma 6.5. These matrices are central in *T* because, by Lemma 6.5, they act as a scalar multiple of the identity on every irreducible *T*-module.

The following theorem is our main result.

THEOREM 6.7. Under Assumption 6.1, there exists a \mathbb{C} -algebra homomorphism $\vartheta : \boxtimes_q \to T$ such that

$$A = \eta I + u\Phi\Psi^{-1}\vartheta(x_{01}) + v\Psi\Phi^{-1}\vartheta(x_{12}) \quad and \tag{7}$$

$$A^* = \eta^* I + u^* \Phi \Psi \vartheta(x_{23}) + v^* \Psi^{-1} \Phi^{-1} \vartheta(x_{30}).$$
(8)

The proof is an easy consequence of the following two lemmas.

LEMMA 6.8. Under Assumption 6.1, let W denote an irreducible T-module with endpoint ρ , dual endpoint τ , and diameter d. Then there exists a \boxtimes_q -module structure on W such that the adjacency matrix A acts as $\eta I + uq^{2\tau+d-D}x_{01} + vq^{D-d-2\tau}x_{12}$ and the dual adjacency matrix A^* acts as $\eta^*I + u^*q^{2\rho+d-D}x_{23} + v^*q^{D-d-2\rho}x_{30}$. This \boxtimes_q -module structure is irreducible.

Proof. By [22, Ex. 1.4] and since the *T*-module *W* is thin, the pair *A*, *A*^{*} acts on *W* as a Leonard pair in the sense of [35, Def. 1.1]. In the notation of [35, Def. 5.1], this Leonard pair has an eigenvalue sequence $\{\theta_{\tau+i}\}_{i=0}^{d}$ and a dual eigenvalue sequence $\{\theta_{\rho+i}\}_{i=0}^{d}$ in view of Lemma 4.1. To motivate what follows we note that

$$\theta_{\tau+i} = \eta + uq^{2\tau+d-D}q^{2i-d} + vq^{D-d-2\tau}q^{d-2i} \text{ and} \\ \theta_{\rho+i}^* = \eta^* + u^*q^{2\rho+d-D}q^{2i-d} + v^*q^{D-d-2\rho}q^{d-2i}$$

for $0 \le i \le d$. In both of these equations, the coefficients of q^{2i-d} and q^{d-2i} are nonzero; hence the action of A, A^* on W is a Leonard pair of q-Racah type in the sense of [36, Ex. 5.3]. Referring to this Leonard pair, let $\{\varphi_i\}_{i=1}^d$ (resp. $\{\phi_i\}_{i=1}^d$) denote the first (resp. second) split sequence [35, Sec. 7] associated with the eigenvalue sequence $\{\theta_{\tau+i}\}_{i=0}^d$ and the dual eigenvalue sequence $\{\theta_{\rho+i}\}_{i=0}^d$. By [35, Sec. 7], each of φ_i, ϕ_i is nonzero for $1 \le i \le d$. By [36, Ex. 5.3], there exists a nonzero $r \in \mathbb{C}$ such that, for $1 \le i \le d$:

$$\begin{split} \varphi_{i} &= (q^{i} - q^{-i})(q^{d-i+1} - q^{i-d-1}) \\ &\times (q^{d-i} - r^{-1}q^{i-1})(uu^{*}rq^{2\tau+2\rho+d+i-2D} - vv^{*}q^{2D-2d-2\tau-2\rho+1-i}); \\ \phi_{i} &= (q^{i} - q^{-i})(q^{d-i+1} - q^{i-d-1}) \\ &\times (urq^{2\tau+d-D+1-i} - vq^{D-2d-2\tau+i})(u^{*}q^{2\rho+d-D+i-1} - v^{*}r^{-1}q^{D-2\rho-i}) \end{split}$$

Observe that *r* is not among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$ because each of $\varphi_1, \varphi_2, \ldots, \varphi_d$ is nonzero. By [35, Sec. 7] there exists a basis $\{v_i\}_{i=0}^d$ of *W* such that

$$Av_{i} = \theta_{\tau+d-i}v_{i} + v_{i+1} \quad (0 \le i \le d-1), \qquad Av_{d} = \theta_{\tau}v_{d},$$
$$A^{*}v_{i} = \theta_{a+i}^{*}v_{i} + \phi_{i}v_{i-1} \quad (1 \le i \le d), \qquad A^{*}v_{0} = \theta_{a}^{*}v_{0}.$$

For convenience we adjust this basis slightly. For $1 \le i \le d$ define

$$\gamma_i = (q^i - q^{-i})(urq^{2\tau + d - D + 1 - i} - vq^{D - 2d - 2\tau + i}).$$

In this equation the right-hand side is nonzero because it is a factor of ϕ_i , so $\gamma_i \neq 0$. Define $u_i = (\gamma_1 \gamma_2 \cdots \gamma_i)^{-1} v_i$ for $0 \le i \le d$ and note that $\{u_i\}_{i=0}^d$ is a basis for *W*. By the construction, we have

$$Au_{i} = \theta_{\tau+d-i}u_{i} + \gamma_{i+1}u_{i+1} \quad (0 \le i \le d-1), \qquad Au_{d} = \theta_{\tau}u_{d},$$
$$A^{*}u_{i} = \theta^{*}_{\rho+i}u_{i} + \phi_{i}\gamma^{-1}_{i}u_{i-1} \quad (1 \le i \le d), \qquad A^{*}u_{0} = \theta^{*}_{\rho}u_{0}.$$

We let each standard generator of \boxtimes_q act linearly on W; to define this action, we specify what it does to the basis $\{u_i\}_{i=0}^d$. Here are the details:

In the preceding formulas, the denominators are nonzero because *r* is not among $q^{d-1}, q^{d-3}, \ldots, q^{1-d}$. One may check (or see [27]) that the actions just described satisfy the defining relations for \boxtimes_q from Definition 2.1, so these actions induce a \boxtimes_q -module structure on *W*. Comparing the action of *A* (resp. *A**) on $\{u_i\}_{i=0}^d$ with the actions of x_{01}, x_{12} (resp. x_{23}, x_{30}) on $\{u_i\}_{i=0}^d$, we find that

$$A = \eta I + uq^{2\tau + d - D} x_{01} + vq^{D - d - 2\tau} x_{12} \text{ and}$$
$$A^* = \eta^* I + u^* q^{2\rho + d - D} x_{23} + v^* q^{D - d - 2\rho} x_{30}$$

on *W*. By these equations and since the *T*-module *W* is irreducible, we find that the \boxtimes_q -module *W* is irreducible. The result follows.

LEMMA 6.9. Under Assumption 6.1, let W denote an irreducible T-module and consider the \boxtimes_q -action on W from Lemma 6.8. Then the following equations hold on W:

$$A = \eta I + u \Phi \Psi^{-1} x_{01} + v \Psi \Phi^{-1} x_{12};$$

$$A^* = \eta^* I + u^* \Phi \Psi x_{23} + v^* \Psi^{-1} \Phi^{-1} x_{30}.$$

Proof. Combine Lemma 6.5 and Lemma 6.8.

Proof of Theorem 6.7. We start with a comment. Let W and W' denote irreducible *T*-modules, and consider the \boxtimes_q -module structure on *W* and *W'* from Lemma 6.8. From the construction we may assume that if the T-modules W and W' are isomorphic then the \boxtimes_q -modules W and W' are isomorphic. With that comment out of the way, we proceed to the main argument. The standard module V decomposes into a direct sum of irreducible T-modules. By Lemma 6.8, each irreducible Tmodule in this decomposition supports a \boxtimes_q -module structure. Combining these \boxtimes_q -modules yields a \boxtimes_q -module structure on V. This module structure induces a \mathbb{C} -algebra homomorphism $\vartheta \colon \boxtimes_q \to \operatorname{Mat}_X(\mathbb{C})$. The map ϑ satisfies (7) and (8) in view of Lemma 6.9. To finish the proof it suffices to show that $\vartheta(\boxtimes_a) \subseteq$ T. Toward this end we pick $\zeta \in \boxtimes_q$ and show $\vartheta(\zeta) \in T$. Since T is semisimple (and by our preliminary comment) there exists a $B \in T$ that acts on each irreducible T-module in the preceding decomposition as $\vartheta(\zeta)$. The T-modules in this decomposition span V, so $\vartheta(\zeta)$ coincides with B on V; hence $\vartheta(\zeta) = B$ and, in particular, $\vartheta(\zeta) \in T$ as desired. We have now shown that $\vartheta(\boxtimes_q) \subseteq T$, and the result follows.

REMARK 6.10. In Theorem 6.7 we obtained a \mathbb{C} -algebra homomorphism ϑ : $\boxtimes_q \to T$. In Theorem 3.3 we displayed four \mathbb{C} -algebra homomorphisms from $U_q(\widehat{\mathfrak{sl}}_2)$ into \boxtimes_q . Composing these homomorphisms with ϑ yields four \mathbb{C} -algebra homomorphisms from $U_q(\widehat{\mathfrak{sl}}_2)$ into T.

We conjecture that the conclusion of Theorem 6.7 still holds if we weaken Assumption 6.1 by no longer requiring that each irreducible *T*-module be thin.

References

- E. Bannai and T. Ito, *Algebraic combinatorics I: Association schemes*, Benjamin/Cummings, Menlo Park, CA, 1984.
- [2] N. Biggs, *Algebraic graph theory*, 2nd ed., Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1993.
- [3] A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-regular graphs*, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989.
- [4] A. E. Brouwer, C. D. Godsil, J. H. Koolen, and W. J. Martin, Width and dual width of subsets in polynomial association schemes, J. Combin. Theory Ser. A 102 (2003), 255–271.

- [5] J. S. Caughman IV, Spectra of bipartite P- and Q-polynomial association schemes, Graphs Combin. 14 (1998), 321–343.
- [6] ——, *The Terwilliger algebras of bipartite P- and Q-polynomial association schemes*, Discrete Math. 196 (1999), 65–95.
- [7] V. Chari and A. Pressley, *Quantum affine algebras*, Comm. Math. Phys. 142 (1991), 261–283.
- [8] B. Curtin, 2-homogeneous bipartite distance-regular graphs, Discrete Math. 187 (1998), 39–70.
- [9] ——, Bipartite distance-regular graphs I, Graphs Combin. 15 (1999), 143–158.
- [10] ——, Bipartite distance-regular graphs II, Graphs Combin. 15 (1999), 377–391.
- [11] —, Distance-regular graphs which support a spin model are thin, 16th British combinatorial conference (London, 1997), Discrete Math. 197/198 (1999), 205–216.
- [12] B. Curtin and K. Nomura, *Distance-regular graphs related to the quantum enveloping algebra of* sl(2), J. Algebraic Combin. 12 (2000), 25–36.
- [13] C. Curtis and I. Reiner, *Representation theory of finite groups and associative algebras*, Pure Appl. Math., 11, Wiley, New York, 1962.
- [14] G. Dickie, *Twice Q-polynomial distance-regular graphs are thin*, European J. Combin. 16 (1995), 555–560.
- [15] G. Dickie and P. Terwilliger, A note on thin P-polynomial and dual-thin Q-polynomial symmetric association schemes, J. Algebraic Combin. 7 (1998), 5–15.
- [16] E. Egge, A generalization of the Terwilliger algebra, J. Algebra 233 (2000), 213–252.
- [17] J. T. Go, *The Terwilliger algebra of the hypercube*, European J. Combin. 23 (2002), 399–429.
- [18] J. T. Go and P. Terwilliger, *Tight distance-regular graphs and the subconstituent algebra*, European J. Combin. 23 (2002), 793–816.
- [19] C. D. Godsil, Algebraic combinatorics, Chapman & Hall, New York, 1993.
- [20] B. Hartwig and P. Terwilliger, *The Tetrahedron algebra, the Onsager algebra, and the* sl₂ *loop algebra*, J. Algebra 308 (2007), 840–863.
- [21] S. A. Hobart and T. Ito, *The structure of nonthin irreducible T-modules of endpoint l: Ladder bases and classical parameters*, J. Algebraic Combin. 7 (1998), 53–75.
- [22] T. Ito, K. Tanabe, and P. Terwilliger, Some algebra related to P- and Q-polynomial association schemes, Codes and association schemes (Piscataway, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, pp. 167–192, Amer. Math. Soc., Providence, RI, 2001.
- [23] T. Ito and P. Terwilliger, *Tridiagonal pairs and the quantum affine algebra* $U_q(sl_2)$, Ramanujan J. 13 (2007), 39–62.
- [24] ——, *The q-tetrahedron algebra and its finite-dimensional irreducible modules*, Comm. Algebra 35 (2007), 3415–3439.
- [25] —, *q-inverting pairs of linear transformations and the q-tetrahedron algebra*, Linear Algebra Appl. 426 (2007), 516–532.
- [26] ——, *Distance-regular graphs and the q-tetrahedron algebra*, European J. Combin. (to appear), (arXiv:math.CO/0608694).
- [27] ———, Evaluation modules for the q-tetrahedron algebra (in preparation).
- [28] J. Kim, A duality between pairs of split decompositions for a Q-polynomial distance-regular graph, Ars Math. Contemp. (submitted).
- [29] G. Lusztig, Introduction to quantum groups, Birkhäuser, Boston, 1990.
- [30] A. A. Pascasio, On the multiplicities of the primitive idempotents of a *Q*-polynomial distance-regular graph, European J. Combin. 23 (2002), 1073–1078.

- [31] K. Tanabe, *The irreducible modules of the Terwilliger algebras of Doob schemes*, J. Algebraic Combin. 6 (1997), 173–195.
- [32] P. Terwilliger, *The subconstituent algebra of an association scheme I*, J. Algebraic Combin. 1 (1992), 363–388.
- [33] ——, *The subconstituent algebra of an association scheme II*, J. Algebraic Combin. 2 (1993), 73–103.
- [34] ——, *The subconstituent algebra of an association scheme III*, J. Algebraic Combin. 2 (1993), 177–210.
- [35] ——, Leonard pairs and the q-Racah polynomials, Linear Algebra Appl. 387 (2004), 235–276.
- [36] ——, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005) 307–332.
- [37] ——, The displacement and split decompositions for a *Q*-polynomial distanceregular graph, Graphs Combin. 21 (2005), 263–276.
- [38] —, *The equitable presentation for the quantum group* $U_q(\mathfrak{g})$ *associated with a symmetrizable Kac–Moody algebra* \mathfrak{g} , J. Algebra 298 (2006), 302–319.

T. Ito Department of Computational Science Faculty of Science Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan P. Terwilliger Department of Mathematics University of Wisconsin Madison, WI 53706

terwilli@math.wisc.edu

tatsuro@kenroku.kanazawa-u.ac.jp