
Michigan Math. J. 58 (2009)

Signalizer Lattices in Finite Groups
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Dedicated to the memory of Donald G. Higman

Let G be a finite group and let H be a subgroup of G. We investigate constraints
imposed upon the structure of G by restrictions on the lattice OG(H ) of over-
groups of H in G. Call such a lattice a finite group interval lattice. In particular
we would like to show that the following question has a positive answer.

Question I. Does there exist a nonempty finite lattice that is not isomorphic to
a finite group interval lattice?

See [PPu] for the motivation behind Question I and for one consequence of prov-
ing that it has a positive answer. See [Sh] for some conjectures that would imply
the Question has a positive answer.

Let � be finite lattice and G(�) the set of pairs (H,G) such that G is a finite
group, H ≤ G, and OG(H ) is isomorphic to � or its dual �∗. Write G ∗(�) for the
set of pairs (H,G) such that |G| is minimal subject to (H,G)∈ G(�).

In [A2] we defined the notion of a “signalizer lattice” determined by a suitable
tower IH ≤ NH ≤ H of finite groups. We also defined a class of lattices we called
“CD-lattices” and proved that, if � is a CD-lattice and (H,G)∈ G ∗(�), then either
G is almost simple (i.e., G has a unique minimal normal subgroup D and D is
a nonabelian simple group) or � (or �∗) is isomorphic to a signalizer lattice in
H. Thus, to show Question I has a positive answer, it suffices to show there is a
CD-lattice � such that:

(I�A) there exists no almost simple finite group G with a subgroup H such that
OG(H ) is isomorphic to � or its dual; and

(S�) there exists no signalizer lattice isomorphic to � or its dual.

In this paper we initiate the study of signalizer lattices, with the hope of es-
tablishing (I�A) and (S�) for lattices � in a suitable family of CD-lattices and
thereby proving that Question I has a positive answer. See [BL] for another pos-
sible approach.

Let L be a nonabelian finite simple group. Define T (L) to be the set of triples
τ = (H,NH , IH ) such that:

(T1) H is a finite group and NH ≤ H ;
(T2) IH � NH and F ∗(NH/IH ) ∼= L.

The tuple τ ∈ T (L) is said to be faithful if kerNH
(H ) = 1.
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Assume τ ∈ T (L) and write N0 for the preimage in NH of Inn(L) under the
map of NH into Aut(L) supplied by (T2). Define

W = W(τ ) = {W ∈ IH (NH) : W ∩ NH = IH }
and

P = P(τ ) = {(V,K) : V ∈ W, K ∈ ONH (V )(VNH), and N0V/V = F ∗(K/V )}.
Here IH (NH) is the set of NH -invariant subgroups of H.

Partially order P by (V1,K1) ≤ (V2,K2) if V2 ≤ V1 and K2 ≤ K1. Let �(τ)

be the poset obtained by adjoining an element 0 to P such that 0 < p for all p ∈
P. The construction in [A2, 7.1] shows that, given a simple group L and τ =
(H,NH , IH )∈ T (L), there exists an overgroup G of H such that the poset OG(H )

is isomorphic to �(τ). In particular, �(τ) is a lattice isomorphic as a lattice to
OG(H ). We call lattices of the form �(τ) signalizer lattices.

Next we remark that � has a greatest element ∞ and least element 0. Set �′ =
� − {0, ∞}. Regard � as an undirected graph whose adjacency relation is the
comparability relation on �. Define � to be connected if the subgraph �′ is con-
nected as a graph.

The notions of D-lattice, C-lattice, and CD-lattice are defined in Section 1. For
example, a D-lattice is a disconnected lattice satisfying a certain nondegeneracy
condition. We prove that if H admits a CD-signalizer lattice then the structure of
H is highly restricted, as indicated in our first theorem.

Theorem 1. Assume L is a nonabelian finite simple group and � is a CD-lattice.
Assume τ = (H,NH , IH ) ∈ T (L), � is isomorphic to �(τ) or its dual, and |H |
is minimal subject to this constraint. Then F ∗(H ) is the direct product of non-
abelian simple subgroups permuted transitively by H.

Given τ = (H,NH , IH )∈ T (L), define

W1 = W1(τ ) = {W ∈ W : W ≤ F ∗(H )IH }
and order W1 by inclusion. Let �(τ) be the poset obtained by adjoining a greatest
member ∞ to W1. By 2.11 (to follow), �(τ) is a lattice isomorphic to the dual of
a sublattice of �(τ). Call �(τ) a lower signalizer lattice. Set K(τ ) = 〈W1,NH〉.

Given a positive integer n, an n-set is a set of order n. Let �(n) be the lat-
tice of all subsets of an n-set, partially ordered by inclusion. Given integers t and
m1, . . . ,mt with t > 1 and mi > 2 for each i, a D�(m1, . . . ,mt)-lattice is a finite
lattice� such that�′ has t connected components C1, . . . , Ct such that C i

∼= �(mi)
′.

As shown in Section1, D�(m1, . . . ,mt)-lattices are CD-lattices. Shareshian’s con-
jectures B and C in [Sh] suggest that the class of D�(m1, . . . ,mt)-lattices supplies
a good collection of candidates for lattices � satisfying (I�A) and (S�). The fol-
lowing theorem reinforces that suggestion.

Theorem 2. Assume t and mi, 1 ≤ i ≤ t, are integers with t > 1 and mi > 2,
and assume � is a D�(m1, . . . ,mt)-lattice that is a finite group interval lattice.
Then there exists an almost simple finite group G such that either
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(1) � ∼= OG(H ) for some subgroup H of G or
(2) there exists a nonabelian finite simple group L and a γ = (G,NG, IG)∈ T (L)

such that G = F ∗(G)NG, G = K(γ ), and � ∼= �(γ ).

In particular: by Theorem 2, to show that a D�(m1, . . . ,mt)-lattice � supplies a
positive answer to Question I, it suffices to verify (I�A) and (S�A).

(S�A) There exists no nonabelian simple group L and no γ = (G,NG, IG) ∈
T (L) such that G is almost simple, G = F ∗(G)NG = K(γ ), and � ∼=
�(γ ).

John Shareshian and the author are currently in the midst of a program to verify
(I�A) and (S�A) for most D�(m1, . . . ,mt)-lattices �.

For notation and terminology involving finite groups, see [A1]. Theorem 1 is
proved in Section 4, and Theorem 2 is proved in Section 6.

1. Lattices

In this section, � is a finite lattice.
For x, y ∈�, we write x ∨ y for the least upper bound of x and y in � and write

x ∧ y for the greatest lower bound of x and y in �. Set �# = �− {0}. The atoms
of � are the minimal members of �′, and the co-atoms are the atoms of the dual
of �. Define the depth of x ∈ � in � to be the length d of the longest chain x =
x0 < · · · < xn = ∞ in �.

We say � is a D-lattice if there exists a partition �′ = �′
1 ∪�′

2 of �′ such that,
for i = 1 and 2:

(D1) �′
i is a union of connected components of �′, and

(D2) there exists a nontrivial chain ki < mi in �′
i.

Define � to be a C∗-lattice if,

(C∗) for all x ∈ �′, there exist maximal elements m1, . . . ,mn of �′ such that
x = m1 ∧ · · · ∧ mn.

A C∗-lattice is a lattice dual to a C∗-lattice, and a C-lattice is a lattice that is both
a C∗-lattice and a C∗-lattice. In the literature, C∗-lattices are often called atomic
lattices.

Finally if X and Y are classes of lattices, then � is a XY -lattice if � is both an
X-lattice and a Y -lattice.

1.1. Assume � is a C∗-lattice such that �′ has no greatest element. Assume
ϕ : �# → �# is a map of posets such that, for each p ∈ �#, ϕ(p) ≤ p. Then ϕ is
the identity.

Proof. Let p ∈ �#. If p �= ∞ then, since � is a C∗-lattice, there exist atoms
x1, . . . , xn with p = x1 ∨ · · · ∨ xn. If p = ∞ then, since �′ has no greatest ele-
ment, such atoms also exist.

Now ϕ(xi) ≤ xi and so, since xi is an atom, ϕ fixes xi. Then, since ϕ is a map
of posets, xi = ϕ(xi) ≤ ϕ(p) ≤ p and so p = x1 ∨ · · · ∨ xn ≤ ϕ(p) ≤ p. That
is, ϕ fixes p.
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1.2. Assume � is a C∗D-lattice and C is a connected component of �′. Then
there exist a connected component B of �′, distinct from C, and distinct co-atoms
x1 and x2 of B such that x1 ∧ x2 �= 0.

Proof. Because � is a D-lattice, there exists a connected component B, distinct
from C, containing an edge x < x1 with x of depth 2 in �. Because � is a C∗-
lattice, there exist co-atoms x2, . . . , xn in B with x = x1 ∧ · · · ∧ xn. Then x ≤
x1 ∧ x2 and so, since x is of depth 2, x = x1 ∧ x2.

2. Basic Properties of Signalizer Lattices

In this section we assume the following hypothesis.

Hypothesis 2.1. L is a nonabelian finite simple group, and τ = (H,NH , IH ) ∈
T (L).

In addition, we adopt some notational conventions as follows.

Notation 2.2. Write N0 for the preimage in NH of Inn(L) under the map of NH

into Aut(L) supplied by (T2). Set W = W(τ ) and P = P(τ ). Write W∗ for the
set of minimal members of W − {IH } under inclusion. Write ∞ for (IH ,NH) and
set P ′ = P − {∞}. Write P ∗ for the set of maximal members of P ′. Thus, in the
language of Section 1, P ∗ is the set of co-atoms of the poset P.

For p = (V,K) ∈ P, set P(≥ p) = {q ∈ P : q ≥ p}, M(p) = NH(V ) ∩
NH(VN0), Q(p) = CM(p)(N0V/V ), and l(p) = (Q(p), M(p)). Set

H(τ ) = 〈K : (V,K)∈ P〉 and H∗(τ ) = 〈K : (V,K)∈ P ∗〉.
For NH ≤ M ≤ H, define τM = (M,NH , IH ). Given D � H, define

�#(τ ) = {(V,K)∈ P : K = VNH } and

(#(τ,D) = {(V,K)∈ P : V ≤ DIH and K ≤ DNH }.
Let �(τ) and ((τ,D) be the subposets of �(τ) obtained by adjoining 0 to �#(τ )

and (#(τ,D), respectively, and set �(τ,D) = �(τ) ∩ ((τ,D). Set

K(τ,D) = 〈K : (V,K)∈�(τ,D)#〉,
K∗(τ,D) = 〈K : (V,K)∈ P ∗ ∩ �(τ,D)〉.

The proof of the following observation is straightforward.

2.3. Let NH ≤ M ≤ H. Then:

(1) τM = (M,NH , IH )∈ T (L);
(2) P(τM) is a subposet of P;
(3) if p ∈ P(τM), then P(≥ p) ⊆ P(τM);
(4) the inclusion map is an isomorphism of �(τH(τ )) with �(τ);
(5) ifD � H then the inclusion map is an isomorphism of�(τK(τ,D),D∩K(τ,D))

with �(τ,D).
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2.4. Let N̂H ≤ Ĥ ≤ H such that N̂H ≤ NH ; N0 = N̂0IH , where N̂0 = N0 ∩ N̂H ;
and ÎH = IH ∩ Ĥ ≤ N̂H . Set τ̂ = (Ĥ, N̂H , ÎH ). Then:

(1) τ̂ ∈ T (L).

(2) For p = (V,K) ∈ P define ϕ(p) = (V̂, K̂), where V̂ = V ∩ Ĥ and K̂ =
K ∩ Ĥ. Then ϕ : P → P̂ = P(τ̂ ) is a map of posets.

Proof. Since IH � NH and ÎH = IH ∩Ĥ ≤ N̂H ≤ NH , it follows that also ÎH � N̂H .

Furthermore,
N̂H

ÎH
= N̂H

N̂H ∩ IH

∼= N̂HIH

IH
.

Similarly, since N̂0 = N0 ∩ N̂H and N0 = N̂0IH , we have N̂0 � N̂H and N̂0/ÎH ∼=
N0/IH ∼= L. Then, sinceN0 = N̂0IH andN0/IH = F ∗(NH/IH ), we have N̂0/ÎH =
F ∗(N̂H/ÎH ). Thus (1) holds.

Let p = (V,K) ∈ P. Then V ∈ IH (NH) and N̂H ≤ NH , so V̂ = V ∩ Ĥ ∈
IĤ (N̂H ). Also, V ∩ NH = IH and N̂H ≤ NH , so V ∩ N̂H = IH ∩ N̂H = ÎH .

Therefore, V̂ ∈ Ŵ = WĤ (N̂H , ÎH ). Then K ∈ ONH (V )(VNH), so

K̂ = K ∩ Ĥ ∈ ON
Ĥ
(V̂ )(VNH ∩ Ĥ ) ⊆ ON

Ĥ
(V̂ )(V̂N̂H ).

Furthermore, N0V/V = F ∗(K/V ). Since N0 = N̂0IH , we also have N0V = N̂0V

and so N̂0V/V = F ∗(K̂V/V ). Now K̂V/V ∼= K̂/(K̂ ∩ V ) = K̂/V̂ with N0V/V

mapping to N̂0V̂/V̂, so N̂0V̂/V̂ = F ∗(K̂/V̂ ). Thus ϕ(p)∈ P̂.
If p ≤ q = (U, J ) then U ≤ V and J ≤ K, so Û = U ∩ Ĥ ≤ V ∩ Ĥ = V̂ and

similarly Ĵ ≤ K̂. Therefore, ϕ is a map of posets, completing the proof of (2).

2.5. Assume V ∈ W and IH ≤ U ∈ IV (NH ). Then:

(1) U ∈ W;
(2) if (U,K)∈ P then V ∩ K = U.

Proof. The proof of (1) is trivial. Assume the hypothesis of (2) and let K∗ = K/U

and X = V ∩ K. Because (U,K)∈ P, N ∗
0 = F ∗(K∗) ∼= L is simple and so, since

X is N0-invariant, either X∗ = 1 or N ∗
0 ≤ X∗. In the former case (2) holds; in the

latter case N0 ≤ V, contradicting V ∈ W.

2.6. For W ∈ W, (W,WNH)∈ P.

Proof. If W ∈ W then W � WNH and WNH/W ∼= NH/(W ∩ NH) = NH/IH .

Thus, since L ∼= N0/IH = F ∗(NH/IH ), the lemma holds.

2.7. Let D � H and + ∈ {�(τ),((τ,D),�(τ,D)}. Then, for each p ∈ +,
P(≥ p) ⊆ +.

Proof. Let p = (V,K) ∈ + and q = (U, J ) ≥ p. Then U ≤ V and J ≤ K. If
+ = �(τ) then K = VNH , so J = J ∩ VNH = (J ∩ V )NH = UNH by 2.5(2)
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and hence q ∈ +. If + = ((τ,D) then V ≤ DIH and K ≤ DNH . Thus U =
U ∩ DIH = (U ∩ D)IH ≤ DIH and similarly J ≤ DNH , so q ∈ +. The lemma
follows.

2.8. Let p = (V,K)∈ P and set Q = P(≥ p). Then:

(1) Q = {(V ∩ J, J ) : J ∈ OK(NH)};
(2) the mapψ : J �→ (V∩J, J ) is an isomorphism of the dual of OK(NH)with Q;
(3) if qi = (Vi,Ki) ∈ Q for i = 1, 2, then q1 ∨ q2 = (V1 ∩ V2,K1 ∩ K2) and

q1 ∧ q2 = (V1,2,K1,2), where K1,2 = 〈K1,K2〉 and V1,2 = K1,2 ∩V ;
(4) if K = VNH , then Ki = ViNH , 〈K1,K2〉 = 〈V1,V2〉NH , and V ∩ 〈K1,K2〉 =

〈V1,V2〉.
Proof. Let J ∈ OK(NH). Then V ∩ J ∩ NH ≤ V ∩ NH = IH and, since J ∈
OK(NH), IH = NH ∩V ≤ J ∩V soV∩J ∩NH = IH . ThusV∩J ∈W. Also, N0 ≤
J and N0V/V = F ∗(K/V ), so CK/V (N0V/V ) = 1. Thus CJV/V (N0V/V ) = 1 and
so N0V/V = F ∗(JV/V ). Furthermore, the map π : jV �→ j(J ∩V ), j ∈ J, is an
isomorphism of JV/V with J/(J ∩V ) such that (N0V/V )π = N0(J ∩V )/(J ∩V ),
so F ∗(J/(J ∩V )) = N0(J ∩V )/(J ∩V ). That is, (V ∩ J, J )∈ Q.

Conversely, let (U,X)∈ Q. Then U ≤ V and X ≤ K; moreover, X ∈ OH (NH)

and so X ∈ OK(NH). By 2.5(2) we have U = X ∩V, completing the proof of (1)
and showing the map ψ of (2) is surjective.

Clearly ψ is injective, so ψ : OK(NH) → Q is a bijection. Furthermore, for
qi = (Vi,Ki) ∈ Q we have q1 ≤ q2 if and only if K2 ≤ K1 and V2 ≤ V1 iff K2 ≤
K1 because Vi = V ∩ Ki. This completes the proof of (2).

Next, in the lattice OK(NH) we have K1 ∧ K2 = K1 ∩ K2 and K1 ∨ K2 =
〈K1,K2〉. Then, applying the isomorphism ψ and recalling that ψ is applied to the
dual of OK(NH) yields

q1 ∨ q2 = K1ψ ∨ K2ψ = (K1 ∧ K2)ψ = (K1 ∩ K2)ψ

= (V ∩ K1 ∩ K2,K1 ∩ K2) = (V1 ∩V2,K1 ∩ K2),

and

q1 ∧ q2 = K1ψ ∧ K2ψ = (K1 ∨ K2)ψ = 〈K1,K2〉ψ = (V1,2,K1,2);
this establishes (3).

Finally, supposeK =VNH . By 2.7, Ki =ViNH . Also 〈K1,K2〉 = 〈NH ,V1,V2〉 =
UNH , where U = 〈V1,V2〉 ∈ IK(NH). Then

V1,2 = K1,2 ∩V = UNH ∩V = U(NH ∩V ) = UIH = U,

establishing (4).

2.9. Let qi = (Vi,Ki)∈ P for i = 1, 2. Then:

(1) q1 ∨ q2 = (U,K), where U = V1 ∩V2 and K = NK1∩K2(N0(V1 ∩V2));
(2) if NV1(V2)V2 ∈ W, then K = K1 ∩ K2;
(3) if Ki = ViNH , then K = (V1 ∩V2)NH .



Signalizer Lattices in Finite Groups 85

Proof. Let q = q1 ∨ q2 = (U,K). Then qi ≤ q, so U ≤ Vi and K ≤ Ki and
hence U ≤ W = V1 ∩V2 and K ≤ J = NK1∩K2(W ). By 2.5(1), W ∈ W and so,
by 2.6, p = (W,WNH) ∈ P. Then, since qi ≤ p for i = 1, 2, it follows that q ≤
p and so W ≤ U ; hence U = W.

Let J ∗ = J/U and Y = CJ(N
∗
0 ). Then [Y,N0 ] ≤ U ≤ Vi for i = 1, 2, so Y ≤

Vi since F ∗(Ki/Vi) = N0Vi/Vi. Thus Y = U and r = (U, J ) ∈ P with qi ≤ r ≤
q, so r = q. This completes the proof of (1).

Assume the hypothesis of (2), and let X = K1 ∩ K2. Then

[N0,X] ≤ N0V1 ∩ N0V2 = N0Z,

where Z = V1 ∩ N0V2. But Z ≤ A = NV1(V2)V2 and A ∈ W by hypothesis;
hence, by 2.5(2), Z ≤ A∩NHV2 = V2. Thus Z = V1 ∩V2 = U and so [N0,X] ≤
N0Z = N0U. That is, X ≤ J, so X = J = K and (2) holds.

Finally, (3) follows from (1) and 2.7.

2.10. Assume that pi = (Vi,Ki) ∈ P for 1 ≤ i ≤ n and that p1 ∧ · · · ∧ pn =
p = (V,K) �= 0. Then:

(1) K = 〈K1, . . . ,Kn〉 and Vi = Ki ∩V for 1 ≤ i ≤ n;
(2) p1 ∨ · · · ∨pn = (U, J ), where

J =
n⋂

i=1

Ki and U = J ∩V =
n⋂

i=1

Vi;

(3) if Ki = ViNH for each i, 1 ≤ i ≤ n, then V = 〈V1, . . . ,Vn〉, K = VNH , and
J = UNH .

Proof. Since pi ∈ P(≥ p) for each i, (1) and (2) follow from 2.8(3) by induction
on n.

Assume the hypothesis of (3). Then K = 〈NH ,V1, . . . ,Vn〉 and NH acts on W =
〈V1, . . . ,Vn〉, so K = WNH. AlsoVi = V ∩Ki, soW ≤ V. Thus K = VNH . Now
V = V ∩ K = 〈V1, . . . ,Vn〉 by 2.8(4). Finally, J = UNH by 2.9(3) and induction
on n.

2.11. (1) Let D � H. Then �(τ) and �(τ,D) are sublattices of �(τ).

(2) The poset �(τ) is isomorphic as a poset to the dual of �(τ,F ∗(G)).

(3) �(τ) is a lattice. Indeed, if ∞ �= Wi ∈ �(τ) then W1 ∧ W2 = W1 ∩ W2,
and if W1 ∨ W2 �= ∞ then W1 ∨ W2 = 〈W1,W2〉.
Proof. Let + = �(τ) or �(τ,D). We first prove (1). By 2.7, + is closed under
∨, so it suffices to take qi = (Vi,Ki) ∈+ with q = q1 ∧ q2 �= 0 and to show q ∈
+. By 2.10(3), q = (V,VNH), where V = 〈V1,V2〉. In particular, q ∈ �(τ), so
we may take + = �(τ,D). ThenVi ≤ DIH , soV ≤ DIH and VNH ≤ DIHNH =
DNH ; hence q ∈�(τ,D). Thus (1) is established.

Take D = F ∗(H ). Then the map V �→ (V,VNH) is an isomorphism of posets
from the dual of �(τ)− {∞} to �(τ,D)#. Thus (2) holds, and from (1) and (2) it
follows that �(τ) is a lattice. Then 2.9 and 2.10(3) complete the proof of (3).
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2.12. Let p = (V,K)∈ P. Then:

(1) p ∈ P ∗ iff NH is maximal in K;
(2) if p ∈ P ∗ then either K = VNH and V ∈ W∗ or V = IH .

Proof. Part (1) follows from 2.8(2).
Suppose p ∈ P ∗. By 2.6, q = (V,VNH) ∈ P and then q ≥ p, so q ∈ {∞,p}

since p ∈ P ∗. If q = ∞ then V = IH , whereas if q = p then K = VNH . In the
latter case, since NH is maximal in K we have V ∈ W∗.

2.13. Assume H = H(τ ) and X is a normal subgroup of H contained in NH .

Set H ∗ = H/X. Then one of the following two statements holds.

(1) X ≤ IH , τ ∗ = (H ∗,N ∗
H , I ∗

H ) ∈ T (L), and the map (V,K) �→ (V ∗,K∗) is an
isomorphism of P with P(τ ∗).

(2) X � IH ; then, setting I1 = X ∩ IH , N1 = X ∩ N0, and Q1 = CH(N1/I1), we
have that I1 and Q1 are normal in H, (Q1,H ) is the least element of P, and
P is isomorphic to the dual of OH (NH).

Proof. If X ≤ IH then it is an easy exercise to check that (1) holds. Thus we may
assume that X � IH and adopt the notation in (2). Since N0/IH = F ∗(NH/IH ) ∼=
L, we have N0 = N1IH .

Let (V,K)∈ P. SinceX ≤ NH , it follows thatV ∩X = V ∩NH ∩X = IH ∩X =
I1. Then, since K acts on V and X, we have K ≤ NH(I1). Hence, since H =
H(τ ), I1 � H. Set H + = H/I1.

Similarly, K acts on N0V and X and hence on N0V ∩ X = N1V ∩ X =
N1(V ∩ X) = N1I1 = N1. Thus [V,N1] ≤ N1 ∩ V = I1, so V ≤ Q1. Now
Q1 ∩ NH centralizes N+

1 and so, since N0 = N1IH , Q1 ∩ NH also centralizes
N0/IH . Hence Q1 ∩ NH = IH ; that is, Q1 ∈ W. Because N+

1
∼= L is normal in

H + and Q+
1 = CH+(N+

1 ), it follows that N0Q1/Q1 = N1Q1/Q1 = F ∗(H/Q1),
so q = (Q1,H ) ∈ P. Then, since each member of W is contained in Q1, we
have q as the least element of P. Finally, P is isomorphic to the dual of OH (NH)

by 2.8(2).

2.14. Assume that � is a finite lattice and that τ ∈ T (L) with |H | minimal, sub-
ject to �(τ) being isomorphic to � or �∗. Then:

(1) H = H(τ ).

(2) Assume �′ has neither a least element nor a greatest element. Then τ is
faithful.

Proof. Part (1) follows from 2.3(4) and the minimality of |H |.
Suppose X = kerNH

(H ) �= 1. Then either conclusion (1) or (2) of 2.13 holds
and, by minimality of |H |, it must be conclusion (2). In particular, P has a least
element; hence the hypothesis of (2) does not hold, since �(τ) is isomorphic to �

or its dual. Thus (2) is established.

2.15. (1) If �(τ) is a C∗-lattice, then H(τ ) = H∗(τ ).
(2) If H = H∗(τ ), then H = 〈W∗ , M(∞)〉.
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Proof. Assume �(τ) is a C∗-lattice. Then, for each p = (V,K)∈ P, we have p =
p1 ∧ · · · ∧ pn for some pi = (Vi,Ki)∈ P ∗. Hence, by 2.10(1), K = 〈K1, . . . ,Kn〉
and so (1) holds.

Next assume H = H∗(τ ) and p ∈ P ∗. Then 2.12(2) says that either K = VNH

and V ∈ W∗ or V = IH . Moreover, if V = IH then N0/IH = F ∗(K/IH ), so K ≤
M(∞). Thus (2) holds.

2.16. For each p ∈ P, l(p)∈ P.

Proof. Let p = (V,K) and l(p) = (Q,M). By definition of M, N0V and V are
normal in M. Let M ∗ = M/V. Again by definition, Q∗ = CM ∗(N ∗

0 ); then, since
N ∗

0 = F ∗(N ∗
H ) is nonabelian, Q∩NH ≤ V ∩NH = IH (i.e., Q∈ W ). Also, N ∗

0 is
a nonabelian simple normal subgroup of M ∗ and Q∗ = CM ∗(N ∗

0 ), so N0Q/Q =
F ∗(M/Q), completing the proof.

2.17. Let X ≤ H and p = (V,K) ∈ P such that K ≤ NH(X), W = XIH ∈
W, and WV ∈ W. Set r = (W,WNH) and q = (WV,WK). Then q, r ∈ P and
q = p ∧ r.

Proof. Since VW and W are in W, it follows from 2.6 that s = (VW,VWNH)

and r are in P. Because K ≤ NH(X), K acts on VX = VW. Then, since K acts
on VN0, K also acts on VWN0. Hence K ≤ M = M(s) and V ≤ VW ≤ Q =
Q(s). By 2.16, l = (Q,M)∈ P, and we just showed that p ≥ l.

Next, WK ∈ OM(NH), so q ′ = (WK ∩Q,WK)∈ P by an application of 2.8(1)
to l in the role of “p”. Also, WK ∩ Q = W(K ∩ Q) and, by 2.5(2), K ∩ Q = V,
so that WK ∩ Q = VW and hence q ′ = q. By 2.8(3),

p ∧ r = (Q ∩ WK,WK) = (VW,WK) = q,

completing the proof.

3. Normal Subgroups of H

In this section we continue to assume Hypothesis 2.1 and adopt Notation 2.2.

Definition 3.1. Define W− to be the set of W ∈ W such that W ≤ NH(IH ),
W � NH(N0), and W/IH ∼= L.

3.2. Assume W ∈ W−. Then:

(1) WN0/IH ∼= L×Lhas two components,W/IH andW ′/IH (write θ(W ) forW ′);
(2) N0/IH is a full diagonal subgroup of W/IH × θ(W )/IH ;
(3) W ∈ W∗;
(4) θ(W )∈ W−.

Proof. Let X = WN0 and Y = WNH. Since W ≤ NH(IH ), also Y ≤ NH(IH ).

Set Y ∗ = Y/IH .
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Since W ∈ W−, we have L ∼= W ∗ � Y ∗. Since X = WN0 and W ∩ N0 =
IH , N ∗

0 is a complement to W ∗ in X∗. Then, since W ∗ ∼= L, (1) follows from the
Schreier conjecture. Let T = θ(W ). Since W � NH(N0), N ∗

0 �= T ∗ and so (2)
follows. By (2), N ∗

H is maximal in Y ∗, so (3) follows from 2.12. By (2), NH ∩T =
IH and T � NH(N0), so (4) holds because T ∗ ∼= L.

Notation 3.3. Given W ∈ W−, define θ(W ) as in 3.2(1).

3.4. Assume W ∈ W− and let T = θ(W ), p = (W,WNH), and q = (T, TNH).

Then:

(1) θ(θ(W )) = W ;
(2) p ∨ q = ∞ and p ∧ q = 0.

Proof. Let Y = WNH and Y ∗ = Y/IH . From 3.2, X = WN0 = TN0 and W ∗, T ∗
are the components of X∗, so (1) holds.

Let p ∨ q = (U, J ). By parts (1) and (3) of 2.9, U = T ∩ W = IH and J =
UNH = NH , so p ∨ q = ∞. Suppose p ∧ q = (V,K) �= 0. Then, by 2.10(3),
V = WT, contradicting N0 ≤ WT. Thus (2) holds.

3.5. Let W ∈ IH (NH). Then either

(1) WIH ∈ W or
(2) N0 = (W ∩ N0)IH .

Proof. Let X = W ∩ NH . Since W ∈ IH (NH), we have X � NH . Therefore, be-
cause F ∗(NH/IH ) = N0/IH is a nonabelian simple group, either X ≤ IH or N0 ≤
XIH . In the former case

WIH ∩ NH = (W ∩ NH)IH = XIH = IH ,

so that (1) holds. In the latter case,

N0 = N0 ∩ XIH = (N0 ∩ X)IH = (N0 ∩ W)IH ,

so (2) holds.

3.6. Assume V ∈ W and W ∈ IH (NH) with 〈V,W 〉 = VW and VW /∈ W. Then:

(1) N0 ≤ VNW(V ) ∩ WNV (W ) = NW(V )NV (W );
(2) NW(V ) isNH -invariant andL ∼= NW(V )/(V∩W) = [N0,NW(V )/(V∩W)];
(3) if Y ∈ ICH (W )(NH ) with 〈V,Y 〉 = V Y, then N0 �= (V Y ∩ N0)IH and so

V Y ∈ W.

Proof. Let N1 = VW ∩N0. SinceV,W ∈ IH (NH), also 〈V,W 〉 ∈ IH (NH). Then,
since VW = 〈V,W 〉 is not in W, it follows from 3.5 that N0 = N1IH . Next,
N1 ≤ NH(V ) ∩ VW = VNW(V ), so N0 = N1IH ≤ VNW(V ). Similarly, N0 ≤
WNV (W ), establishing (1). Then

L ∼= N0V

V
≤ VNW(V )

V
∼= NW(V )

V ∩ W
,

so (2) holds.
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Assume the hypothesis of (3). Let N2 = V Y ∩ N0. If N0 �= N2IH , then V Y ∈
W by 3.5, so that (3) holds. Thus we may assume N0 = N2IH . By the previous
paragraph applied to Y in the role of “W”, we have N2 ≤ VNY (V ). Let M =
NH(V ), K = N0V, and M ∗ = M/V. Then K∗ ∼= L and K = NiIHV = NiV for
i = 1, 2, so K∗ = N ∗

1 = N ∗
2 . But N1 ≤ VNW(V ) and N2 ≤ VNY (V ), so K∗ ≤

NW(V )∗ ∩ NY (V )∗. Then, since [W,Y ] = 1, K∗ is abelian—contradicting K∗ ∼=
L. This completes the proof of (3).

Notation 3.7. Set W ′ = W − {IH }. For p ∈ P, write C(p) for the connected
component of P ′ containing p. For W ∈ W ′, set

C(W ) = {V ∈ W ′ : C(W,WNH) = C(V,VNH)}.
3.8. Assume pi = (Vi,Ki) ∈ P ′ for i = 1, 2 such that C(p1) �= C(p2). Then
〈V1,V2〉 /∈ W and V1 ∩V2 = IH .

Proof. Let qi = (Vi,ViNH ). Then pi ≤ qi and so, replacing pi by qi, we may
assume that Ki = ViNH . Since C(p1) �= C(p2), we have p1 ∨ p2 = ∞ and
p1 ∧ p2 = 0. Hence V1 ∩V2 = IH by 2.9(1). Furthermore, U = 〈V1,V2〉 /∈ W or
else (U,UNH) ≤ pi for i = 1, 2.

3.9. Assume Vi ∈ W for i = 1, 2 such that 〈V1,V2〉 = V1V2. Then the following
statements hold.

(1) Wi = NVi
(V3−i ) and V1,2 = V1 ∩V2 are in W.

(2) 〈W1,W2〉 = W1W2.

(3) Assume V1V2 /∈ W and let X = W1W2 and X∗ = X/V1,2. Then:
(a) N0 ≤ W1W2, so W1W2 /∈ W;
(b) X∗ = W ∗

1 ×W ∗
2 . Let Ui be the preimage in Wi of the projection of N ∗

0 on
W ∗

i . Then N ∗
0

∼= L is a full diagonal subgroup of U ∗
1 × U ∗

2
∼= L × L.

(c) Ui ∈ W for i = 1, 2, but 〈U1,U2〉 = U1U2 /∈ W.

(d) If C(V1) �= C(V2), then Ui ∈ W− and U3−i = θ(Ui).

Proof. First, Wi and V1,2 are in W by 2.5(1), so (1) holds. Since W1 acts on W2,
we have 〈W1,W2〉 = W1W2 and so (2) holds.

Assume V1V2 /∈ W. Then, by 3.6(1), N0 ≤ X and so (3a) holds. Since Wi ∈ W,
N0 ∩Wi = IH ≤ V1,2, so (3b) follows. Since NH acts onWi and N0, also NH acts
on Ui, so that Ui ∈ W by 2.5(1). Since X∗ = W ∗

1 × W ∗
2 , 〈U1,U2〉 = U1U2, and

since N0 ≤ U1U2, U1U2 /∈ W, establishing (3c).
Assume the hypothesis of (d). Then it follows from 3.8 that U1 ∩ U2 = IH . In

particular, since Ui acts on U3−i, we have IH � Ui. Next, L ∼= U ∗
i and, since N ∗

0
is a full diagonal subgroup of U ∗

1 × U ∗
2 , we have Ui � NH(N0). Therefore Ui ∈

W− and, since U ∗
j (j = 1, 2) are the components of X∗ = UjN0/IH , it follows

that U3−i = θ(Ui), completing the proof of (3).

3.10. Assume that X � H and X � IH , and assume that X satisfies one of the
following:
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(a) X is solvable; or
(b) X has no L-section; or
(c) for each V ∈ W, XV ∈ W.

Then:

(1) Y = XIH ∈ W ′ and x = (Y,XNH)∈ P;
(2) for each p = (V,K)∈ P, x ∧ p ∈ P ′;
(3) �(τ) is connected.

Proof. Observe that (a) implies (b), so it suffices to assume that (b) or (c) holds.
Let V ∈ W. Since X � H, we have 〈X,V 〉 = XV. Thus, if (b) holds then it fol-
lows from (b) and 3.6(2) that XV ∈ W. That is, (b) implies (c), so we may assume
that (c) holds. In particular, by applying (c) when V = IH , we conclude that Y ∈
W. Then, since X � IH , also Y ∈ W ′. Now (1) follows from 2.6.

Let p = (V,K) ∈ P. Then K ≤ NH(X) and, by (c), Y and YV are in W.

Therefore, by 2.17, q = (XV,XK) ∈ P and q = x ∧ p. Thus (2) holds, and (2)
implies (3).

3.11. Assume B � H such that BIH /∈ W and X = CH(B) � IH . Then X satis-
fies condition (c) of 3.10, and hence the conclusions of 3.10 are also satisfied.

Proof. Because B is normal in H, so is X. Since BIH /∈ W, it follows from 3.5
that N0 ≤ BIH . Thus, for eachV ∈ W, we have N0 ≤ BV and so BV /∈ W. Hence
VX ∈ W by 3.6(3); that is, X satisfies 3.10(c), so the lemma follows from 3.10.

3.12. Assume kerIH (H ) = 1 and �(τ) is disconnected. Let B = {B1, . . . ,Bn} be
the set of minimal normal subgroups of H. Then:

(1) F(H ) = 1;
(2) each component of H has an L-section;
(3) if n > 1, then BiIH ∈ W for all i;
(4) n ≤ 2.

Proof. Since kerIH (H ) = 1, no member of B is contained in IH . In particular, if
(1) fails then F(H ) � IH , so F(H ) satisfies 3.10(a). Then 3.10(3) contradicts the
hypothesis that �(τ) is disconnected. This establishes (1).

Similarly, if A is a component of H that contains no L-section, then B =
〈AH 〉 ∈ B satisfies 3.10(b), and we obtain a contradiction as in the previous para-
graph. Thus (2) holds.

Assume n > 1. Then, for each i, 1 �= Di = 〈B − {Bi}〉 ≤ CH(Bi). Hence (3)
follows from 3.11.

Finally, assume n > 2 and let B = B1B2. Then B3 � H with B3 ≤ CH(B),
so arguing as in the previous paragraph yields BIH ∈ W. Thus C = C(B1IH ) =
C(BIH ) = C(B2IH ). Now let V ∈ W ′. If VB1 /∈ W then, by 3.6(3), VB2 ∈ W.

Hence, for i = 1 or 2, C(V ) = C(VBi) = C. Let r = (B1IH ,B1NH). Then R =
C(r) = C(p) for each p = (V,K) ∈ P ′ with V �= IH . Therefore, since �(τ) is
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disconnected, we conclude that there exists a q = (IH , J ) ∈ P ∗ with C(q) �= R.

But B1IH ∈ W and so, by 2.17, q ∧ r �= 0, contradicting C(q) �= R.

3.13. Let c : H → G be a surjective homomorphism with kernel A. Set NG =
NHc, IG = IH c, and γ = (G,NG, IG). Assume A ∩ NH ≤ IH and set B = AIH
and r = (B,ANH). Then:

(1) γ ∈ T (L).

(2) r ∈ P.
(3) Let R = P(≤ r) and Q = {(V,K) ∈ P : AV ∈ W}; then Q = {p ∈ P :

p ∧ r �= 0} and, for p = (V,K)∈ Q, we have p ∧ r = (AV,AK)∈ R.

(4) For p = (V,K) ∈ Q, define ψ(p) = (Vc,Kc); then ψ : Q → P(γ ) is a
map of posets that restricts to an isomorphism ψ : R → P(γ ) with inverse
ν : (V1,K1) �→ (V1c

−1,K1c
−1).

Proof. Since A ∩ NH ≤ IH , where B ∩ NH = (A ∩ NH)IH = IH and so B ∈ W.

Then (2) follows from 2.6.
By 2.17, Q ⊆ Q1 = {p ∈ P : p ∧ r �= 0}. Conversely, if p = (V,K)∈ Q1, then

p ∧ r = (AV,AK) by 2.10(1), so AV ∈ W and hence Q = Q1. That is, (3) holds.
Since τ ∈ T (L), also α = (NH ,NH , IH ) ∈ T (L) by 2.3(1). Let D = A ∩ IH .

Then β = (NH/D,NH/D, IH/D) ∈ T (L) by 2.13. Since D = A ∩ NH , also β =
(NHA/A,NHA/A, IHA/A) = (NG,NG, IG), so (1) holds.

Letp = (V,K)∈Q. Then (AV,AK)∈P by (3), soAV∩ANH = A(AV∩NH) =
AIH and hence Vc ∩ NG = (AIH )c = IH c = IG; therefore, Vc ∈ WG(NG, IG).
Also, Kc ∈ ONG(Vc)(VcNG) and, since (AV,AK)∈ P,

N0cVc

Vc
= N0AV

AV
= F ∗

(
AK

AV

)
= F ∗

(
Kc

Vc

)
,

so ψ(p) ∈ S = P(γ ). Furthermore, if p ≤ q = (U, J ) then U ≤ V and J ≤ K,
so Uc ≤ Vc and Jc ≤ Kc; hence ψ(p) ≤ ψ(q). That is, ψ : Q → S is a map of
posets.

Let p1 = (V1,K1) ∈ S and set V = V1c
−1 and K = K1c

−1. Then V1 ∩ NG =
IG, so V ∩ ANH = AIH = B; hence V ∈ W. Also, B ≤ V � K and, since
NG ≤ K1, we have ANH = NGc

−1 ≤ K. In addition, F ∗(K1/V1) = N0cV1/V1,
so F ∗(K/V ) = N0V/V and hence ν(p1) = (V,K) ∈ R. Moreover, ψ(V,K) =
(Vc,Kc) = p1, so ψ � ν = 1. Also, for p ∈ R , ν(ψ(p)) = ν(Vc,Kc) = p, so ν =
ψ−1 and hence ψ : R → S is a bijection. Clearly ν is a map of posets, complet-
ing the proof of (4).

4. Disconnected Lattices

In this section we often assume the following hypothesis.

Hypothesis 4.1. Hypothesis 2.1 holds, kerIH (H ) = 1, and � = �(τ) is discon-
nected.

We adopt Notations 2.2, 3.3, and 3.7 in addition to the following.
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Notation 4.2. B = {B1, . . . ,Bn} is the set of minimal normal subgroups of H.

4.3. Assume Hypothesis 4.1. Then:

(1) F(H ) = 1;
(2) n ≤ 2;
(3) if n = 2, then BiIH ∈ W for i = 1, 2.

Proof. This is immediate from 3.12.

4.4. Assume Hypothesis 4.1, and let V,W ∈ W ′ be such that 〈V,W 〉 = VW and
C(V ) �= C(W ). Then:

(1) V ∩ W = IH ;
(2) there exists a U ∈ W− with U ≤ W and θ(U) ≤ V.

Proof. Part (1) follows from 3.8, while (2) follows from 3.9(3d).

Hypothesis 4.5. Hypothesis 4.1 holds, and B = {B1,B2} is of order 2. Let ri =
(Bi,BiNH) and C i = C(ri) for i = 1, 2.

4.6. Assume Hypothesis 4.5. Then:

(1) for each p = (V,K) ∈ �′ there exists a unique i = i(p) ∈ {1, 2} such that
(VBi,KBi)∈ P;

(2) VB3−i /∈ W;
(3) C(p) = C i;
(4) C1 and C2 are the connected components of �′.

Proof. Let j ∈ {1, 2}. If VBj /∈ W then, by 3.6(3), VB3−j ∈ W; hence, by 2.17,
(VB3−j ,KB3−j ) ∈ P. So in this case (1) and (2) hold with i = 3 − j, and then
(3) follows from (1). We conclude that �′ ⊆ C1 ∪ C2; therefore, since � is discon-
nected, the lemma holds.

4.7. Assume Hypothesis 4.5. Then:

(1) W∗ = W−.
(2) Let V ∈ W∗ and set i = i(V ) = i(V,VNH); then V ≤ BiIH and θ(V ) ≤

B3−iIH .

(3) N0 ≤ B1B2IH .

Proof. By 3.2(3), W− ⊆ W∗. Let V ∈ W∗ and i = i(V,VNH). Then VB3−i /∈ W
by 4.6(2); so by 4.4(2) and the minimality of V, V ∈ W− and θ(V ) ≤ B3−i . By
3.4(1) and the symmetry between V and θ(V ), V = θ(θ(V )) ≤ BiIH , complet-
ing the proof of (1) and (2). Then, since N0 ≤ Uθ(U) for U ∈ W− by 3.2, (3)
follows.

4.8. Assume Hypothesis 4.5. Then, for (V,K)∈ P ∗, V �= IH .

Proof. Suppose (V,K) ∈ P ∗ with V = IH . Then VBi = IHBi ∈ W for i = 1, 2
by 4.3(3), contrary to 4.6(2).
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4.9. Assume Hypothesis 4.5 and H = H∗(τ ). Then:

(1) IH = 1 so N0
∼= L.

(2) Let Ui be the projection of N0 on Bi. Then W∗ = {U1,U2} and P ∗ = {p1,p2},
where pi = (Ui,UiNH).

Proof. For eachV ∈W−, IH � V. Since H = H∗(τ ), we have H = 〈W∗ ,NH(IH )〉
by 2.15(2). Thus IH � H by 4.7(1), so (1) follows because kerIH (H ) = 1 by Hy-
pothesis 4.1. Let V ∈ W− and i = i(V,VNH). Then V θ(V ) = VN0, with V ≤ Bi

and θ(V ) ≤ B3−i by 4.7. It follows that V = Ui and θ(V ) = U3−i . Hence W∗ =
{U1,U2} by 4.7(1), and then 4.8 completes the proof.

Theorem 4.10. Assume Hypothesis 2.1 and that � = �(τ) is a disconnected
C∗-lattice. Let H∗ = H∗(τ ) and set K∗ = kerNH

(H∗) and H ∗ = H∗/K∗. Then
the following statements hold.

(1) τ ∗ = (H ∗,N ∗
H , I ∗

H )∈ T (L).

(2) � ∼= �(τ ∗) and K∗ ≤ IH .

(3) F(H ∗) = 1.
(4) Either

(a) there exists a unique minimal normal subgroup of H ∗ or
(b) there are exactly two minimal normal subgroups B∗

1 and B∗
2 of H ∗.

Furthermore, K∗ = IH , B∗
i

∼= L, and N ∗
0 is a full diagonal subgroup

of B∗
1 × B∗

2 . Moreover, �′ = {r1, r2}, where ri = (Bi,BiNH) and H∗ =
B1B2NH .

Proof. Let µ = τH∗ . Since � is a C∗-lattice, we conclude from 2.3(4) and 2.15(1)
that � ∼= �(µ). Observe that H∗ = H∗(µ) because P ∗(µ) ⊆ P ∗(τ ). Therefore,
since � is disconnected, K∗ ≤ IH by 2.13, which also means that (1) holds and
�(µ) ∼= �(τ ∗). Thus (1) and (2) are established.

By construction, kerI ∗
H
(H ∗) = 1, so τ ∗ satisfies Hypothesis 4.1. Then (3) fol-

lows from 4.3(1). Assume that (4a) does not hold. Then τ ∗ satisfies Hypothesis
4.5 by 4.3(2), with minimal normal subgroups B∗

1 and B∗
2 . By construction, H ∗ =

H∗(τ ∗), so I ∗
H = 1 by 4.9(1). Hence K∗ = IH . Let U ∗

i be the projection of N ∗
0

on B∗
i and let p∗

i = (U ∗
i ,U ∗

i N
∗
H ). By 4.9(2), P ∗(τ ∗) = {p∗

1,p∗
2}. Since � is a

C∗-lattice and since B∗
i ∈ WH ∗(N ∗

H , I ∗
H ) by 4.3(3), it follows that B∗

i = U ∗
i , so

�′ = {r1, r2}. Thus (4b) holds, completing the proof.

Corollary 4.11. Assume Hypothesis 2.1 and that H = H(τ ). Assume in ad-
dition that � = �(τ) is a C∗D-lattice and kerIH (H ) = 1. Then F ∗(H ) is the
direct product of the set L of components of H, each component is simple, and H

is transitive on L.

Proof. As H = H(τ ) and � = �(τ) is a C∗-lattice, 2.15(1) says that H = H∗(τ ).
Thus the hypotheses of Theorem 4.10 are satisfied andH = H∗. Since kerIH (H ) =
1, K∗ = kerNH

(H ) = 1 by 4.10(2), so H is the group H ∗ of 4.10. Since � is a
D-lattice, |�′| > 2 and so, by 4.10(4), there is a unique minimal normal subgroup
E of H. By 4.10(3), F(H ) = 1, so E = F ∗(H ) and the corollary holds.
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We are now in a position to prove Theorem 1. Assume the hypotheses of that theo-
rem. By 2.14(1), H = H(τ). Because � is disconnected, �′ has neither a least nor
a greatest element, so kerNH

(H ) = 1 by 2.14(2). Thus the hypotheses of Corol-
lary 4.11 are satisfied, and that result implies Theorem 1.

4.12. Assume Hypothesis 2.1 and that H = H(τ ). Assume in addition that � =
�(τ) is a C∗D-lattice and kerIH (H ) = 1. Then F ∗(H )IH /∈ W.

Proof. Let E = F ∗(H ) and assume A = EIH ∈ W. Set a = (A,ANH), so that
a ∈�′ by 2.6. Let C = C(a) and let E = {p ∈ P ∗ : C(p) �= C}.

Since � is disconnected, E �= ∅. Pick p = (V,K) ∈ E . If V = IH then A =
EV ∈ W, so p ∈ C by 2.17—a contradiction. Thus V ∈ W∗ and K = VNH

by 2.12(2).
Let

V = {V ∈ W∗ : (V,VNH)∈ E}.
Applying 4.4 to V and A, we conclude that V ∈ W− and θ(V ) ≤ A.

By 1.2, there exists a connected component C1 of �′ distinct from C such that C1

contains distinct co-atoms x1 and x1 with x = x1 ∧ x2 �= 0. Set

V1 = {V ∈ V : p(v) = (V,VNH)∈ C1}.
By paragraph two, the set C∗

1 of maximal members of C1 is {p(V ) : V ∈ V1}. Thus
p(xi) = (Vi,ViNH ) for some Vi ∈ V1. Then, by 2.10, p(x) = (V,VNH), where
V = 〈V1,V2〉. Set X = NG(IH ) and X∗ = X/IH .

Next, V ∩ A = IH (V ∩ E) ∈ W, so p = (V ∩ A, (V ∩ A)NH) ∈ �. Thus, if
p �= ∞ then a ≤ p ≥ x, contradicting x ∈ C1. Hence p = ∞, so V ∩ A = IH .

By 3.8 and 3.9, for i = 1, 2 we have Vi ≤ X ≥ θ(Vi) and Vi(θ(Vi) ∩ E) =
Viθ(Vi) = ViN0 ≤ NX(V ). Thus F0 = 〈θ(Vi) ∩ E : i = 1, 2〉 ≤ F = NX∩E(V )

and N0 ≤ VF0. Then F and V are normal in 〈F,V 〉 with F ∩V ≤ A∩V = IH , so
〈F ∗,V ∗〉 = F ∗ × V ∗ ≥ N ∗

0 . Now N0 ∩V = IH and N0 ∩ FIH ≤ N0 ∩ A = IH ,
so N ∗

0 ∩ F ∗ = N ∗
0 ∩V ∗ = 1. Therefore, N ∗

0 is a diagonal subgroup of F ∗ × V ∗.
Let N ∗

V be the projection of N ∗
0 on V ∗. Since N ∗

0 is a full diagonal subgroup of
V ∗
i × θ(Vi)

∗ = V ∗
i × E∗

i , where Ei = E ∩ θ(Vi), it follows that V ∗
i = N ∗

V . But
thenV1 = V2, so x1 = x2, a contradiction. This contradiction completes the proof
of 4.12.

5. CD-lattices

In this section we assume the following hypothesis.

Hypothesis 5.1. Hypothesis 2.1 holds, kerIH (H ) = 1, �(τ) is disconnected,
H = H∗(τ ), and D is a minimal normal subgroup of H such that DIH /∈ W.

We adopt Notations 2.2, 3.3, and 3.7. Observe that Hypothesis 4.1 is satisfied.

5.2. D = F ∗(H ) is the direct product of the set L of components of H, the com-
ponents of H are simple, and H is transitive on L.
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Proof. By 4.3(1), F(H ) = 1; thus, since D is a minimal normal subgroup of H,
it follows that D is the direct product of its set L of components, which are sim-
ple and transitively permutated by H. If D �= F ∗(G) then 1 �= X = CH(D) � H.

Since kerIH (H ) = 1, X � IH . Therefore, since DIH /∈ W, �(τ) is connected by
3.11 and 3.10(3), contrary to Hypothesis 4.1.

Notation 5.3. Let L be the set of components of D. For E ∈ L and X ≤ H, set
XE = X ∩E and XD = X ∩D, and write X̄E for the projection of XD on E with
respect to the direct product decomposition of 5.2. Write ND for N0 ∩ D and ID
for IH ∩ D, and write N̄E and ĪE for the corresponding projections on E. Set

X̄ =
∏
E∈L

X̄E , N̄D =
∏
E∈L

N̄E , Ī =
∏
E∈L

ĪE.

For γ ⊆ L, set Dγ = 〈γ〉. Set M = NH(ID) ∩ NH(ND), Q = CM(ND/ID), and
d = (Q,M). Let

PD = ((τ,D)′ and P ∗
∞ = P ∗ − �(τ,D).

5.4. (1) N0 = NDIH and ND/ID ∼= L.

(2) d ∈ P.
(3) M(∞) ≤ M and Q(∞) ≤ Q, so l(∞) ≥ d.

(4) P(τM) = P(≥ d), and the map X �→ (X ∩Q,X) is an isomorphism of the
dual of OM(NH) with P(τM).

Proof. Since DIH /∈ W, (1) follows from 3.5.
Let M ∗ = M/ID. Now [IH ,ND] ≤ IH ∩ ND = ID , so IH ≤ Q and NDQ =

N0Q. Next, by construction [Q,ND] ≤ ID , so [Q∩NH ,N0 ] ≤ IH by (1). There-
fore, since F ∗(NH/IH ) = N0/IH ∼= L, we have Q ∩ NH = IH and so Q ∈ W.

By definition we have Q∗ = CM ∗(N ∗
D) and N ∗

D is a nonabelian simple normal
subgroup of M ∗, so NDQ/Q = F ∗(M/Q), establishing (2). The proof of (3) is
straightforward.

For part (4), let p = (V,K)∈ P(τM). Then K ≤ M and

[V,ND] ≤ V ∩ ND = V ∩ NH ∩ ND = IH ∩ ND = ID ,

so V ≤ Q. Thus p ≥ d, so P(τM) ⊆ P(≥ d). The opposite inclusion is trivial,
so now (4) follows from 2.8(2).

5.5. Let p = (V,K)∈ P ∗∞. Then:

(1) either V = IH or K = VNH and V ∈ W∗;
(2) V ∩ DIH = IH ;
(3) p ≥ d;
(4) H = DQM(∞) = DM.

Proof. Part (1) follows from 2.12. Next IH ≤ V ∩ DIH ∈ IV (NH ), so V ∩ DIH ∈
W by 2.5. Hence, because V = IH or V ∈ W∗ (and in the latter case V � DIH as
p ∈ P ∗∞), it follows that (2) holds. By (2),
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[ND ,V ] ≤ V ∩ D = IH ∩ D = ID ,

so V ≤ Q. Then K ≤ M if K = VNH ; if V = IH then N0 � K, so also ND =
N0 ∩ D � K and again K ≤ M. Hence (3) holds.

By 5.1, H = H∗(τ ) and so, by 2.15(2), H = 〈W∗ , M(∞)〉. Let U ∈ W∗. If
U ≤ DIH then U ≤ DQ. On the other hand, if U � DIH then U ≤ Q by (3).
Thus H ≤ DQM(∞), so (4) holds because M∞ ≤ M by 5.4(3).

5.6. (1) For each proper subset γ of L, ND �= (ND ∩ Dγ )ID.

(2) Assume that NH is transitive on L and let V ∈ W. Then, for each proper
subset γ of L, NDVD �= (NDVD ∩ Dγ )VD.

Proof. Write Nγ for NDVD ∩ Dγ , and let ∗ : NDVD → NDVD/VD be the natural
surjection. Let

SV = {γ ⊆ L : NDVD = NγVD},
and write S ∗

V for the set of minimal members of SV under inclusion. Now Vγ =
V ∩ Dγ , the Nγ are NDVD-invariant, and for γ ∈ SV we have

L ∼= N ∗
D = NDVD

VD

= NγVD

VD

= N ∗
γ .

Let α,β ∈ S ∗
V . Then

[Nα ,Nβ] ≤ Nα ∩ Nβ = NDVD ∩ Dα ∩ Dβ = NDVD ∩ Dα∩β = Nα∩β.

Since also N ∗
α = N ∗

D = N ∗
β

∼= L,

N ∗
α∩β ≥ [Nα ,Nβ]∗ = [N ∗

α ,N ∗
β ] = N ∗

D

and hence α ∩ β ∈ SV , so α = α ∩ β = β because α,β ∈ S ∗
V . However, QM(∞)

acts on ND and ID by 5.4(3), and it is transitive on L by 5.5(4). Furthermore, NH

acts on ND and VD and, under the hypothesis of (2), NH is transitive on L. Thus,
if either V = IH or the hypothesis of (2) holds, then if α �= L is in S ∗

V we can
pick h ∈ NH(VD) ∩ NH(ND) with α �= αh = β and, since α ∈ S ∗

V , also β ∈ S ∗
V , a

contradiction.
We conclude that if either V = IH or the hypothesis of (2) is satisfied, then

S ∗
V = {L} and hence SV = {L}. This completes the proof of the lemma.

5.7. Assume |L| > 1. Then the following statements hold.

(1) For each E ∈ L, N̄E/ĪE ∼= L.

(2) ĪIH ∈ W.

(3) NDĪ/Ī is a full diagonal subgroup of N̄D/Ī = ∏
E∈L N̄EĪ/Ī .

(4) Assume that V ∈ W and that NH is transitive on L. Then:
(a) for each E ∈ L, N̄EV̄E/V̄E

∼= L;
(b) V̄IH ∈ W;
(c) NDV̄/V̄ is a full diagonal subgroup of N̄D/V̄.

Proof. Let E ∈ L and let πE : D → E be the projection map. Let V ∈ W and as-
sume that either V = IH or NH is transitive on L. If N̄EV̄E = V̄E then NDVD =
VD(NDVD ∩ ker(πE)), so L − {E} is in the set SV defined in the proof of 5.6,
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contrary to 5.6. Therefore, V̄E is a proper normal subgroup of N̄EV̄E and so, since
NDVD/VD

∼= L, (1) and (4a) follow by applying πE.

Let P = NDVD ∩ V̄. Then PπE ≤ V̄πE = VDπE = V̄E and, if P � VD , then
(since NDVD/VD

∼= L) we have NDVD = PVD. But now

N̄EV̄E = (NDVD)πE = PπEVDπE = PπEV̄E = V̄E ,

contrary to (1) and (4a). Therefore P ≤ VD , so

N0 ∩ V̄IH = NDIH ∩ V̄IH = (NDIH ∩ V̄ )IH = (NDIH ∩ D ∩ V̄ )IH

= (ND ∩ V̄ )IH = (ND ∩ NDVD ∩ V̄ )IH = (ND ∩ P)IH

≤ (ND ∩VD)IH = IH ,

establishing (2) and (4b).
Now, by (2) and (4b), NDV̄/V̄ ∼= ND/(ND ∩ V̄ ) = ND/ID ∼= L and

NDV̄

V̄
≤ N̄DV̄

V̄
=

(∏
E∈L N̄E

)
V̄

V̄
∼=

∏
E∈L

N̄EV̄

V̄
,

with (NDV̄ )πE = N̄EV̄E for each E ∈ L. Therefore (3) and (4c) follow from (1)
and (4a) together with [AS, 1.4].

5.8. Assume �(τ) is a C∗-lattice in which no connected component has a least
element. Then NH is transitive on L.

Proof. We may assume L = L1 ∪ L2 is an NH -invariant partition of L with L i �=
L for i = 1, 2. Let Di = 〈L i〉, G = NH(D1), and µ = τG. By 2.3, µ ∈ T (L).

Because � = �(τ) is a C∗-lattice, so is @ = �(µ). Furthermore, D1 and D2

contain distinct minimal normal subgroups of G. Hence, applying Theorem 4.10
to µ, we conclude that either:

(i) @ is connected; or
(ii) IH � G∗ = H∗(µ), Di

∼= L, and P ′(µ) = {r1, r2}, where ri = (DiIH ,DiNH).

By 5.5(4), M is transitive on L; thus, since NH is not transitive, we have NH <

M. Therefore, using 5.4(2), d ∈ Q = P ′(τM) and so Q is nonempty. Next, by
5.4(4), Q is connected with least element d. Hence Q is contained in a connected
component C1 of P ′. Furthermore, P ∗ = P ∗

D ∪ P ∗∞, where P ∗
D ⊆ P(µ) and, by

5.5(3), P ∗∞ ⊆ Q. On the other hand, P ′ is disconnected, so it contains a sec-
ond component C2. It follows in case (i) that C1 = Q and C2 = P ′(µ); and in
case (ii), C2 = {ri} for i = 1 or 2. But by hypothesis, neither C1 or C2 has a least
element, whereas C1 has least element d in case (i) and C2 has least element ri in
case (ii).

Hypothesis 5.9. Hypothesis 5.1 holds, �(τ) is a C∗-lattice, and NH is transitive
on L.

5.10. Assume Hypothesis 5.9. Then, for each V ∈ W, VD is the direct product of
the subgroups VE as E varies over L.

Proof. We may assume |L| > 1. Let p = (V,K) ∈ P and define ϕ(p) =
(V̄V, V̄K). By Hypothesis 5.9, NH is transitive on L and so, by 5.7(4b), V̄IH ∈ W.
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Observe that NH(V ) acts on VD and hence permutes the groups V̄E , E ∈ L, so
NH(V ) acts on V̄. If N0 ≤ V̄V then ND ≤ V̄V ∩ D = V̄ (V ∩ D) = V̄, contrary
to V̄IH ∈ W. Thus N0 � V̄V, so V̄V ∈ W by 3.6(1). Therefore ϕ(p)∈ P by 2.17.
By construction, ϕ(p) ≤ p.

Let q = (U, J ) and suppose p ≤ q. Then U ≤ V and J ≤ K. Hence UD ≤
VD , so for each E ∈ L we have ŪE ≤ V̄E and hence Ū ≤ V̄. Therefore ϕ(p) ≤
ϕ(q), so ϕ : P → P is a map of posets. Thus, since �(τ) is a C∗-lattice by Hy-
pothesis 5.9, it follows from 1.1 that ϕ is the identity map on P. Hence V = V̄V,
so V̄ ≤ V, establishing the lemma.

Notation 5.11. Pick E ∈ L and let π : D → E be the projection of D on E.

For X ≤ H, set X̂ = NX(E). Set τ̂ = (Ĥ, N̂H , ÎH ). Set G = AutH (E) and
let c : Ĥ → G be the conjugation map. Set NG = N̂H c, IG = ÎH c, and γ =
(G,NG, IG). Let A = CH(E), B = AÎH , and r = (B,AN̂H ). Identify E with
Inn(E) ≤ G via c. Define P(γ )E = ((γ,E)′.

5.12. (1) τ̂ ∈ T (L).

(2) ϕ : P → P̂ = P(τ̂ ) is a map of posets, where ϕ(p) = (V̂, K̂) for
p = (V,K)∈ P.

(3) γ ∈ T (L) and r ∈ P̂.
(4) Let R̂ = P̂(≤ r),

V̂ = {V1 ∈ W(τ̂ ) : AV1 ∩ N̂H = ÎH },
and Q̂ = {(V1,K1) ∈ P̂ : V1 ∈ V̂ }. For p1 = (V1,K1) ∈ Q̂, define ψ(p1) =
(V1c,K1c). Then ψ : Q̂ → P(γ ) is a map of posets that restricts to an isomor-
phism ψ : R̂ → P(γ ).

(5) Assume Hypothesis 5.9.

(a) For each p ∈ P, ϕ(p)∈ Q̂.

(b) For p ∈ P, define φ(p) = ψ(ϕ(p)); then φ : P → P(γ ) is a map of posets.

Proof. Parts (1) and (2) follow from the corresponding parts of 2.4.
Let σ : ND → N̄E be the restriction of π to ND. Because π is Ĥ -equivariant,

σ is N̂H equivariant. Since NDσ = N̄E with N̄E/ĪE ∼= L ∼= ND/ID by 5.7(1), σ
induces an isomorphism of ND/ID with N̄E/ĪE. In particular, CNH

(E) centralizes
ND/ID , so CNH

(E) ≤ Q. Thus, by 5.4(2), CNH
(E) ≤ ÎH and so, since CNH

(E) =
A ∩ N̂H , we have A ∩ N̂H ≤ ÎH . Therefore, (3) follows from parts (1) and (2) of
3.13 while (4) follows from 3.13(4).

Finally, assume Hypothesis 5.9 and let p = (V,K) ∈ P. By 5.10, VDπ = VE.

Since π is Ĥ -equivariant and [V,ND] ≤ VD , it follows that [AV̂, N̄E] = [V̂, N̄E] =
[V̂,NDπ] ≤ VDπ = VE. Supposeϕ(p) /∈ Q̂. Then, by 3.6(1), ND ≤ AV̂. ButX =
〈N̄F : F ∈ L − {E}〉 ≤ A, so N̄EX = NDX ≤ AV̂. Thus [N̄E , N̄E] ≤ [AV̂, N̄E] ≤
VE whereas, by 5.7(4) and 5.10, N̄E/VE = N̄E/V̄E

∼= L—a contradiction.
Thus (5a) holds. Then (5b) follows from (5a), (2), and (4).

5.13. Assume Hypothesis 5.9 and let I+ be the kernel of the action of IH on L.

Then I+ = CNH
(N̄D/ID).
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Proof. By 5.10, ID � N̄D. Let N̄ ∗
D = N̄D/ID. Since N̄ ∗

D is the direct product of
the groups N̄ ∗

F , F ∈ L, it follows that I = CNH
(N̄ ∗

D) is contained in the kernel of
the action of NH on L. Since F ∗(NH/IH ) = NDIH/IH , we have IH = CNH

(N ∗
D),

so I ≤ IH and hence I ≤ I+. Finally, 5.7(4c) says that, for each F ∈ L, πF in-
duces an I+-equivariant isomorphism of N ∗

D with N̄ ∗
F . Therefore, I+ ≤ I.

5.14. Assume Hypothesis 5.9. For q = (U, J )∈ P(γ )E , define

Uη = 〈(U ∩ E)NH 〉, Jη = 〈(J ∩ E)NH 〉, Jµ = NJη(NDUη),

and η(q) = (UηIH , JµNH). Then:

(1) the image of PD under the map φ of 5.12(5) is contained in P(γ )E;
(2) η : P(γ )E → PD is a map of posets;
(3) η � φ = 1 on PD , so φ is injective on PD and induces an isomorphism of PD

with φ(PD) ≤ P(γ );
(4) φ(η(q)) = (U, J+), J+ ≤ J, so φ(η(q)) ≥ q;
(5) φ induces an isomorphism of �(τ,D) with �(γ,E) that has inverse η.

Proof. Let p = (V,K)∈ PD. Then V ≤ DIH , so V = V ∩ DIH = (V ∩ D)IH =
VDIH . Then, since VD ≤ Ĥ, we have V̂ = VDIH ∩ Ĥ = VD(IH ∩ Ĥ ) = VDÎH .

Similarly, K = KDNH and K̂ = KDN̂H . Thus φ(p) = ψ(VDÎH ,KDN̂H ) =
(VEIG,KDπNG)∈ P(γ )E by 5.12(5). This establishes (1).

On the other hand, let q = (U, J ) ∈ P(γ )E. Then UE is NG-invariant, so Uη

is the direct product of the group U n
E , n ∈ NH , with U n

E = (Uη)πEn. Since UE is
NG-invariant, Uη is NH -invariant, and since U ∩ N̄E = IE , we have Uη ∩ N̄D =
ID. Thus ND � Uη = UηIH ∩ D, so ND � UηIH . Hence W = UηIH ∈ W by
3.5. Furthermore, WD = W ∩ D = UηID = Uη and W ≤ DIH .

Similarly, Jη is the direct product of the groups J n
E ,n∈NH , with J n

E = (Jη)πEn.

Write JEn for J n
E. Define I+ as in 5.13. Since I+ ≤ ÎH ≤ CH(JE/UE) and I+ �

NH , it follows that [I+ , Jη] ≤ WD. Therefore, WDI+ � X = JηNH . Set X∗ =
X/WDI+. Then (Jη)∗ � X∗ is the direct product of the groups J ∗

F
∼= JE/UE and,

by 5.13, I+ = CNH
(N̄ ∗

D). Thus F ∗(X∗) = N̄ ∗
D is the direct product of the groups

F ∗(J ∗
F ) = N̄ ∗

F
∼= L. By 5.7(4c), N ∗

D is a full diagonal subgroup of N̄ ∗
D.

Let Y = JµN̂H . Now π induces a Y -equivariant isomorphism of N ∗
D with

N̄E/UE , so WDÎH = CY (N̄E/UE) = CY (N
∗
D) and hence UηIH = WDIH =

CJµNH
(N ∗

D); thus NDUηIH/UηIH = F ∗(JµNH/UηIH ) and therefore η(q) ∈ PD.

Clearly η is map of posets, so (2) holds.
Let U = IG ∩ E. Then [U, N̄E] ≤ N̄E ∩ U = ĪE , so W = 〈UNH 〉IH centralizes

ND/Ī . By 5.10, Ī = ID , so r = (W,WNH) ∈�(τ,D) and r ≥ d. Claim U ≤ IE.

Suppose not. Then r �= ∞. But for each v = (V,NH) ∈ �(τ,D), U acts on VE ,
so W acts on V̄. By 5.10, VD = V̄ ; then, since W centralizes ND/ID , we have r ≤
(WV,WVNH) ≥ v by 3.5 and so C(d ) = C(r) = C(s). Then, by 5.5(3), �(τ) is
connected, contrary to 5.1. Therefore, IG ∩ E ≤ IE.

Recall that φ(p) = (VEIG,KDπNG). Since IG ∩E ≤ IE , we haveVEIG ∩E =
VE and so, by 5.10, VEη = VD. Next, KDπNG ∩ E = KDπ(NG ∩ E). Let P be
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the preimage in N̂H under c of NG ∩ E. Then KD ≤ (KDπNG)µ and, since π in-
duces a KDN̂H -equivariant isomorphism of NDVD/VD with NE/VE , it follows that
(KDπNG)µ ≤ KDP. Therefore (KDπNG)µNH = KDNH . That is, η(φ(p)) = p,
establishing (3).

Now JµNH ∩ D = Jµ(NH ∩ D) = JµND = Jµ because ND ≤ Jµ. By con-
struction, Jµc ≤ J. Similarly, UηIH ∩Jη = Uη andU = (Uη)c. Thus φ(η(q)) =
(U, J+), where J+ = JµcNG ≤ J. Hence (4) holds. In particular, if J = UNG

then J = J+ , so (5) follows from (2) and (3).

5.15. Assume ( is a sublattice of �(τ) that is isomorphic to �(m) for some m >

2 and contains 0, ∞. Assume that P(≥ x) ⊆ ( for each x ∈ (# and that d ∈ (.

Then:

(1) P(≥ d) ⊆ �(τ,D);
(2) Q = QDIH and M = QNH , so M = QDNH ;
(3) H = DNH and G = ENG;
(4) if Hypothesis 5.9 is satisfied and �(τ) is a C-lattice then �(τ) = �(τ,D),

H = K∗(τ,D),G = K∗(γ,E), and φ : �(τ) → �(γ,E) is an isomorphism.

Proof. Let J = {1, . . . ,m} and let (xj = (Vj ,Kj) : j ∈ J ) be the set of co-atoms
of (. For α ⊆ J, set xα = ∧

a∈α xa = (Vα ,Kα). Set J1 = {j ∈ J : Vj = IH } and
J2 = J − J1. We first observe that, by 2.10(3),

(5) if J �= α ⊆ J2 then Vα = 〈Va : a ∈ α〉 and Kα = VαNH .

Suppose α ⊆ J1. Then, by 5.5(3), d ≤ xa for a ∈ α and so d ≤ xα. Then we
can apply 2.10(1) to conclude that:

(6) if α ⊆ J1 then d ≤ xα , Kα = 〈Ka : a ∈ α〉, and Vα = K ∩ Q;
(7) if j ∈ J1 and i ∈ J2, then Vi,j = Vi is Kj -invariant and Ki = ViNH .

For as j ∈ J1, we have Vj = IH and so Kj �= NH since xj �= ∞. Then, since
Kj ≤ Ki,j and since Vi,j ∩ Kj = Vj by 2.10(1), we also have Ki,j �= Vi,jNH .

But by hypothesis P(≥ xi,j ) ⊆ (, so P(≥ xi,j ) ∼= �(2). Therefore, since xi,j <

(Vi,j ,Vi,jNH ) = x, it follows that x = xi; hence Vi = Vi,j is Ki,j -invariant and
Ki = ViNH . Then, since Kj ≤ Ki,j , (7) follows.

(8) For α ⊆ J1 and β ⊆ J2, Vβ is Kα-invariant.

By (5), Vβ = 〈Vb : b ∈ β〉, and by (6), Kα = 〈Ka : a ∈ α〉. Then (8) follows
from (7).

(9) For β ⊆ J1, Vβ = IH .

Choose a counterexample with |β| minimal. Then |β| > 1, so β = α ∪ {j} for
some j ∈ J1 and α ⊆ J1 with Vα = IH . Set x = (Vβ ,VβNH). By (6), d ≤ xβ.

Thus Vβ ≤ Q, so d ≤ x and hence 0 �= x ∈(. Also xβ ≤ x, so x = xγ or xγ ∧ xj
for some γ ⊆ α. But for γ ⊆ α we haveVγ = IH , so x = xγ ∧ xj . Therefore x ≤
xj , so Kj ≤ VβNH , a contradiction.

(10) For all j ∈ J we have Vj �= IH , so xj = (Vj ,VjNH) and J = J2.
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Assume otherwise, so that J1 �= ∅. Now 0 = xJ1 ∧ xJ2 , where xJ1 = (IH ,KJ1)

by (9) and xJ2 = (VJ2 ,VJ2NH) by (5). By (8), KJ1 acts on VJ2 . Thus, by 2.17,
xJ1 ∧ xJ2 = (VJ2 ,KJ2) �= 0, a contradiction.

Set J3 = {j ∈ J : Vj � DIH } and J4 = J − J3. Set � = �(τ,D).

(11) VJ4 = XIH , where X = 〈Vj ∩ D : j ∈ J4〉 ≤ D; in particular, xJ4 ∈�.

By (10), J = J2, so by (5), VJ4 = 〈Vj ∩ D : j ∈ j4〉IH = XIH .

(12) Let j ∈ J4 and α = J3 ∪ {j}; then Vα ∩ D = Vj ∩ D � Kα.

Set U = Vα ∩ D. Since j ∈ J4 we have Vj = (Vj ∩ D)IH and so, since Vj ≤
Vα , it follows that Vj ≤ UIH . Let x = (UIH ,UNH). Then xα ≤ x ≤ xj and x ∈
� as U ≤ D. Because xα ≤ x, x = xβ for some β ⊆ α. If β �= {j} then x ≤ xi

for some i ∈ J3; thus, since x ∈�, also xi ∈� by 2.7, a contradiction. Then β =
{j} and so x = xj . Therefore (Vα ∩ D)IH = Vj , so

Vj ∩ D = (Vα ∩ D)IH ∩ D = (Vα ∩ D)(IH ∩ D) = Vα ∩ D � Kα ,

completing the proof of (12).

(13) Let α ⊆ J3 and ∅ �= β ⊆ J4. Then:
(a) Vβ ∩ D is Kα-invariant; and
(b) ND � (Vβ ∩ D)Vα.

By (5) and (10), Vβ = 〈Vj : j ∈ β〉. For j ∈ J4, we have Vj = (Vj ∩ D)IH and
so Vβ ∩ D = 〈Vj ∩ D : j ∈ β〉. Now (13a) follows from (12).

Next, (Vβ ∩ D)Vα ∩ D = (Vβ ∩ D)(Vα ∩ D) and, by (12), for j ∈ β we have
Vα ∩ D ≤ Vα∪{j} ∩ D = Vj ∩ D ≤ Vβ , so (Vβ ∩ D)(Vα ∩ D) ≤ Vβ ∩ D. Thus, if
ND ≤ (Vβ ∩ D)Vα then ND ≤ Vβ , a contradiction. This establishes (13b).

We now establish (1). Assume (1) fails. Then d �= ∞ and so, since d ∈ (, we
have d = xγ for some γ ⊆ J. By 2.7, d /∈ �; then, since � is a sublattice, γ �
J4. Thus J3 �= ∅. If J4 = ∅ then d ≤ xi for each i ∈ J by 5.5(3), contradicting
( ∼= �(m). Thus J4 �= ∅.

Let α = J3 and β = J4. Then 0 = xα ∧ xβ. But Kα acts on X = Vβ ∩ D by
(13), and ND � XVα. Thus, by 2.17, xα ∧ xβ = (X,XNH) �= 0—a contradiction.
This completes the proof of (1).

By (1), (Q,M) = d ∈ � and hence Q = QDIH and M = QNH. Thus (2)
holds. Then (2) and 5.5(4) imply H = DNH . Now, since D ≤ Ĥ, it follows that
Ĥ = Ĥ ∩ DNH = DN̂H and so G = Ĥc = DcN̂Hc = ENG, establishing (3).

Assume the hypothesis of (4). Then φ : �(τ,D) → �(γ,E) is an isomorphism
with inverse η by 5.14(5). We claim that � = �(τ,D) = �(τ). Suppose the con-
trary; then, since �(τ) is a C-lattice, there exists a p = (V,K) ∈ P ∗ with p /∈ �.

By 5.5(3), p ≥ d. But now (1) supplies a contradiction, establishing the claim.
Since � = �(τ), we have H∗(τ ) = K∗(τ,D) and so H = K∗(τ,D) by 5.1.

Let G1 = K∗(γ,E) and suppose G �= G1. Then, since G = ENG, we have XE =
G1 ∩ E �= E and so

X = 〈XNH

E 〉 =
∏
F∈L

XF �= D,
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where XEn = Xn
E for n ∈ NH . Let p = (V,K) ∈ P ∗ and p1 = (V1,K1) = φ(p).

Then V1 ∩ E ≤ XE , so VD = V1η ≤ X and hence, since η = φ−1, K = VDNH ≤
XNH . Therefore H = K∗(τ,D) = XNH . Then, since X � XNH , the unique min-
imal normal subgroup D of H is contained in X, contradicting X proper in D.

This completes the proof of (4).

6. Proof of Theorem 2

In this section we assume the following hypothesis.

Hypothesis 6.1. For some integers t > 1 and mi > 2, � is a D�(m1, . . . ,mt)-
lattice, L is a nonabelian finite simple group, and τ = (H,NH , IH ) ∈ T (L) with
� ∼= �(τ) and |H | minimal subject to this constraint.

6.2. Hypothesis 5.1 is satisfied.

Proof. We begin by remarking that Hypothesis 6.1 implies Hypothesis 2.1. Be-
cause � is a D�(m1, . . . ,mt)-lattice, � is a CD-lattice. By 2.14, H = H(τ ) and
kerNH

(H ) = 1. Then, by 4.11, D = F ∗(H ) is a minimal normal subgroup of H ;
and, by 4.12, DIH /∈ W. By 2.15, H = H∗(τ ), completing the proof.

Set D = F ∗(H ) and let L be the set of components of H.

6.3. Hypothesis 5.9 is satisfied.

Proof. By 5.8, NH is transitive on L. Therefore, since � is a C-lattice, the lemma
follows from 6.2.

6.4. Adopt Notation 5.11. Then:

(1) �(τ) = �(τ,D);
(2) H = DNH ;
(3) G = ENG;
(4) φ : �(τ) → �(γ,E) is an isomorphism;
(5) G = K∗(γ,E).

Proof. Let C be a connected component of �(τ)′ with d ∈ C if d �= ∞, and set
( = C ∪ {0, ∞}. Since � is a D�(m1, . . . ,mt)-lattice, ( ∼= �(mi) for some i.

Furthermore, P(≥ x) ⊆ ( for all x ∈(#, so the lemma follows from 6.3 and 5.15.

Observe that Theorem 2 follows from [A2, Thm. 3] and 6.4. To see this, assume
the hypotheses of Theorem 2 and let (H, G̃) ∈ G ∗(�). We may assume that G̃
is not almost simple. Then [A2, Thm. 3] shows that τ = (H,NH , IH ) ∈ T (L),
where L is a component of G̃, NH = NH(L), and IH = CH(L). Replace τ by
a tuple in T (L) with |H | minimal. Then Hypothesis 6.1 is satisfied. We adopt
Notation 5.11 and appeal to 6.4: by construction, E ≤ G ≤ Aut(E), so G is al-
most simple with F ∗(G) = E. By 5.12(3), γ = (G,NG, IG) ∈ T (L); by 6.4(3),
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G = ENG. Moreover, � ∼= �(τ) ∼= �(γ,E) by 6.4(4), and G = K∗(γ,E) by
6.4(5). Finally, by 2.11(2), �(γ ) is isomorphic to the dual of �(γ,E) and so,
since �(γ,E) ∼= � and since the D�(m1, . . . ,mt)-lattice � is self-dual, it follows
that � ∼= �(γ ). Similarly, K(γ ) = K∗(γ,E), so G = K(γ ). Hence γ satisfies
conclusion (2) of Theorem 2, so the proof of Theorem 2 is complete.
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