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Signalizer Lattices in Finite Groups

MICHAEL ASCHBACHER

Dedicated to the memory of Donald G. Higman

Let G be a finite group and let H be a subgroup of G. We investigate constraints
imposed upon the structure of G by restrictions on the lattice Og(H) of over-
groups of H in G. Call such a lattice a finite group interval lattice. In particular
we would like to show that the following question has a positive answer.

QuEsTION . Does there exist a nonempty finite lattice that is not isomorphic to
a finite group interval lattice?

See [PPu] for the motivation behind Question I and for one consequence of prov-
ing that it has a positive answer. See [Sh] for some conjectures that would imply
the Question has a positive answer.

Let A be finite lattice and G(A) the set of pairs (H, G) such that G is a finite
group, H < G, and Og (H ) is isomorphic to A or its dual A*. Write G*(A) for the
set of pairs (H, G) such that |G| is minimal subject to (H, G) € G(A).

In [A2] we defined the notion of a “signalizer lattice” determined by a suitable
tower Iy < Ny < H of finite groups. We also defined a class of lattices we called
“CD-lattices” and proved that, if A is a CD-lattice and (H, G) € G*(A), then either
G is almost simple (i.e., G has a unique minimal normal subgroup D and D is
a nonabelian simple group) or A (or A*) is isomorphic to a signalizer lattice in
H. Thus, to show Question I has a positive answer, it suffices to show there is a
CD-lattice A such that:

(IAA) there exists no almost simple finite group G with a subgroup H such that
Og (H) is isomorphic to A or its dual; and
(SA) there exists no signalizer lattice isomorphic to A or its dual.

In this paper we initiate the study of signalizer lattices, with the hope of es-
tablishing (/A A) and (SA) for lattices A in a suitable family of CD-lattices and
thereby proving that Question I has a positive answer. See [BL] for another pos-
sible approach.

Let L be a nonabelian finite simple group. Define 7 (L) to be the set of triples
t = (H, Ny, Iy) such that:

(T1) H is afinite group and Ny < H;
(T2) Iy < Ny and F*(Ny/Iy) = L.

The tuple T € T(L) is said to be faithful if kery, (H) = 1.
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Assume 7 € T(L) and write Ny for the preimage in Ny of Inn(L) under the
map of Ny into Aut(L) supplied by (T2). Define

W = W('C) = {WEIH(NH) :WN Ny = IH}
and

P=P)={V,K):VeW, K e ONH(V)(VNH), and N()V/V = F*(K/V)}

Here Zp (Ny) is the set of Ny-invariant subgroups of H.

Partially order P by (V1,K;) < (V,,K») if Vo, < Viand K, < K. Let A(7)
be the poset obtained by adjoining an element O to P such that 0 < p for all p €
‘P. The construction in [A2, 7.1] shows that, given a simple group L and t =
(H, Ny, Iy) € T(L), there exists an overgroup G of H such that the poset Og (H)
is isomorphic to A(t). In particular, A(7) is a lattice isomorphic as a lattice to
Og(H). We call lattices of the form A(t) signalizer lattices.

Next we remark that A has a greatest element co and least element 0. Set A’ =
A — {0,00}. Regard A as an undirected graph whose adjacency relation is the
comparability relation on A. Define A to be connected if the subgraph A’ is con-
nected as a graph.

The notions of D-lattice, C-lattice, and CD-lattice are defined in Section 1. For
example, a D-lattice is a disconnected lattice satisfying a certain nondegeneracy
condition. We prove that if H admits a CD-signalizer lattice then the structure of
H is highly restricted, as indicated in our first theorem.

THEOREM 1. Assume L is a nonabelian finite simple group and A is a CD-lattice.
Assume t = (H, Ny, Iy) € T(L), A is isomorphic to A(t) or its dual, and |H |
is minimal subject to this constraint. Then F*(H) is the direct product of non-
abelian simple subgroups permuted transitively by H.

Given t = (H, Ny, Ig) € T(L), define
Wi=Wi(t)={WeW: W < F*(H)Iy}

and order W by inclusion. Let E(t) be the poset obtained by adjoining a greatest
member oo to W;. By 2.11 (to follow), E () is a lattice isomorphic to the dual of
a sublattice of A(t). Call E(t) a lower signalizer lattice. Set K(t) = (W1, Ng).

Given a positive integer n, an n-set is a set of order n. Let A(n) be the lat-
tice of all subsets of an n-set, partially ordered by inclusion. Given integers ¢ and
my,...,m; witht > 1and m; > 2 for each i, a DA(m,,...,m;)-lattice is a finite
lattice A such that A’ has ¢ connected componentsCy, ..., C, suchthatC; = A(m;)'.
As shown in Section 1, DA(my, ..., m,)-lattices are CD-lattices. Shareshian’s con-
jectures B and C in [Sh] suggest that the class of DA(m,, ..., m,)-lattices supplies
a good collection of candidates for lattices A satisfying (IAA) and (SA). The fol-
lowing theorem reinforces that suggestion.

THEOREM 2. Assume t and m;, | < i < t, are integers witht > 1 and m; > 2,
and assume A is a DA(my, ..., m;)-lattice that is a finite group interval lattice.
Then there exists an almost simple finite group G such that either
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(1) A = Og(H) for some subgroup H of G or
(2) there exists a nonabelian finite simple group L anday = (G, Ng, Ig) € T(L)
such that G = F*(G)Ng, G = K(y),and A = E(y).

In particular: by Theorem 2, to show that a DA(m, ..., m,)-lattice A supplies a
positive answer to Question I, it suffices to verify (IAA) and (SAA).

(SAA) There exists no nonabelian simple group L and no y = (G, Ng, Ig) €
T(L) such that G is almost simple, G = F*(G)Ng = K(y), and A =
E(y).
John Shareshian and the author are currently in the midst of a program to verify
(IAA) and (SA A) for most DA(my, ..., m,)-lattices A.
For notation and terminology involving finite groups, see [Al]. Theorem 1 is
proved in Section 4, and Theorem 2 is proved in Section 6.

1. Lattices

In this section, A is a finite lattice.

For x, y € A, we write x V y for the least upper bound of x and y in A and write
x Ay for the greatest lower bound of x and y in A. Set A* = A — {0}. The atoms
of A are the minimal members of A/, and the co-atoms are the atoms of the dual
of A. Define the depth of x € A in A to be the length d of the longest chain x =
Xg < --- <X, =001InA.

We say A is a D-lattice if there exists a partition A’ = A’} U A, of A’ such that,
fori =1and 2:

(D1) A is a union of connected components of A’, and
(D2) there exists a nontrivial chain k; < m; in A',.

Define A to be a C*-lattice if,

(C*) for all x € A, there exist maximal elements my,...,m, of A’ such that
X=mA---Am,.
A C,-lattice is a lattice dual to a C*-lattice, and a C-lattice is a lattice that is both
a C*-lattice and a C,-lattice. In the literature, C,-lattices are often called atomic
lattices.
Finally if X and Y are classes of lattices, then A is a XY -lattice if A is both an
X-lattice and a Y -lattice.

1.1. Assume A is a Cy-lattice such that N has no greatest element. Assume
o: A — A is a map of posets such that, for each p € A, o(p) < p. Then ¢ is
the identity.

Proof. Let p € A*. If p # oo then, since A is a C,-lattice, there exist atoms
X1y Xy With p = x; V- -V x,,. If p = oo then, since A’ has no greatest ele-
ment, such atoms also exist.

Now ¢(x;) < x; and so, since x; is an atom, ¢ fixes x;. Then, since ¢ is a map
of posets, x; = ¢(x;) < ¢(p) < pandsop =x;V---Vux, <¢(p) < p. That
is, ¢ fixes p. U
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1.2. Assume A is a C*D-lattice and C is a connected component of N. Then
there exist a connected component B of N, distinct from C, and distinct co-atoms
x1 and x, of B such that x; A xo # 0.

Proof. Because A is a D-lattice, there exists a connected component B, distinct
from C, containing an edge x < x| with x of depth 2 in A. Because A is a C*-
lattice, there exist co-atoms x,,...,x, in Bwithx = x; A--- Ax,. Then x <
X1 A xp and so, since x is of depth 2, x = x; A x». O

2. Basic Properties of Signalizer Lattices
In this section we assume the following hypothesis.

HypoTHESIS 2.1. L is a nonabelian finite simple group, and t = (H, Ny, Ig) €

T(L).
In addition, we adopt some notational conventions as follows.

NoOTATION 2.2.  Write N for the preimage in Ny of Inn(L) under the map of Ny
into Aut(L) supplied by (T2). Set W = W(r) and P = P(r). Write W, for the
set of minimal members of W — {Iy} under inclusion. Write oo for (/g, Ng) and
set P’ = P — {oo}. Write P* for the set of maximal members of P’. Thus, in the
language of Section 1, P* is the set of co-atoms of the poset P.
For p = (V,K) e P,set P(= p) ={qge€P :q > p}, M(p) = Ng(V) N
Ny (VNo), Q(p) = Cwm(p)(NoV/V), and [(p) = (Q(p),M(p)). Set
H(t)=(K:(V,K)eP) and H.(r)=(K:(V,K)eP*).
For Ny < M < H, define )y = (M, Ny, Iy). Given D < H, define
Aty ={(V,K)eP:K =VNy} and
I'*(t,D) ={(V,K)eP:V < DIy and K < DNy}.

Let A(r) and I'(z, D) be the subposets of A(t) obtained by adjoining 0 to A*(t)
and I'*(z, D), respectively, and set A(z, D) = A(t) N I'(z, D). Set
K(zr,D) = (K : (V,K) € A(z, D)),
K«(t,D) = (K : (V,K) € P*N A(z, D)).

The proof of the following observation is straightforward.

23. Let Ny <M < H. Then:

(1) ™ = (M, Nu, In) € T(L);

(2) P(ty) is a subposet of P;

(3) if p€P(tm), then P(= p) < P(tm);

(4) the inclusion map is an isomorphism of A(Ty (7)) with A(T);

(5) if D < H thenthe inclusion map is an isomorphism of A(tic(z, py, D N K(z, D))
with A(t, D).
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2.4. Let NH < H < H such that NH < NH, No = NOIH, where I\AJO =NoN NH;
and IH =IgN A < NH Set T = (H NH,IH) Then:

(1) TeT(L). o A A A

2) For p = (V,K) € P define o(p) = (V,K), where V.= VN H and K =
KNH. Then¢: P — P = P(T) is a map of posets.

Proof. Since Iy < Ny and IH = IHD N < Ny, itfollows that also fH < NH.

Furthermore,

A

Ny Ny NH In

iH NHOIH IH

12

Similarly, since 1\70 = NOHNH and Ny = NOIH, we have ]% < IVH and I%/fH
No/Ig = L. Then, since Ny = 1\701H and Ny/Iy = F*(Ny/Iy), we have NO/fH
F*(Ny/Iy). Thus (1) holds.
Letp = (V,K) € P. ThenVeIH(NH) andNH < NH, soV=VNHEe
I (NH) AISO VHNH = Iy andNH < Ny, SOVﬂNH = IHﬂNH = IH
Therefore Vel = Wy (NH,IH) Then K € Oy, (v)(VNg), so

K=KNnHEe Oy, 7 (VNu N H) C ONH(‘;)(VNH).

Furthermore, NoV/V = F*(K/V). Since Ny = NOIH, we also have NoV = ]%V
and so NoV/V = F*(KV/V). Now KV/V = K/(K NV) = K/V with NoV/V
mapping to NOV/V SO NOV/V F*(K/V) Thus (p(p) eP.

pr<q_(UJ)thenU<VandJ<KsoU UNH<VNH=Vand
similarly J < K. Therefore, ¢ is a map of posets, completing the proof of (2).

O

2.5. AssumeVeWand Iy < U € Zy(Ng). Then:
(1) Uew,;
) if U K)yePthen VNK =U.

Proof. The proof of (1) is trivial. Assume the hypothesis of (2) and let K* = K/U
and X =V N K. Because (U, K) e P, Nj = F*(K*) = L is simple and so, since
X is No-invariant, either X* =1 or Nj < X* In the former case (2) holds; in the
latter case Ny < V, contradicting V e W. O

2.6. For WeW, (W,WNy)eP.

Proof. If W € W then W < WNy and WNy/W = Ngy/(W N Nyg) = Ny/ly.
Thus, since L = No/Iy = F*(Ny/Iy), the lemma holds. O

27. Let D < H and ® € {A(7),I'(z, D), A(t, D)}. Then, for each p € ®,
P(=zp) <.

Proof. Let p = (V,K)ye ®Pandg = (U,J) > p. ThenU < Vand J < K. If
® = A(t) then K = VNy,so0J = JNVNy = (JNV)Ny = UNy by 2.5(2)
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and hence g € ®. If ® = I'(r, D) then V < DIy and K < DNg. Thus U =
U N DIy = (U N D)Iy < DIy and similarly J < DNy, so g € ®. The lemma
follows. O

2.8. Let p=(V,K)€eP andset Q = P(> p). Then:

() @={VNJ,J):JeOk(Nn}k

(2) themap . J — (VN J, J) is anisomorphism of the dual of Og(Ny) with Q;

Q) ifqgi = (Vi,K)) € Qfori = 1,2, then g1 vV qo = (ViNV,y, K1 N Ky) and
G Nga = (Vi2,Ki2), where Ky o = (K1, K) and Vi, = K12 NV,

(4) if K = VNpy, then K; = ViNy, (K1, K2) = (V1,V2)Ny, and VN (K}, K>) =
(V1,Va).

Proof. Let J € Og(Ng). Then VN J NNy < VN Ny = Iy and, since J €
Ok (Ny), Iy = NgyNV < JNVsoVNJNNy = Iy. ThusVNJeW. Also, Ny <
J and N()V/V = F*(K/V), SO CK/V(N()V/V) = 1. Thus C]V/V(N()V/V) = 1and
so NoV/V = F*(JV/V). Furthermore, the map 7 : jV — j(J NV), j€ J,isan
isomorphism of JV/V with J/(JNV) such that (NoV/V)r = No(JNV)/(JNV),
so F*(J/(JNV))=No(JNV)/(JNV). Thatis, (VN J,J)e Q.

Conversely, let (U, X) € Q. Then U < V and X < K; moreover, X € Oy (Ng)
and so X € Ox(Ng). By 2.5(2) we have U = X NV, completing the proof of (1)
and showing the map ¥ of (2) is surjective.

Clearly v is injective, so ¥ : Ox(Ny) — Q is a bijection. Furthermore, for
q;i = (V;, K;) € Q we have g < g, if and only if K, < Kj and V, < V) iff K, <
K, because V; = V N K;. This completes the proof of (2).

Next, in the lattice Og(Ny) we have K1 A K, = KiN K, and K; VvV K, =
(K1, K»). Then, applying the isomorphism 1 and recalling that v is applied to the
dual of Ok (Ny) yields

q1V qr =Ky v Koy = (K1 AK)Y = (KN Ky
=(VNKNKy,KiNKy)=(ViNVy, K1NK>),
and
G ANgr =Ky AKap = (K v K)Y = (K, Ko)y = (Via, Ki2);

this establishes (3).
Finally, suppose K= VNH. By 2.7, K,' = V,'NH. Also (K], Kz) = (NH,Vl,V2> =
UNy, where U = (V1,V;) € Tx(Ny). Then

Viao=Ki2NV=UNg NV =UNyNV)=Ulyg =1,
establishing (4). O

29. Letq; = (V;,K;)€P fori =1,2. Then:

(1) q1Vv g2 = U, K),where U =V NVyand K = Ng,ng,(No(Vi N V2));
(2) if Ny, (V2)Va e W, then K = K; N K»;
3) l.fK,‘ = V;Ny,then K = (ViNV,)Ny.
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Proof. Letqg = q1 Vg, = (U,K). Theng; < g,soU < V; and K < K; and
hence U < W =V NVyand K < J = Ng,nk,(W). By 2.5(1), W € W and so,
by 2.6, p = (W,WNp) € P. Then, since gq; < p fori = 1,2, it follows that g <
pandso W < U; hence U = W.

Let J*=J/U and Y = C;(N§). Then [Y,No] < U <V, fori =1,2,s0Y <
V; since F*(K;/V;) = NoV;/V;. ThusY = U andr = (U,J) €e P withg; <r <
g, so r = q. This completes the proof of (1).

Assume the hypothesis of (2), and let X = K; N K;. Then

[No, X1 < NoV1 N NoVy = NoZ,

where Z = Vi N NoV,. But Z < A = Ny,(V2)V, and A € W by hypothesis;
hence, by 2.5(2), Z < ANNgxV, = V,. Thus Z = VNV, = U and so [Ny, X] <
NoZ = NyU. Thatis, X < J,so X = J = K and (2) holds.

Finally, (3) follows from (1) and 2.7. O

2.10. Assume that p; = (V;, K;) € P for1 <i <nandthat piA--- A p, =
p = (V,K) #0. Then:

(1) K =(Ki,....K,)and V; = K; NV for 1 <i < n;
2) p1Vv---Vp,=(UJ), where
J=(Ki and U=JnV={)Vs
i=1 i=1
3) if K; = ViNy foreachi,1 <i <n,thenV =(Vy,...,V,), K = VNg, and
J = UNpy.

Proof. Since p; € P(> p) for each i, (1) and (2) follow from 2.8(3) by induction
onn.

Assume the hypothesis of (3). Then K = (Ny,V),...,V,) and Ny actson W =
(Vi,...,V,),s0 K = WNy. AlsoV; =VNK;,soW < V. Thus K = VNy. Now
V=VNK = (Vy,...,V,) by 2.8(4). Finally, J = UNy by 2.9(3) and induction
onn. O

2.11. (1) Let D < H. Then A(t) and A(t, D) are sublattices of A(T).

(2) The poset E(t) is isomorphic as a poset to the dual of A(t, F*(G)).

(3) E(7) is a lattice. Indeed, if oo #= W; € E(t) then Wi A Wy, = Wi N Wy,
and lle VvV W, # 00 then Wy v Wy = (W, Ws).

Proof. Let ® = A(t) or A(t, D). We first prove (1). By 2.7, ® is closed under
V, so it suffices to take ¢; = (V;, K;) € ® with g = gq; A g2 # 0 and to show g €
®. By 2.10(3), ¢ = (V,VNg), where V. = (V},V;). In particular, g € A(7), so
we may take ® = A(t, D). ThenV; < DIy,soV < DIy and VNy < DIyNy =
DNy; hence g € A(t, D). Thus (1) is established.

Take D = F*(H). Then the map V + (V,VNy) is an isomorphism of posets
from the dual of E(t) — {oo} to A(z, D)*. Thus (2) holds, and from (1) and (2) it
follows that E(7) is a lattice. Then 2.9 and 2.10(3) complete the proof of (3). [J
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212. Let p = (V,K) € P. Then:

(1) peP*iff Ny is maximal in K;
(2) if peP* then either K = VNy and Ve W, orV = Iy.

Proof. Part (1) follows from 2.8(2).

Suppose p € P* By 2.6, g = (V,VNy) € P and then g > p, so g € {oo, p}
since p € P* If ¢ = oo then V = Iy, whereas if ¢ = p then K = VNy. In the
latter case, since Ny is maximal in K we have V € W,. O

2.13. Assume H = H(t) and X is a normal subgroup of H contained in Ng.

Set H* = H/X. Then one of the following two statements holds.

(1) X < Iy, t* = (H* N}, 1) € T(L), and the map (V,K) — (V*,K*) is an
isomorphism of P with P(t*).

(2) X f Iy, then, Sel‘ti}’lg L=XNIg, Ny=XnN No, and Ql = CH(Nl/Il), we
have that I and Q are normal in H, (Q1, H) is the least element of P, and
‘P is isomorphic to the dual of Oy (Npg).

Proof. If X < Iy then it is an easy exercise to check that (1) holds. Thus we may
assume that X jé Iy and adopt the notation in (2). Since No/Iy = F*(Ny/Iy) =
L, we have No = N Iy.

Let (V,K) e P. Since X < Ny, itfollowsthatVNX = VNNyNX = IzNX =
I,. Then, since K acts on V and X, we have K < Ngy(l;). Hence, since H =
H(T), I] Sl H. Set H+ = H/I]

Similarly, K acts on NoV and X and hence on NgV N X = NV N X =
N(VNX) = NI = N;. Thus [V,Ni] < NNV = I;,s0V < Q;. Now
Q1 N Ny centralizes Nﬁ and so, since Ng = N;ly, Q1 N Ny also centralizes
No/Iy. Hence Oy N Ny = Iy; thatis, Q; € W. Because N1+ = L is normal in
H™ and QT = CH+(N1+), it follows that N()Q]/Q] = NlQl/Ql = F*(H/Ql),
so g = (Q1,H) € P. Then, since each member of W is contained in Q;, we
have g as the least element of P. Finally, P is isomorphic to the dual of Oy (Ng)
by 2.8(2). O

2.14. Assume that A is a finite lattice and that T € T (L) with | H| minimal, sub-

Jject to A(t) being isomorphic to A or A*. Then:

(1) H =H(7).

(2) Assume N has neither a least element nor a greatest element. Then T is
faithful.

Proof. Part (1) follows from 2.3(4) and the minimality of |H|.

Suppose X = kery,, (H) # 1. Then either conclusion (1) or (2) of 2.13 holds
and, by minimality of |H |, it must be conclusion (2). In particular, P has a least
element; hence the hypothesis of (2) does not hold, since A(t) is isomorphic to A
or its dual. Thus (2) is established. O

2.15. () If A(z) is a C*-lattice, then H(t) = H (7).
2)If H = H,(v), then H = (W,,M(00)).
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Proof. Assume A(t) is a C*-lattice. Then, foreach p = (V, K) € P, wehave p =
PiA - A p, forsome p; = (V;, K;) € P* Hence, by 2.10(1), K = (Kj,...,K,)
and so (1) holds.

Next assume H = H,(t) and p € P* Then 2.12(2) says that either K = VNy
and Ve W, or V = Ig. Moreover, if V = Iy then No/Iy = F*(K/Ig),s0o K <
M(c0). Thus (2) holds. O

2.16. Foreach peP,l(p)€P.

Proof. Let p = (V,K) and I[(p) = (Q, M). By definition of M, NyV and V are
normal in M. Let M* = M/V. Again by definition, Q* = Cy+(N{); then, since
Ny = F*(Nj;) is nonabelian, Q NNy < VN Ny = Iy (i.e., Q € W). Also, N is
a nonabelian simple normal subgroup of M* and Q* = Cy=(N(), so NoQ/Q =
F*(M/Q), completing the proof. O

2.17. Let X < Hand p = (V,K) € P such that K < Ny(X), W = Xly €
W, and WV e W. Set r = (W,WNy) and g = (WV,WK). Then q,r € P and
g=pAr.

Proof. Since VW and W are in W, it follows from 2.6 that s = (VW,VWNp)
and r are in P. Because K < Ny (X), K acts on VX = VW. Then, since K acts
on VNy, K alsoactson VWNy. Hence K < M =M(s)andV < VW < Q0 =
Q(s). By 2.16,1 = (Q, M) € P, and we just showed that p > /.

Next, WK € Oy (Ny),s0q’ = (WK N Q,WK) € P by an application of 2.8(1)
to [ in the role of “p”. Also, WK N Q = W(K N Q) and, by 2.52), KN Q =V,
so that WK N Q = VW and hence ¢’ = ¢q. By 2.8(3),

pAr=(QNWK,WK)=(VW,WK) = q,

completing the proof. U

3. Normal Subgroups of H
In this section we continue to assume Hypothesis 2.1 and adopt Notation 2.2.

DEerINITION 3.1. Define W_ to be the set of W € VW such that W < Ny (Igy),
W £ Ny(No), and W/Iy = L.

3.2. Assume W e W_. Then:

(1) WNy/Iy = LxL hastwo components, W/Ig and W'/ Iy (write (W) for W');
(2) No/ly is a full diagonal subgroup of W/lg x 6(W)/Iy;

(3) WeW,;

4 6(W)ew_.

Proof. Let X = WNyand Y = WNy. Since W < Ngy(Iy), also Y < Ny(Iy).
Set Y* = Y/IH
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Since W € W_, we have L = W* < Y* Since X = WNyand W N Ny =
Iy, N§ is a complement to W* in X*. Then, since W* = L, (1) follows from the
Schreier conjecture. Let T = 6(W). Since W £ Ny (No), Ni # T* and so (2)
follows. By (2), Nj; is maximal in Y'*, so (3) follows from 2.12. By (2), Ny N T =
Iy and T f Ny (Ngp), so (4) holds because T* = L. O

NortATION 3.3. Given W e W_, define 6(W) as in 3.2(1).

34. Assume WeW_andletT = 0(W), p = (W,WNy), and g = (T, TNy).
Then:

(1) 66(W)) =W;

2) pvg=ococand pAg =0.

Proof. LetY = WNy and Y* = Y/Iy. From 3.2, X = WNy = TNy and W*, T*
are the components of X*, so (1) holds.

Let pvg = (UJ). Byparts (1) and 3) of 29, U =T NW = Iy and J =
UNyg = Ng,s0 pV g = oo. Suppose p A g = (V,K) # 0. Then, by 2.10(3),
V = WT, contradicting No < WT. Thus (2) holds. O

3.5. Let WeZy(Ny). Then either

(1) Wig eW or
(2) No=(WNNy)ly.

Proof. Let X = W N Ng. Since W € Ty (Ng), we have X < Ng. Therefore, be-
cause F*(Ny/Ig) = No/Iy is a nonabelian simple group, either X < Iy or Ny <
X1y . In the former case

WIg NNy = (WNNyp)ly = X1y =1y,
so that (1) holds. In the latter case,

No=NoNXIlg =(NogNX)lg =(NoNW)Iy,
so (2) holds. O

3.6. AssumeVeWand W € Ly (Ng) with (V,W) = VW and VW ¢ W. Then:

(I) No < VNw (V)N WNy(W) = Ny(V)Ny(W);

(2) Nw(V)is Ng-invariantand L = Nw (V)/(VNAW) = [Ny, Nw(V)/(VNW)];

3) if Y € Zeyow)(Ny) with (V,Y) = VY, then Ng # (VY N No)Iy and so
VY ew.

Proof. Let Ny = VW N Ny. Since V,W € Ty (Npg), also (V,W) € Zy;(Ng). Then,
since VW = (V,W) is not in W, it follows from 3.5 that No = N;Iy. Next,
Ny < Ng(V)NVW = VNy(V),s0 Ny = NiIy < VNw (V). Similarly, Ny <
WNy (W), establishing (1). Then
NoV - VNw(V) _ Nw(V)

vV - Vv TVvnw’

L=
so (2) holds.
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Assume the hypothesis of (3). Let N, = VY N Ny. If N9 # NIy, then VY €
W by 3.5, so that (3) holds. Thus we may assume Ny = N,Iy. By the previous
paragraph applied to Y in the role of “W”, we have N, < VNy(V). Let M =
Ny(V), K = NoV,and M* = M/V. Then K* = L and K = N;IgV = N,V for
i =12,50 K*=N*= Nj. But N| < VNwy(V) and N, < VNy(V), so K*
Nw (V)* N Ny(V)* Then, since [W,Y] = 1, K* is abelian—contradicting K*
L. This completes the proof of (3).

O R IA

NotaTtioN 3.7.  Set W' = W — {Iy}. For p € P, write C(p) for the connected
component of P’ containing p. For W e W/, set

C(W) = {VeW': C(W,WNy) = C(V,VNy)}.

3.8. Assume p; = (V;,K;) € P’ fori = 1,2 such that C(p1) # C(p2). Then
(VI,V2> ¢Wand V] N V2 = IH-

Proof. Let g; = (V;,V;Ny). Then p; < g; and so, replacing p; by g;, we may
assume that K; = V;Ng. Since C(p;) # C(p2), we have p; vV p, = oo and
p1 A p2 = 0. Hence V) NV, = Iy by 2.9(1). Furthermore, U = (V|,V,) ¢ W or
else (U,UNyg) < p; fori =1,2. O

3.9. Assume V; € W fori = 1,2 such that (V|,V,) = V\V,. Then the following
statements hold.

(1) Wi = Ny,(Va_;) and Vi, = ViNVyarein W.
2) (W1, Wa) = WiW,.
(3) Assume V\V, ¢ W and let X = W W, and X* = X/V) ». Then:
(@) No < W1W,, 50 WiW, ¢ W;
(b) X* = W} x Wy. Let U; be the preimage in W; of the projection of N on
W Then N§ = L is a full diagonal subgroup of U x Uy = L x L.
(©) Ui eW fori =1,2, but (Uy,Uy) = UU, ¢ W.
(d) If C(Vy) #C(Vy), then U; e W_ and Us_; = 6(U;).

Proof. First, W; and V| , are in YW by 2.5(1), so (1) holds. Since W, acts on W,,
we have (Wi, W,) = W W, and so (2) holds.

Assume V|V, ¢ W. Then, by 3.6(1), Ny < X and so (3a) holds. Since W; e W,
NoNW; = Iy < Vi 2,s0(3b) follows. Since Ny acts on W; and Ny, also Ny acts
on U, so that U; € W by 2.5(1). Since X* = W x WS, (U, U,) = U U,, and
since Ng < U U,, U U, ¢ W, establishing (3c).

Assume the hypothesis of (d). Then it follows from 3.8 that Uy N U, = Iy. In
particular, since U; acts on Us_;, we have Iy < U;. Next, L = U and, since N
is a full diagonal subgroup of U;" x U, we have U; ﬁ Ny (Ng). Therefore U; €
W_ and, since Uj* (j = 1,2) are the components of X* = U;Ny /Iy, it follows
that Us—; = 6(U;), completing the proof of (3). O

3.10. Assume that X < H and X ﬁ Iy, and assume that X satisfies one of the
following:
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(a) X is solvable; or
(b) X has no L-section; or
(c) foreach VeW, XV eWW.

Then:

(1) Y=XIgeW’and x = (Y, XNg) €P;
(2) foreachp = (V,K)eP,x A peP’;
(3) A(r) is connected.

Proof. Observe that (a) implies (b), so it suffices to assume that (b) or (c) holds.
Let V e W. Since X < H, we have (X,V) = XV. Thus, if (b) holds then it fol-
lows from (b) and 3.6(2) that XV € W. That s, (b) implies (c), so we may assume
that (c) holds. In particular, by applying (c) when V = Iy, we conclude that Y €
W. Then, since X £ Iy, also Y € W’. Now (1) follows from 2.6.

Let p = (V,K) € P. Then K < Ny(X) and, by (c), Y and YV are in W.
Therefore, by 2.17, ¢ = (XV,XK) € P and ¢ = x A p. Thus (2) holds, and (2)
implies (3). U

3.11. Assume B < H such that Bly ¢ W and X = Cy(B) f Iy. Then X satis-
fies condition (c) of 3.10, and hence the conclusions of 3.10 are also satisfied.

Proof. Because B is normal in H, so is X. Since Bly ¢ W, it follows from 3.5
that Nog < Bly. Thus, for each V € W, we have Ny < BV and so BV ¢ W. Hence
VX € Wby 3.6(3); that is, X satisfies 3.10(c), so the lemma follows from 3.10. [

3.12. Assume kery, (H) = 1 and A(t) is disconnected. Let B = {By,..., B,} be
the set of minimal normal subgroups of H. Then:

(1) F(H)=1;

(2) each component of H has an L-section,
) ifn > 1, then B;ly € W forall i,

4 n<2.

Proof. Since kery, (H) = 1, no member of B is contained in /. In particular, if
(1) fails then F(H) ﬁ Iy, so F(H) satisfies 3.10(a). Then 3.10(3) contradicts the
hypothesis that A(t) is disconnected. This establishes (1).

Similarly, if A is a component of H that contains no L-section, then B =
(A € B satisfies 3.10(b), and we obtain a contradiction as in the previous para-
graph. Thus (2) holds.

Assume n > 1. Then, for each i, 1 # D; = (B — {B;}) < Cy(B;). Hence (3)
follows from 3.11.

Finally, assume n > 2 and let B = B;B;,. Then B; < H with B3 < Cy(B),
so arguing as in the previous paragraph yields By € W. Thus C = C(B1ly) =
C(Bly) = C(ByIy). Now let V.€ W'. If VB; ¢ W then, by 3.6(3), VB, € W.
Hence, fori =10r2,C(V) =C(VB;) =C. Letr = (BiIy,B1Ny). Then R =
C(r) = C(p) foreach p = (V,K) € P’ with V # Iy. Therefore, since A(t) is
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disconnected, we conclude that there exists a g = (Ig,J) € P* with C(q) # R.
But BiIy € W and so, by 2.17, g A r # 0, contradicting C(q) # R. UJ

3.13. Letc: H — G be a surjective homomorphism with kernel A. Set Ng =

Nyc, Ig = Iyc,and y = (G, Ng, Ig). Assume AN Ny < Iy and set B = Aly

andr = (B, ANy). Then:

(1) y eT(L).

) reP.

B) Let R=P(<r)and Q = {(V,K) e P : AV e W}; then Q = {p € P :
pAr #0}and, forp=(V,K) € Q,we have p A1 = (AV, AK) € R.

@) For p = (V,K) € Q, define y(p) = (Vc,Kc); then v: Q — P(y) isa
map of posets that restricts to an isomorphism ¥ : R — P(y) with inverse
v: (Vi, Ky) —> (Vlc_', ch_]).

Proof. Since AN Ny < Iy, where BN Ny = (AN Nyg)Iy = Iy and so B € W.
Then (2) follows from 2.6.

By217,Q € Q= {peP: pnar #0}. Conversely, if p = (V, K) € Qy, then
p Ar = (AV,AK) by 2.10(1), so AV € W and hence Q@ = Q;. That is, (3) holds.

Since T € T(L), also @« = (Ny, Ny, Iy) € T(L) by 2.3(1). Let D = AN Iy.
Then 8 = (Ny/D, Ny/D, Iy/D) € T(L) by 2.13. Since D = AN Ny, also § =
(NgA/A,NgA/JA,IgA/A) = (Ng, Ng, 1), so (1) holds.

Letp =(V,K)e€ Q. Then (AV, AK) e Pby(3),s0 AVN ANy = A(AVN Ny) =
Aly and hence Ve N Ng = (Alg)c = Iyc = Ig; therefore, Ve € Wg(Ng, I;).
Also, Kc € O, vey(VeNg) and, since (AV, AK) € P,

]VQCVC_ZV()AV_Fﬁ< AK — F* Kc
Ve AV T AV ] T Ve )’

so ¥(p) €S = P(y). Furthermore, if p < g = (U,J) then U < V and J < K,
so Uc < Vc and Je < Kc; hence ¥(p) < ¥(q). Thatis, : Q — S is a map of
posets.

Let p = (V,K;) e Sandset V = Vic ™' and K = Kjc~!. Then V, N Ng =
Ig,so VN ANy = Aly = B; hence V € W. Also, B < V < K and, since
Ng < Ki, we have ANy = Ngc™' < K. In addition, F*(K;/V)) = NocVi/ Vi,
so F*(K/V) = NyV/V and hence v(p;) = (V,K) € R. Moreover, ¥ (V,K) =
(Ve,Kc) = p1,soyov = 1. Also, for pe R, v(¥(p)) = v(Ve,Kc) = p,sov =
¥~ and hence ¥ : R — & is a bijection. Clearly v is a map of posets, complet-
ing the proof of (4). UJ

4. Disconnected Lattices
In this section we often assume the following hypothesis.

HyprotHEsIs 4.1.  Hypothesis 2.1 holds, ker;, (H) =1, and A = A(7) is discon-
nected.

We adopt Notations 2.2, 3.3, and 3.7 in addition to the following.
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NoTATION 4.2. B = {By,..., B,} is the set of minimal normal subgroups of H.

4.3. Assume Hypothesis 4.1. Then:

(1) F(H) =1

@) n=2

3) ifn =2, then B;Iyg €W fori =1,2.

Proof. This is immediate from 3.12. UJ

4.4. Assume Hypothesis 4.1, and let V,W € W' be such that (V,W) = VW and
C(V) £C(W). Then:

(H VAW =Iy;

2) thereexistsaU e W_withU < W and 6(U) < V.

Proof. Part (1) follows from 3.8, while (2) follows from 3.9(3d). O

HypoTHESIs 4.5. Hypothesis 4.1 holds, and B = {By, B} is of order 2. Letr; =
(B,‘, B,‘NH) and C,‘ = C(ri) fori = 1,2.

4.6. Assume Hypothesis 4.5. Then:

(1) for each p = (V,K) € N there exists a unique i = i(p) € {1,2} such that
(VB,‘, KB,) € P;

(2) VB3_; ¢ W;

(3) C(p) =Cis

(4) Cy and C, are the connected components of N.

Proof. Let j € {1,2}. If VB; ¢ W then, by 3.6(3), VB3_; € W; hence, by 2.17,
(VB3_j,KB3_j) € P. So in this case (1) and (2) hold with i = 3 — j, and then
(3) follows from (1). We conclude that A’ C C; U C,; therefore, since A is discon-
nected, the lemma holds. O

4.7. Assume Hypothesis 4.5. Then:

1) We=W_.

2) Let Ve Wy and seti = i(V) = i(V,VNy); then V < B;jIy and (V) <
B3_iIH.

(3) No < B1Bz21y.

Proof. By 3.2(3), W— C W,. LetVeW,andi =i(V,VNg). Then VB3_; ¢ W
by 4.6(2); so by 4.4(2) and the minimality of V, V € W_ and (V) < B3_;. By
3.4(1) and the symmetry between V and 6(V), V = 6(6(V)) < B;Iy, complet-
ing the proof of (1) and (2). Then, since Ny < UO(U) for U € W_ by 3.2, (3)
follows. O

4.8. Assume Hypothesis 4.5. Then, for (V,K) e P*,V # Iy.

Proof. Suppose (V,K) € P* withV = Iy. Then VB; = IyB; e W fori = 1,2
by 4.3(3), contrary to 4.6(2). O
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4.9. Assume Hypothesis 4.5 and H = H,(t). Then:

(1) IH =ISONQ§L.

(2) Let U; be the projection of Ny on B;. Then W, = {Uy, U,} and P* = { p1, p2},
where p; = (U;, U;Ng).

Proof. ForeachVeW_, Iy QV. Since H = H,(t), wehave H = (W, Ny (1))
by 2.15(2). Thus Iy < H by 4.7(1), so (1) follows because ker;,, (H) = 1 by Hy-
pothesis 4.1. Let Ve W_andi = i(V,VNg). Then VO(V) = VNy, with V < B;
and (V) < Bz_; by 4.7. It follows that V = U; and (V) = Us_;. Hence W, =
{U}, Uy} by 4.7(1), and then 4.8 completes the proof. O

THEOREM 4.10. Assume Hypothesis 2.1 and that A = A(7) is a disconnected
C*-lattice. Let H, = H.(t) and set K, = kery,,(H,) and H* = H,/K.. Then
the following statements hold.
(1) t*=(H* N}, 1) € T(L).
2) A= A@*)and K, < Iy.
(3) F(H*) =1.
(4) Either
(a) there exists a unique minimal normal subgroup of H* or
(b) there are exactly two minimal normal subgroups B} and B} of H™
Furthermore, K, = Iy, Bf = L, and N is a full diagonal subgroup
of Bf x Bj. Moreover, N = {ry,r,}, where r; = (B;, BiNy) and H, =
B1B;Ny.

Proof. Let u = tpy,. Since A is a C*-lattice, we conclude from 2.3(4) and 2.15(1)
that A = A(w). Observe that H, = H,(u) because P*(u) € P*(r). Therefore,
since A is disconnected, K, < Iy by 2.13, which also means that (1) holds and
A() = A(t*). Thus (1) and (2) are established.

By construction, kerI;(H*) = 1, so t* satisfies Hypothesis 4.1. Then (3) fol-
lows from 4.3(1). Assume that (4a) does not hold. Then t* satisfies Hypothesis
4.5 by 4.3(2), with minimal normal subgroups B} and B3. By construction, H* =
H.(t*), so Ij; = 1 by 4.9(1). Hence K, = Iy. Let U be the projection of N
on B} and let p; = (U, U*Nf;). By 4.9(2), P*(z*) = {p}, p3}. Since A is a
C*-lattice and since B € Wy« (Ny, I}}) by 4.3(3), it follows that B} = U/, so
N = {ry,r;}. Thus (4b) holds, completing the proof. O

COROLLARY 4.11.  Assume Hypothesis 2.1 and that H = H(t). Assume in ad-
dition that A = A(t) is a C*D-lattice and ker;,(H) = 1. Then F*(H) is the
direct product of the set L of components of H, each component is simple, and H
is transitive on L.

Proof. As H =H(t)and A = A(r)isa C*-lattice, 2.15(1) says that H = H (7).
Thus the hypotheses of Theorem 4.10 are satisfied and H = H.,.. Since ker;, (H) =
1, K, = kery, (H) = 1 by 4.10(2), so H is the group H* of 4.10. Since A is a
D-lattice, |A’| > 2 and so, by 4.10(4), there is a unique minimal normal subgroup
E of H. By 4.103), F(H) = 1, so E = F*(H) and the corollary holds. O
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We are now in a position to prove Theorem 1. Assume the hypotheses of that theo-
rem. By 2.14(1), H = H(t). Because A is disconnected, A’ has neither a least nor
a greatest element, so kery, (H) = 1 by 2.14(2). Thus the hypotheses of Corol-
lary 4.11 are satisfied, and that result implies Theorem 1.

4.12.  Assume Hypothesis 2.1 and that H = H(t). Assume in addition that A =
A(7) is a C*D-lattice and kery,,(H) = 1. Then F*(H)Iy ¢ W.

Proof. Let E = F*(H) and assume A = Ely € W. Seta = (A, ANy), so that
ace/Nby26.LetC=C(a)andletE ={peP*:C(p) #C}.

Since A is disconnected, £ # @. Pick p = (V,K) € £E. If V = Iy then A =
EV € W, so p € C by 2.17—a contradiction. Thus V € W, and K = VNg
by 2.12(2).

Let

V={VeW,:(V,VNy)ef}.

Applying 4.4 to V and A, we conclude that Ve W_ and (V) < A.
By 1.2, there exists a connected component C; of A’ distinct from C such that C;
contains distinct co-atoms x; and x; with x = x; A xp # 0. Set

Vi={VeV:phw) =(V,VNg)eC}.

By paragraph two, the set C;* of maximal members of Cyis {p(V) : V € V;}. Thus
p(x;) = (V;, V;Ng) for some V; € V;. Then, by 2.10, p(x) = (V,VNg), where
V =(V,V3). Set X = Ng(Iy) and X* = X/Iy.

Next, VNA=Ig(VNE)eW,sop =(VNA,(VNA)Ng) € A. Thus, if
p # oothena < p > x, contradicting x € C;. Hence p = 00,s0 VN A = Iy.

By 3.8 and 3.9, fori = 1,2 we have V; < X > 6(V;) and V;(8(V;) N E) =
Vio(Vi) = ViNo < Nx(V). Thus Fo = (0(Vi)NE :i =1,2) < F = Nxne(V)
and Ny < VFy. Then F and V are normal in (F,V) with FNV < ANV = Iy, so
(F*\V*) = F*x V*> N§.Now NgNV = Igand NoN Flg < NgN A = Iy,
so Ny N F* = Nj N V*=1. Therefore, N is a diagonal subgroup of F* x V*
Let Ny, be the projection of Nj on V*. Since N is a full diagonal subgroup of
V¥ x 0(V)* = V* x E, where E; = E N 0O(V;), it follows that V* = Ny;. But
then V; = V,, so x| = x,, a contradiction. This contradiction completes the proof
of 4.12. O

5. CD-lattices
In this section we assume the following hypothesis.

HyprotHEsIS 5.1. Hypothesis 2.1 holds, ker;, (H) = 1, A(t) is disconnected,
H = H,.(7), and D is a minimal normal subgroup of H such that DIy ¢ W.

We adopt Notations 2.2, 3.3, and 3.7. Observe that Hypothesis 4.1 is satisfied.

5.2. D = F*(H) is the direct product of the set L of components of H, the com-
ponents of H are simple, and H is transitive on L.
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Proof. By 4.3(1), F(H) = 1; thus, since D is a minimal normal subgroup of H,
it follows that D is the direct product of its set £ of components, which are sim-
ple and transitively permutated by H. If D # F*(G) then1 # X = Cy(D) < H.
Since ker;, (H) = 1, X £ Iy. Therefore, since DIy ¢ W, A(t) is connected by
3.11 and 3.10(3), contrary to Hypothesis 4.1. O

NoTATION 5.3. Let £ be the set of components of D. For E € L and X < H, set
Xr = XNEand Xp = X N D, and write X for the projection of X, on E with
respect to the direct product decomposition of 5.2. Write Np for No N D and I
for Iy N D, and write Ny and I for the corresponding projections on E. Set
X=[[Xe. Nop=[[Ne. I=]]1Ie
Eel Eecl Eel

Fory C L, set D, = (y). Set M = Ny(Ip) N Ny (Np), Q@ = Cu(Np/Ip), and
d = (0, M). Let

Pp=TC(zr,D) and PL=7P"— A(z,D).

54. (1) N():NDIH Lll’ldND/IDgL

2)deP.

(3) M(c0) < M and Q(oc0) < Q, sol(00) > d.

@) P(zy) = P(= d), and the map X — (X N Q, X) is an isomorphism of the
dual of Oy (Ng) with P(ty).

Proof. Since DIy ¢ W, (1) follows from 3.5.

Let M* = M/Ip. Now [Iy,Np]l < Iy N Np = Ip,so Iy < Q and NpQ =
NoQ. Next, by construction [Q, Np] < Ip,so [Q N Ny, Ng] < Iy by (1). There-
fore, since F*(Ny/Ig) = No/Iy = L, we have Q N Ny = Iy and so Q € W.
By definition we have Q* = Cy+(N}) and N} is a nonabelian simple normal
subgroup of M*, so NpQ/Q = F*(M/Q), establishing (2). The proof of (3) is
straightforward.

For part (4), let p = (V,K) € P(ty). Then K < M and

soV < Q. Thus p > d, so P(ty) € P(> d). The opposite inclusion is trivial,
so now (4) follows from 2.8(2). O

5.5. Let p=(V,K)ePL. Then:

(1) either V= 1Iy or K = VNy and V € W,,;
(2) VN DIH = IH;

3) p=d:

4) H= DQM(c0) = DM.

Proof. Part (1) follows from 2.12. Next Iy < VN DIy € Zy(Ng),so VN DIy €
W by 2.5. Hence, because V = Iy or V € W, (and in the latter case V ﬁ DIy as
p € P}), it follows that (2) holds. By (2),
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[Np,V]<VND=IyND=1Ip,

soV < Q.Then K < M if K = VNy; if V = Iy then Ny < K, so also Np =
NoN D < K and again K < M. Hence (3) holds.

By 5.1, H = H.(7) and so, by 2.15(2), H = (W,,M(c0)). Let U € W,. If
U < DIy then U < DQ. On the other hand, if U ﬁ DIy then U < Q by (3).
Thus H < DOM(00), so (4) holds because M, < M by 5.4(3). O

5.6. (1) For each proper subset y of L, Np # (Np N D,)Ip.
(2) Assume that Ny is transitive on L and let V. € W. Then, for each proper
subset y of L, NpVp # (NpVp N Dy)VD~

Proof. Write N, for NpVp N D,,, and let x: NpVp — NpVp/Vp be the natural
surjection. Let
Sy ={y € L:NpVp = N,Vp},

and write Sy, for the set of minimal members of Sy under inclusion. Now V,, =
VN D,,the N, are NpVp-invariant, and for y € Sy we have
NDVD NyVD

L=N! = = = N*.
b Vp Vp v

Leta, B € Sy. Then
[Ne» Ngl = No 0V Ng = NpVp N Dy N D = NpVp N Danpg = Nang-
Since also Ny = Nj = Ng = L,
Ning = [No, NgI* = [NJ,Nj1 = N}

and hencea N B € Sy, s0a = a N B = B because «, B € S};. However, QM (c0)
acts on Np and Ip by 5.4(3), and it is transitive on £ by 5.5(4). Furthermore, Ny
acts on Np and Vp and, under the hypothesis of (2), Ny is transitive on £. Thus,
if either V. = Iy or the hypothesis of (2) holds, then if @ # £ is in S, we can
pick h € Ny (Vp) N Ny (Np) with o # a = B and, since o € S5, also B € S5, a
contradiction.

We conclude that if either V = Iy or the hypothesis of (2) is satisfied, then
Sy = {£} and hence Sy = {£}. This completes the proof of the lemma. O

5.7. Assume |L| > 1. Then the following statements hold.
(1) Foreach E € L, ]\_/E/I_E =L.
() Iy eW.
(3) Npl/I is a full diagonal subgroup of Np/I = [leer NelI/I.
(4) Assume that V € YV and that Ny is transitive on L. Then:
(a) foreach E € L, NE\_/E/\_/E =L
(b) Vig e W;
(c) NpV/V is a full diagonal subgroup of Np/V.

Proof. Let E € L and let rg: D — E be the projection map. Let V € VW and as-
sume that either V = Iy or Ny is transitive on L. If NgVg = Vg then NpVp =
Vp(NpVp N ker(mg)), so L — {E} is in the set Sy defined in the proof of 5.6,
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contrary to 5.6. Therefore, Vi is a proper normal subgroup of NV and so, since
NpVp/Vp = L, (1) and (4a) follow by applying mg.

Let P = NpVp NV. Then Prg < Vg = Vpme = Vi and, if P £ Vp, then
(since NpVp/Vp = L) we have NpVp = PVp. But now

NgVg = (NpVp)rg = PrgVpne = PrgVe = Vg,
contrary to (1) and (4a). Therefore P < Vp, so
NoNVIy = Nply N VIg = (Nply N V)Iy = (NpIy N DN V) Iy
= (Np N V)Iy = (Np "N NpVp N V)Iy = (Np N P)Iy
<(WNpNVp)ly = Iy,

establishing (2) and (4b). o B
Now, by (2) and (4b), NpV/V = Np/(Np N V) = Np/Ip = L and

s

1% 1% 1% ser V
with (NpV )7 = NgVg for each E € £. Therefore (3) and (4c) follow from (1)
and (4a) together with [AS, 1.4]. O

5.8.  Assume A(t) is a C*-lattice in which no connected component has a least
element. Then Ny is transitive on L.

Proof. We may assume £ = £ U L, is an Ny-invariant partition of £ with £; #
Lfori =1,2. Let D; = (L;), G = Ny(Dy),and u = 7. By 2.3, u € T(L).
Because A = A(t) is a C*-lattice, so is ¥ = A(u). Furthermore, D, and D,
contain distinct minimal normal subgroups of G. Hence, applying Theorem 4.10
to i, we conclude that either:

(i) X is connected; or
(11) IH G, = H*(M), D,’ = L, and P/(/L) = {rl, rz}, where rp = (DiIHa D,'NH).
By 5.5(4), M is transitive on L; thus, since Ny is not transitive, we have Ny <
M. Therefore, using 5.4(2), d € @ = P'(ty) and so Q is nonempty. Next, by
5.4(4), Q is connected with least element d. Hence Q is contained in a connected
component C; of P’. Furthermore, P* = P} U PL, where P C P(u) and, by
5.5(3), PL < Q. On the other hand, P’ is disconnected, so it contains a sec-
ond component C,. It follows in case (i) that C; = Q and C, = P’(u); and in
case (ii), C, = {r;} for i = 1 or 2. But by hypothesis, neither C; or C, has a least
element, whereas C; has least element d in case (i) and C, has least element r; in
case (ii). O

HypoTHESIS 5.9. Hypothesis 5.1 holds, A(7) is a C,-lattice, and Ny is transitive
on L.

5.10. Assume Hypothesis 5.9. Then, for each V € W, Vp is the direct product of
the subgroups Vi as E varies over L.

Proof. We may assume |£| > 1. Let p = (V,K) € P and define ¢(p) =
(VV, VK). By Hypothesis 5.9, Ny is transitive on £ and so, by 5.7(4b), VIg € W.



98 MICHAEL ASCHBACHER

Observe that N (V') acts on Vp and hence permutes the groups Ve, E€ L, s0
NH(V) actson V. If Ny < VV then Np < VVND =V(VND)=V, contrary
to VIy € W. Thus N, ﬁ VV,so VV e W by 3.6(1). Therefore ¢(p) € P by 2.17.
By construction, ¢(p) < p.

Let g = (U, J) and suppose p < g. Then U < V and J < K. Hence Up <
Vp, so for each E € £ we have UE < VE and hence U < V. Therefore o(p) <
¢(g), so ¢: P — P is a map of posets. Thus, since A(t) is a C,-lattice by Hy-
pothesis 5.9, it follows from 1.1 that ¢ is the identity map on P. Hence V = VV,
soV < V, establishing the lemma. O

NotaTioN 5.11. Pick E € L and let w: D — E be the projection of D on E.
For X < H,set X = Nx(E). Set £ = (H, Ny, Iy). Set G = Auty(E) and
let c: H — G be the conjugation map. Set Ng = Nye, Ig = Iyc, and y =
(G,Ng,Is). Let A = Cyx(E), B = Aly, and r = (B,ANH). Identify E with
Inn(E) < G viac. Define P(y)g = ['(y, E)".

512. (1)t eT(L).

2) ¢: P — P = P(T) is a map of posets, where ¢(p) = (\7 12) for
p=((V,K)eP.

BR)y eT(L)and r €P.

(4) Let R =P(<r),

V={VieW(®): AV, N Ny = Iy},

and Q = {(V1,Ky) €P :VieV} For pp = (Vi,K)) € Q, define ¥(py) =
(Vie, Kic). Then ¥ : Q — P(y) is a map of posets that restricts to an isomor-
phismy: R — P(y).

(5) Assume Hypothesis 5.9.

(a) Foreach p eP, ¢(p) € 0.
(b) For p € P, define ¢(p) = ¥ (p(p)); then ¢: P — P(y) is a map of posets.

Proof. Parts (1) and (2) follow from the corresponding parts of 2.4.

Let o: Np — Ng be the restriction of 7 to Np. Because 7 is H- equivariant,
o is NH equivariant. Since Npo = Ng with NE/IE = L = Np/Ip by 5.7(1), 0
induces an isomorphism of Np/Ip with Ng / Ir. In partlcular Cyy (E) centralizes
ND/ID, so Cy, (E) < Q Thus by 5.4(2), Cn, (E) < IH and so, since Cy, (E) =
AN NH, we have A N NH < IH Therefore, (3) follows from parts (1) and (2) of
3.13 while (4) follows from 3.13(4).

Finally, assume Hypothesis 5.9 and let p = (V,K) € P. By 5.10, VDJT = Vi.
Slnce wis H- equivariant and [V, Np] < VD, it follows that [AV Ng] = [V Ng] =
[V Npm]l < Vpm = Vg. Supposew(p) ¢ Q Then, by 3.6(1), Np < AV.ButX =
(Np: FeL —{E}) < A, so NEX NpX < AV. Thus [Ng, Ng] < [AV Nel <
Vi whereas, by 5.7(4) and 5.10, Ng /VE = Ng / Vi = L—a contradiction.

Thus (5a) holds. Then (5b) follows from (5a), (2), and (4). O

5.13.  Assume Hypothesis 5.9 and let I be the kernel of the action of Iy on L.
Then I+ = CNH(ND/ID).
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Proof. By 5.10, Ip < Np. Let Nj; = Np/Ip. Since N} is the direct product of
the groups N, F € L, it follows that [ = Cny (N 5) is contained in the kernel of
the action of Ny on L. Since F*(Ny/Ig) = Nplu/In, we have Iy = Cn, (N}),
so I < Iy and hence I < I.. Finally, 5.7(4c) says that, for each F € L, ny in-
duces an [ -equivariant isomorphism of N} with N . Therefore, I, < I. UJ

5.14. Assume Hypothesis 5.9. For q = (U, J) € P(y)E, define
=(UNEM), Jn=(JNE)M), Ju = Ny(NpUn),

and n(q) = (Unly, JuNg). Then:

(1) the image of Pp under the map ¢ of 5.12(5) is contained in P(y)g;

2) n: P(y)e — Pp is a map of posets;

(3) no¢ =1o0nPp, so ¢ is injective on Pp and induces an isomorphism of Pp
with ¢(Pp) < P(y);

@ o) = U, Jp), J4 = J,s09(n(q)) = gq;

(5) ¢ induces an isomorphism of A(t, D) with A(y, E) that has inverse 1.

Proof. Let p = (V,K) € Pp. ThenV < DIy, s0V =V N DIy = (VN D)Iy =
VDIH Then since VD < I:I we have V = VD[H n H VD(IH n H) = VDIH
Similarly, K = KpNg and K = KDNH. Thus ¢(p) = I/f(VDIH, KDNH) =
(Veglg, KptNg) € P(y)E by 5.12(5). This establishes (1).

On the other hand, let ¢ = (U, J) € P(y)g. Then Ug is Ng-invariant, so Un
is the direct product of the group Uf, n € Ny, with Ug = (Un)mg». Since Ug is
Ng-invariant, Un is Ny-invariant, and since U N Ng = I, we have UnnN Np =
Ip. Thus Np £ Un = Unly N D, so Np £ Unly. Hence W = Unly € W by
3.5. Furthermore, Wp = W N D = Unlp = Unand W < DIy.

Similarly, Jn is the direct product of the groups Jg,n € Ny, with Jg = (Jn)mgn.
Write Jg» for J;. Define I as in 5.13. Since I < fH <Cyg(Jg/Ug)and I, <
Ny, it follows that [1, Jn] < Wp. Therefore, Wpl, < X = JnNy. Set X* =
X/Wpl,. Then (Jn)* < X* is the direct product of the groups J7 = Jg/Ug and,
by 5.13, I, = CNH(ND) Thus F*(X*) = N* is the direct product of the groups

F*(Jg) = N;‘ = L. By 5.7(4c), N}, is a full diagonal subgroup of N*

Let Y = JuNy. Now 7 induces a Y- equivariant isomorphism of N}j with
Ng/Ug, s0o Wply = Cy(Ng/Ug) = Cy(N}) and hence Unly = Wply =
Cjuny (NJ); thus NpUnly/Unly = F*(JuNg/Unly) and therefore n(q) € Pp.
Clearly 5 is map of posets, so (2) holds.

LetU = Ig N E. Then [U,Ng] < NeNU = I, so W = (UN#) Iy centralizes
Np/I. By 5.10,I = Ip,sor = (W,WNy) € A(r, D) and r > d. Claim U < Ip.
Suppose not. Then r # oco. But for each v = (V, Ny) € A(z, D), U acts on Vg,
so W acts on V. By 5.10, Vp = V; then, since W centralizes Np/Ip, we have r <
(WV,WVNpy) > vby3.5and so C(d) = C(r) = C(s). Then, by 5.5(3), A(7) is
connected, contrary to 5.1. Therefore, Ic N E < If.

Recall that ¢ (p) = (Velg, KpNg). Since IcNE < Ig,wehave VEIcNE =
Vg and so, by 5.10, Vg = Vp. Next, KpniNg NE = Kpn(Ng N E). Let P be
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the preimage in Ny under ¢ of Ng N E. Then Kp < (KpmNg)u and, since 7 in-
duces a Kp Ny—equivariant isomorphism of NpVp/Vp with Ng/ Vg, it follows that
(KpmNg)w < Kp P. Therefore (KpnNg)uuNy = KpNy. Thatis, n(¢(p)) = p,
establishing (3).

Now JuNy N D = Ju(Nyg N D) = JuNp = Ju because Np < Ju. By con-
struction, Juc < J. Similarly, UnlgyNJn = Unand U = (Un)c. Thus ¢ (n(q)) =
(U, J1), where J,. = JucNg < J. Hence (4) holds. In particular, if J = UNg
then J = J, so (5) follows from (2) and (3). O

5.15. Assume T is a sublattice of A(7) that is isomorphic to A(m) for some m >
2 and contains 0, 00. Assume that P(> x) C I' for each x € r'* and that d € T.
Then:

(1) P(=d) € A(z, D);

(2) O =0plyand M = QNy,s0 M = QpNy;

(3) H = DNy and G = ENg;

(4) if Hypothesis 5.9 is satisfied and A(t) is a C-lattice then A(t) = A(t, D),
H=K.t,D),G=K.(y,E),and ¢: A(t) = A(y, E) is an isomorphism.

Proof. Let J ={1,...,m} and let (x; = (V;, K;) : j € J) be the set of co-atoms
of I. Fora C J,setxq = A Xa = (Vo, Ko). Set Jy ={jeJ:V; = Iy} and
J, = J — Ji. We first observe that, by 2.10(3),

6S)ifJ #AaC JythenV, =(V,:a€a)and K, = V,Ny.

Suppose @ € J;. Then, by 5.5(3), d < x, fora € « and so d < x,. Then we
can apply 2.10(1) to conclude that:

6) ifa C Jithend < xy, Ky, =(K,:a€a),and V, = K N Q;
(7) if j e Jyandi € Jp, thenV; ; =V, is K;-invariant and K; = V; Ny.

For as j € Ji, we have V; = Iy and so K; # Ny since x; # oo. Then, since
K; < K;; and since V; ; N K; = V; by 2.10(1), we also have K; ; # V; jNy.
But by hypothesis P(> x; ;) € T, so P(= x; ;) = A(2). Therefore, since x; ; <
(Vi,j» Vi, jNu) = x, it follows that x = x;; hence V; =V, ; is K; ;-invariant and
K; = V;Ny. Then, since K; < K; ;, (7) follows.

(8) Fora € Jyand B C J,, Vg is Ky-invariant.

By (5), Vg = (V}, : b € B), and by (6), K, = (K, : a € ). Then (8) follows
from (7).
(9) FOI'/3 - Jl, V/g = IH.
Choose a counterexample with | 8| minimal. Then |8| > 1,s0 § = o U {j} for
some j € Jyand o C Jy with V,, = Iy. Set x = (V3,VgNy). By (6),d < xg.
Thus Vg < Q,sod < x and hence 0 # x €I". Also xg < x,s0 x =X, or X, A X;

for some y C «. Butfor y € o we have V,, = Iy, so x = x, A x;. Therefore x <
xj, s0 K; < VgNy, a contradiction.

(10) Forall j € J we have V; # Iy,sox; = (V;,V;Ny) and J = J,.
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Assume otherwise, so that J; # @. Now 0 = x, A xj,, where x;, = (Iy, K )
by (9) and x;, = (V},,V;,Ny) by (5). By (8), K, acts on V;,. Thus, by 2.17,
xp ANxj, = (Vy,, Kj,) # 0, a contradiction.

SetJ3={jeJ:V; £ DIy} and Jy = J — J5. Set A = A(z, D).

(11) Vj, = X1y, where X = (V; N D : j € J4) < D; in particular, x;, € A.
By (10), J = J5,50by (5), V), =(V; N D : j € ja)ly = XIy.
(12) Let jeJyanda = J3U {j}; thenV, N D =V, N D < K,.

Set U =V, N D. Since j € J4 we have V; = (V; N D)Iy and so, since V; <
Vi, it follows that V; < Uly. Let x = (UIH, UNy). Then x4 < x < x; andx e
AasU < D. Because x, < x,x = xg forsome § C . If B # {j} then x < x;
for some i € J3; thus, since x € A, also x; € A by 2.7, a contradiction. Then g =
{j} and so x = x;. Therefore (V, N D)Iy =V, so

ViND=(V,ND)yND=V,ND)IyND)=Vy,ND<K,,

completing the proof of (12).

(13) Leta € J3and ¥ # B C Jy. Then:
(a) Vg N D is Ky-invariant; and
(b) Np £ (VN D)V,.

By (5) and (10), Vg = (V; : j € B). For j € J4, we have V; = (V; N D)1y and
soVeND=(V,ND: jep). Now (13a) follows from (12).

Next, (Vg N D)V, N D = (Vg N D)(V, N D) and, by (12), for j € B we have
Vo.ND < Vau{j} ND= V] NnND< Vﬂ, SO (Vﬁ ND)(V,ND)< Vﬁ N D. Thus, if
Np =< (Vg N D)V, then Np < Vg, a contradiction. This establishes (13b).

We now establish (1). Assume (1) fails. Then d # oo and so, since d € T, we
have d = x,, for some y C J. By 2.7, d ¢ A; then, since A is a sublattice, y Q
Js. Thus J3 # @. If J, = @ thend < x; for each i € J by 5.5(3), contradicting
I' = A(m). Thus Jy # 0.

Leta = Jz and B = J4. Then 0 = x4, A xg. But K, acts on X = Vg N D by
(13), and Np f XV,. Thus, by 2.17, xo A xg = (X, XNg) # 0—a contradiction.
This completes the proof of (1).

By (1), (Q,M) = d € A and hence Q = Qply and M = ONy. Thus (2)
holds Then (2) and 5. 5(4) imply H = DNy . Now, since D < H, it follows that
H=HnN DNy = DNH andso G = Hc = DcNHc = ENg, establishing (3).

Assume the hypothesis of (4). Then ¢: A(t, D) — A(y, E) is an isomorphism
with inverse 1 by 5.14(5). We claim that A = A(t, D) = A(t). Suppose the con-
trary; then, since A(t) is a C-lattice, there exists a p = (V, K) € P* with p ¢ A.
By 5.5(3), p > d. But now (1) supplies a contradiction, establishing the claim.

Since A = A(r), we have H,(t) = K4(r,D) and so H = K,(t, D) by 5.1.
Let Gy = K. (y, E) and suppose G # G;. Then, since G = ENg, we have Xp =
GiNE # E and so

X=Xy =[] xr #D.

Fel
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where Xg» = X forn e Ny. Let p = (V,K) € P* and p; = (V1, K;) = ¢(p).
Then Vi N E < Xg,s0Vp = Vin < X and hence, since n = ¢’1, K =VpNy <
XNpy. Therefore H = KC,.(t, D) = XNg. Then, since X < XNy, the unique min-
imal normal subgroup D of H is contained in X, contradicting X proper in D.
This completes the proof of (4). O

6. Proof of Theorem 2
In this section we assume the following hypothesis.

HypoTHESIS 6.1. For some integers ¢t > 1 and m; > 2, A is a DA(my,...,m,)-
lattice, L is a nonabelian finite simple group, and t = (H, Ny, Iy) € T(L) with
A = A(r) and | H| minimal subject to this constraint.

6.2.  Hypothesis 5.1 is satisfied.

Proof. We begin by remarking that Hypothesis 6.1 implies Hypothesis 2.1. Be-
cause A is a DA(my,...,m,)-lattice, A is a CD-lattice. By 2.14, H = H(t) and
kery, (H) = 1. Then, by 4.11, D = F*(H) is a minimal normal subgroup of H;
and, by 4.12, DIy ¢ W. By 2.15, H = H.(t), completing the proof. O

Set D = F*(H) and let £ be the set of components of H.
6.3.  Hypothesis 5.9 is satisfied.

Proof. By 5.8, Ny is transitive on L. Therefore, since A is a C-lattice, the lemma
follows from 6.2. O

6.4. Adopt Notation 5.11. Then:

(1) A(r) = A(z, D);

(2) H = DNy;

(3) G = ENg;

@) ¢: A(r) — A(y, E) is an isomorphism;
(5) G =Ky, E).

Proof. Let C be a connected component of A(r)’ with d € C if d # 0o, and set
I' = CU{0,00}. Since A is a DA(my,...,m,)-lattice, ' = A(m;) for some i.
Furthermore, P(> x) C I for all x € I'*, so the lemma follows from 6.3 and 5.15.

O
Observe that Theorem 2 follows from [A2, Thm. 3] and 6.4. To see this, assume
the hypotheses of Theorem 2 and let (H, G) € G*(A). We may assume that G
is not almost simple. Then [A2, Thm. 3] shows that t = (H, Ny, Iy) € T(L),
where L is a component of G, Ny = Ny(L), and Iy = Cy(L). Replace 7 by
a tuple in 7(L) with |H| minimal. Then Hypothesis 6.1 is satisfied. We adopt
Notation 5.11 and appeal to 6.4: by construction, £ < G < Aut(E), so G is al-
most simple with F*(G) = E. By 5.12(3), y = (G, Ng, Ig) € T(L); by 6.4(3),



Signalizer Lattices in Finite Groups 103

G = ENg. Moreover, A = A(t) = A(y, E) by 6.4(4), and G = K.(y, E) by
6.4(5). Finally, by 2.11(2), E(y) is isomorphic to the dual of A(y, E) and so,
since A(y, E) = A and since the DA(my, ..., m,)-lattice A is self-dual, it follows
that A = E(y). Similarly, K(y) = K.(y,E), so G = K(y). Hence y satisfies
conclusion (2) of Theorem 2, so the proof of Theorem 2 is complete.
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