On a Problem of Mahler and Szekeres on Approximation by Roots of Integers

Yann Bugeaud \& Artūras Dubickas

1. Introduction

Let α be a real number greater than 1 . We shall consider the set of limit points $\Lambda(\alpha)$ of the sequence $\left\|\alpha^{n}\right\|^{1 / n}, n=1,2,3, \ldots$ (Throughout, $\|y\|$ stands for the distance between $y \in \mathbb{R}$ and the nearest integer to y.) Clearly, $\Lambda(\alpha)$ is a closed set contained in $[0,1]$.

In [7], Mahler and Szekeres studied the quantity

$$
P(\alpha)=\liminf _{n \rightarrow \infty}\left\|\alpha^{n}\right\|^{1 / n}
$$

which is the smallest element of the set $\Lambda(\alpha)$. Their paper, which motivates the present work, does not seem to be very well known, although a number of results concerning the distribution of the sequence $\left\|\alpha^{n}\right\|, n=1,2,3, \ldots$, can be given in terms of $\Lambda(\alpha)$.

For example, Mahler's [6] result-asserting that, given any rational noninteger number $p / q>1$ and any positive number ε, the inequality $\left\|(p / q)^{n}\right\|>$ $(1-\varepsilon)^{n}$ holds for all but finitely many positive integers n-can be written as $\lim _{n \rightarrow \infty}\left\|(p / q)^{n}\right\|^{1 / n}=1$; that is, $\Lambda(p / q)=\{1\}$. This result was extended by Corvaja and Zannier [3], who established that $\Lambda(\alpha)=\{1\}$ holds for every algebraic number $\alpha>1$ such that α^{m} is not a Pisot number for every positive integer m. Recall that $\alpha>1$ is a Pisot number if it is an algebraic integer whose conjugates over \mathbb{Q} (if any) all lie in the open unit disc $|z|<1$.

Our first theorem gives a complete characterization of the set $\Lambda(\alpha)$ for every algebraic number $\alpha>1$.

Theorem 1. For every algebraic number $\alpha>1$ such that α^{m} is not a Pisot number for each positive integer m, we have $\Lambda(\alpha)=\{1\}$. Alternatively, let m be the least positive integer for which $\beta=\alpha^{m}$ is a Pisot number, say, of degree d. Suppose that the conjugates of β over \mathbb{Q} are labeled so that $\beta=\beta_{1}>\left|\beta_{2}\right| \geq$ $\cdots \geq\left|\beta_{d}\right|$. Put $\left|\alpha_{2}\right|=\left|\beta_{2}\right|^{1 / m}$. Then:
(a) $\Lambda(\alpha)=\{0\}$ if $m=1$ and $d=1$;
(b) $\Lambda(\alpha)=\{0,1\}$ if $m \geq 2$ and $d=1$;
(c) $\Lambda(\alpha)=\left\{\left|\alpha_{2}\right|\right\}$ if $m=1$ and $d \geq 2$;
(d) $\Lambda(\alpha)=\left\{\left|\alpha_{2}\right|, 1\right\}$ if $m \geq 2$ and $d \geq 2$.

In fact, Mahler and Szekeres [7] proved that the situation when the sequence $\left\|\alpha^{n}\right\|^{1 / n}, n=1,2,3, \ldots$, has a unique limit point 1 (i.e., when $\Lambda(\alpha)=\{1\}$) is "generic": $\Lambda(\alpha)=\{1\}$ for almost every $\alpha>1$ in the sense of the Lebesgue measure. They also showed that there are some transcendental numbers $\alpha>1$ such that $\Lambda(\alpha)$ contains both 0 and 1 . This raises a natural question regarding whether there exist $\alpha>1$ for which the set $\Lambda(\alpha)$ is large (e.g., contains a transcendental number).

Our next theorem shows that there are α for which $\Lambda(\alpha)$ is the largest possible set; namely, $\Lambda(\alpha)=[0,1]$.

Theorem 2. Suppose that $I \subseteq(1, \infty)$ is an interval of positive length. Then there are uncountably many $\alpha \in I$ for which $\Lambda(\alpha)=[0,1]$. More generally, for any function $f: \mathbb{N} \mapsto \mathbb{R}_{>0}$ satisfying $\lim _{\sup _{n \rightarrow \infty}} f(n)=\infty$, there are uncountably many $\alpha \in I$ for which the set of limit points of the sequence $\left\|\alpha^{n}\right\|^{1 / f(n)}, n=$ $1,2, \ldots$, is the entire interval $[0,1]$.

However, the set of α for which $\Lambda(\alpha)=[0,1]$ is very small from a metric point of view.

Theorem 3. The set of real numbers $\alpha>1$ for which $\Lambda(\alpha)$ contains 0 has Hausdorff dimension 0 .

Results from metrical number theory allow us to prove the existence of transcendental real numbers α with $0<P(\alpha)<1$. Throughout this paper, "dim" stands for the Hausdorff dimension (see Section 5).

Theorem 4. Let a and b be real numbers with $1 \leq a<b$. For any real number $\tau \geq 1$, we have

$$
\operatorname{dim}\{\alpha \in(a, b): P(\alpha) \leq 1 / \tau\}=\frac{\log b}{\log (b \tau)}
$$

Note that Theorem 4 implies Theorem 3. Most probably we also have

$$
\operatorname{dim}\{\alpha \in(a, b): P(\alpha)=1 / \tau\}=\frac{\log b}{\log (b \tau)}
$$

but unfortunately it seems that current techniques are not powerful enough to prove this. In particular, it is likely that the function P assumes every possible value in the interval $[0,1]$. In this direction, Theorem 4 implies that the set of values taken by P is dense in $[0,1]$.

As in Theorem 2, instead of the sequence $\left\|\alpha^{n}\right\|^{1 / n}, n \geq 1$, we may as well study sequences $\left\|\alpha^{n}\right\|^{1 / f(n)}, n \geq 1$, for nondecreasing sequences $f: \mathbb{N} \mapsto \mathbb{R}_{>0}$ that satisfy $\lim _{n \rightarrow \infty} f(n)=\infty$. This problem is discussed in the next section. Then, in Sections 3 and 4, we shall prove Theorems 1 and 2. The remaining proofs will be given in Section 5, and Section 6 contains some open questions. Finally, we remark that the tools used in the proofs come from quite different sources, including (among others) $[1 ; 3 ; 5 ; 9]$.

2. Further Metrical Results

Let a and b be real numbers with $1 \leq a<b$. Let $\varphi: \mathbb{N} \mapsto \mathbb{R}_{>0}$ be a nonincreasing function that tends to zero as $n \rightarrow \infty$. We shall study the set

$$
\mathcal{K}_{a, b}(\varphi)=\left\{\alpha \in(a, b):\left\|\alpha^{n}\right\| \leq \varphi(n) \text { for i.m. positive integers } n\right\}
$$

where we use "i.m." to denote "infinitely many".
We begin by quoting an old result of Koksma [5] that provides us with a Khintchine-type theorem.

ThEOREM 5 [5]. Let $\varepsilon_{n}, n=1,2, \ldots$, be a sequence of real numbers with $0 \leq$ $\varepsilon_{n} \leq 1 / 2$ for every n. If the sum $\sum_{n=1}^{\infty} \varepsilon_{n}$ is convergent then, for almost every real number $\alpha>1$, there exists an integer $n_{0}(\alpha)$ such that

$$
\left\|\alpha^{n}\right\| \geq \varepsilon_{n} \quad \text { for each } n \geq n_{0}(\alpha)
$$

If the sequence $\varepsilon_{n}, n=1,2, \ldots$, is nonincreasing and if the sum $\sum_{n=1}^{\infty} \varepsilon_{n}$ is divergent, then for almost all real numbers $\alpha>1$ there exist arbitrarily large integers n such that

$$
\left\|\alpha^{n}\right\| \leq \varepsilon_{n}
$$

We study the sets $\mathcal{K}_{a, b}(\varphi)$ from a metric point of view, focusing our attention on the special cases where

$$
\begin{array}{ll}
\varphi(n)=n^{-\tau} & \text { for some real number } \tau>1 \\
\varphi(n)=\tau^{-n} & \text { for some real number } \tau>1
\end{array}
$$

In all these cases, the corresponding sets $\mathcal{K}_{a, b}(\varphi)$ have Lebesgue measure 0 by Theorem 5. We are interested in their Hausdorff dimension. To simplify the notation, for any $\tau>1$ we write $\mathcal{K}_{a, b}(\tau)$ instead of $\mathcal{K}_{a, b}\left(n \mapsto n^{-\tau}\right)$.

Theorem 6. For any real number $\tau>1$, the set

$$
\mathcal{K}_{a, b}(\tau)=\left\{\alpha \in(a, b):\left\|\alpha^{n}\right\| \leq n^{-\tau} \text { for i.m. positive integers } n\right\}
$$

has Lebesgue measure 0 and its Hausdorff dimension is equal to 1 .
The first assertion of Theorem 6 is contained in Theorem 5. The second assertion is new and it is in a striking contrast with the following classical theorem, proved independently by Jarník [4] and Besicovitch [2].

Theorem 7 [2; 4]. For any real number $\tau \geq 1$, the Hausdorff dimension of the set

$$
\left\{\alpha \in \mathbb{R}:\|n \alpha\| \leq n^{-\tau} \text { for i.m. positive integers } n\right\}
$$

is equal to $2 /(\tau+1)$.
Theorems 5 and 6 suggest that we introduce the function λ defined on the set of real numbers greater than 1 by

$$
\lambda(\alpha)=\max \left\{\tau: \alpha \in \mathcal{K}_{1, \infty}(\tau)\right\}
$$

where $\mathcal{K}_{1, \infty}$ stands for the union of the sets $\mathcal{K}_{1, b}$ over the integers $b>1$. The theorems imply that $\lambda(\alpha)=1$ for almost all real numbers. Furthermore, Theorem 6 asserts that

$$
\operatorname{dim}\{\alpha \in(1,+\infty): \lambda(\alpha) \geq \tau\}=1
$$

and its proof can easily be modified to yield that

$$
\begin{equation*}
\operatorname{dim}\{\alpha \in(1,+\infty): \lambda(\alpha)=\tau\}=1 \tag{1}
\end{equation*}
$$

Consequently, the function λ takes every value ≥ 1.
Note that, for some $\alpha>1$, we may have $\lambda(\alpha)=0$. For instance, Pisot [8] proved that there are $\alpha>1$ for which $\left\|\alpha^{n}\right\| \geq c>0$ for all $n \in \mathbb{N}$. For such α, we clearly have $\lambda(\alpha)=0$.

3. Auxiliary Results

We shall need the following simple lemma about Pisot numbers.
Lemma 8. Let $\alpha>1, n, m \in \mathbb{N}$, and $g=\operatorname{gcd}(n, m)$. If α^{n} and α^{m} are Pisot numbers, then α^{g} is a Pisot number.

Proof. After replacing n by n / g and m by m / g, we can assume that $g=1$ and so $\alpha^{g}=\alpha$. Suppose α is not a Pisot number. Since α^{n} and α^{m} are Pisot numbers, this can only happen if one of the conjugates of α over \mathbb{Q} is of the form $\alpha \exp (2 \pi i k / n)$, where $k \in\{1, \ldots, n-1\}$, and another one is of the form $\alpha \exp (2 \pi i \ell / m)$, where $\ell \in\{1, \ldots, m-1\}$. But α^{n} is a Pisot number, so all three nth powers must be equal. In particular, $\alpha^{n} \exp (2 \pi i \ell n / m)=\alpha^{n}$. It follows that $m \mid n \ell$ (i.e., $m \mid \ell$), a contradiction.

A key lemma for the proof of Theorem 2 can be stated as follows.
Lemma 9. Let $f: \mathbb{N} \mapsto \mathbb{R}_{>0}$ be a function satisfying $\lim \sup _{n \rightarrow \infty} f(n)=\infty$. Suppose that $1<u<v$. Then there is a sequence of positive integers $1 \leq n_{1}<$ $n_{2}<n_{3}<\cdots$ depending only on u, v, and f and such that, for any sequence of real numbers $r_{1}, r_{2}, r_{3}, \ldots \in(0,1)$ satisfying $1 /(3 k)<r_{k}<\exp (-1 / k)$ for every $k \geq 1$, there is an $\alpha \in[u, v]$ for which $\lim _{k \rightarrow \infty}\left(\left\|\alpha^{n_{k}}\right\|^{1 / f\left(n_{k}\right)}-r_{k}\right)=0$.

Proof. We shall consider the sequence of integers $1 \leq n_{1}<n_{2}<n_{3}<\cdots$ satisfying

$$
\begin{gather*}
n_{1} \log u>\max \left(4, \log \left(2 n_{1}\right)\right), \tag{2}\\
\prod_{k=1}^{\infty}\left(1-\frac{1}{n_{k}}\right)^{1 / n_{k}}>\frac{u}{v}, \tag{3}
\end{gather*}
$$

and, for each $k \geq 1$,

$$
\begin{gather*}
n_{k+1}>20 n_{k}, \tag{4}\\
f\left(n_{k}\right)>k \log 2, \tag{5}\\
\left(n_{k+1}-n_{k}\right) \log u>f\left(n_{k}\right) \log (3 k), \tag{6}\\
u^{n_{k+1}-1}(u-1)>v^{n_{k}} . \tag{7}
\end{gather*}
$$

It is clear that such a sequence exists and that it depends on u, v, and f only.
In order to construct α with required properties, we consider the sequence $x_{0}=v$,

$$
x_{k}=\left(\left[x_{k-1}^{n_{k}}\right]-1+r_{k}^{f\left(n_{k}\right)}\right)^{1 / n_{k}}
$$

for $k=1,2, \ldots$ Then

$$
x_{k} \leq\left(x_{k-1}^{n_{k}}-1+r_{k}^{f\left(n_{k}\right)}\right)^{1 / n_{k}}<\left(x_{k-1}^{n_{k}}\right)^{1 / n_{k}}=x_{k-1},
$$

so $v=x_{0}>x_{1}>x_{2}>\cdots$.
Next, we will show that $x_{k}>u$ for each $k \geq 0$. For this, we shall prove that $x_{k}>x_{0} \prod_{j=1}^{k}\left(1-1 / n_{j}\right)^{1 / n_{j}}$ and then apply (3). Consider the quotient

$$
\begin{equation*}
\frac{x_{k}}{x_{k-1}}>\frac{\left(x_{k-1}^{n_{k}}-2+r_{k}^{f\left(n_{k}\right)}\right)^{1 / n_{k}}}{x_{k-1}}>\frac{\left(x_{k-1}^{n_{k}}-2\right)^{1 / n_{k}}}{x_{k-1}}=\left(1-\frac{2}{x_{k-1}^{n_{k}}}\right)^{1 / n_{k}} \tag{8}
\end{equation*}
$$

Inserting $k=1$ into (8) yields $x_{1} / x_{0}>\left(1-2 / x_{0}^{n_{1}}\right)^{1 / n_{1}}$. By (2) we have $2 / x_{0}^{n_{1}}<$ $1 / n_{1}$, so $x_{1}>x_{0}\left(1-1 / n_{1}\right)^{1 / n_{1}}$. Suppose that $x_{k-1}>x_{0} \prod_{j=1}^{k-1}\left(1-1 / n_{j}\right)^{1 / n_{j}}$. Combining this inequality with (8) and using $2 / x_{k-1}^{n_{k}}<1 / n_{k}$ (which is true by (2) because $x_{k-1}>u$), by induction on k we deduce that the inequality $x_{k}>$ $x_{0} \prod_{j=1}^{k}\left(1-1 / n_{j}\right)^{1 / n_{j}}$ holds for every $k \geq 1$. Because $x_{0}=v$, when combined with (3) this yields that $x_{k}>v$ for each $k \geq 0$. Hence the limit $\alpha=\lim _{k \rightarrow \infty} x_{k}$ exists and belongs to the interval $[u, v]$.

Next, we need a lower bound for α in terms of x_{k}. Consider the product $\prod_{j=k}^{\infty} x_{j+1} / x_{j}=\alpha / x_{k}$. Using (8), we obtain

$$
\frac{\alpha}{x_{k}}>\prod_{j=k}^{\infty}\left(1-\frac{2}{x_{j}^{n_{j+1}}}\right)^{1 / n_{j+1}} .
$$

Note that $2 / x_{j}^{n_{j+1}}<1 / 2$ by (2). On applying the inequality $1-y>\exp (-2 y)$, where $0<y<1 / 2$, we thus obtain $\alpha / x_{k}>\exp \left(-\sum_{j=k}^{\infty} 4 /\left(n_{j+1} x_{j}^{n_{j+1}}\right)\right)$. We claim that the sum in the exponent is less than $5 /\left(n_{k+1} x_{k}^{n_{k+1}}\right)$. Indeed, using $x_{j}>$ u, we derive that

$$
\sum_{j=k+1}^{\infty} \frac{4}{n_{j+1} x_{j}^{n_{j+1}}}<\frac{4}{n_{k+2}} \sum_{j=k+1}^{\infty} \frac{1}{u^{n_{j+1}}}<\frac{4}{n_{k+2}} \sum_{j=n_{k+2}}^{\infty} \frac{1}{u^{j}}=\frac{4}{n_{k+2} u^{n_{k+2}-1}(u-1)}
$$

This is less than $1 /\left(n_{k+1} v^{n_{k+1}}\right) \leq 1 /\left(n_{k+1} x_{k}^{n_{k+1}}\right)$ because of (4) and (7). It follows that $\sum_{j=k}^{\infty} 4 /\left(n_{j+1} x_{j}^{n_{j+1}}\right)<5 /\left(n_{k+1} x_{k}^{n_{k+1}}\right)$. Hence $\alpha>x_{k} \exp \left(-5 /\left(n_{k+1} x_{k}^{n_{k+1}}\right)\right)$.

Now we will show that the nearest integer to $\alpha^{n_{k}}$ is $a_{k}=\left[x_{k-1}^{n_{k}}\right]-1$. Indeed, first we have

$$
\begin{equation*}
\alpha^{n_{k}}<x_{k}^{n_{k}}=\left[x_{k-1}^{n_{k}}\right]-1+r_{k}^{f\left(n_{k}\right)}=a_{k}+r_{k}^{f\left(n_{k}\right)} \tag{9}
\end{equation*}
$$

Second,

$$
a_{k}+r_{k}^{f\left(n_{k}\right)}=x_{k}^{n_{k}}<\alpha^{n_{k}} \exp \left(\frac{5 n_{k}}{n_{k+1} x_{k}^{n_{k+1}}}\right)
$$

Using (4) and $\exp (y)<1+2 y$ where $0<y<1$, we can bound the right-hand side as

$$
\begin{aligned}
\alpha^{n_{k}} \exp \left(\frac{5 n_{k}}{n_{k+1} x_{k}^{n_{k+1}}}\right) & <\alpha^{n_{k}}+\frac{10 \alpha^{n_{k}} n_{k}}{n_{k+1} x_{k}^{n_{k+1}}}<\alpha^{n_{k}}+\frac{\alpha^{n_{k}}}{2 x_{k}^{n_{k+1}}} \\
& <\alpha^{n_{k}}+\frac{\alpha^{-n_{k+1}+n_{k}}}{2} \leq \alpha^{n_{k}}+\frac{u^{-n_{k+1}+n_{k}}}{2} .
\end{aligned}
$$

From $1 / r_{k}<3 k$ and (6), we have $u^{n_{k+1}-n_{k}}>\left(1 / r_{k}\right)^{f\left(n_{k}\right)}$. Hence $u^{-n_{k+1}+n_{k}}<$ $r_{k}^{f\left(n_{k}\right)}$. It follows that $a_{k}+r_{k}^{f\left(n_{k}\right)}<\alpha^{n_{k}}+r_{k}^{f\left(n_{k}\right)} / 2$. Combining with (9), we deduce that

$$
\frac{r_{k}^{f\left(n_{k}\right)}}{2}<\alpha^{n_{k}}-a_{k}<r_{k}^{f\left(n_{k}\right)}
$$

Since $r_{k}<\exp (-1 / k)$ it follows from (5) that $r_{k}^{f\left(n_{k}\right)}<1 / 2$, so a_{k} is indeed the nearest integer to $\alpha^{n_{k}}$.

Moreover, the preceding inequalities imply that

$$
r_{k} 2^{-1 / f\left(n_{k}\right)}<\left\|\alpha^{n_{k}}\right\|^{1 / f\left(n_{k}\right)}=\left(\alpha^{n_{k}}-a_{k}\right)^{1 / f\left(n_{k}\right)}<r_{k}
$$

By (5), we have $1-2^{-1 / f\left(n_{k}\right)}<1 / k$; hence

$$
0>\left\|\alpha^{n_{k}}\right\|^{1 / f\left(n_{k}\right)}-r_{k}>r_{k}\left(2^{-1 / f\left(n_{k}\right)}-1\right)>-\frac{1}{k} .
$$

Therefore, $\lim _{k \rightarrow \infty}\left(\left\|\alpha^{n_{k}}\right\|^{1 / f\left(n_{k}\right)}-r_{k}\right)=0$ as claimed.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. The first claim follows immediately from [3, Thm. 1] and is given here for the sake of completeness.

Part (a) is trivial. In part (b), we have $\alpha=D^{1 / m}$ with some $D \in \mathbb{N}$. By taking a subsequence $n=m, 2 m, 3 m, \ldots$, we see that $\left\|\alpha^{n}\right\|=0$ infinitely often and so $0 \in \Lambda(\alpha)$. We claim that $\left\|\alpha^{n}\right\|^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$ for n of the form $n=\ell+m k$, $k=0,1,2, \ldots$, where ℓ is in the set $\{1, \ldots, m-1\}$. Indeed, then $\alpha^{\ell+m k}=D^{k+\ell / m}$. The number $D^{\ell / m}$ is algebraic irrational. By a theorem of Ridout [9], for any $\varepsilon>$ 0 there is a positive constant c (that does not depend on k) such that $\left\|D^{\ell / m} D^{k}\right\|>$ $c D^{-\varepsilon k}$. Hence

$$
\left\|D^{\ell / m} D^{k}\right\|^{1 /(\ell+m k)}>c^{1 /(\ell+m k)} D^{-\varepsilon /(2 m)} .
$$

Here $\lim _{k \rightarrow \infty} c^{1 /(\ell+m k)}=1$, so the right-hand side can be arbitrarily close to 1 if we choose ε small enough. It follows that $\left\|\alpha^{\ell+m k}\right\|^{1 /(\ell+m k)} \rightarrow 1$ as $k \rightarrow \infty$. This competes the proof of part (b).

Consider now part (c). Then α is a Pisot number of degree $d \geq 2$ whose conjugates over \mathbb{Q} are labeled so that $\alpha=\alpha_{1}>\left|\alpha_{2}\right| \geq \cdots \geq\left|\alpha_{d}\right|$. We shall prove that there is a constant $\lambda>0$ such that

$$
\begin{equation*}
n^{-\lambda}\left|\alpha_{2}\right|^{n} \leq\left\|\alpha^{n}\right\| \leq(d-1)\left|\alpha_{2}\right|^{n} \tag{10}
\end{equation*}
$$

for each sufficiently large n. Evidently, this implies that $\lim _{n \rightarrow \infty}\left\|\alpha^{n}\right\|^{1 / n}=\left|\alpha_{2}\right|$ (i.e., that $\Lambda(\alpha)=\left\{\left|\alpha_{2}\right|\right\}$).

Since $S_{n}=\alpha^{n}+\alpha_{2}^{n}+\cdots+\alpha_{d}^{n}$ is an integer and since $\left|\alpha_{2}^{n}+\cdots+\alpha_{d}^{n}\right| \leq$ $(d-1)\left|\alpha_{2}\right|^{n}$, we immediately obtain the upper bound in (10)-namely, $\left\|\alpha^{n}\right\| \leq$ $\left|\alpha^{n}-S_{n}\right| \leq(d-1)\left|\alpha_{2}\right|^{n}$.

Evidently, S_{n} is the nearest integer to α^{n} for each sufficiently large n. By a result of Smyth [11], there are at most two conjugates of α of equal moduli. So either α_{2} is a real number and so $\left|\alpha_{2}\right|>\left|\alpha_{3}\right|$ or else α_{2} is complex, say, $\alpha_{2}=\left|\alpha_{2}\right| \exp (i \phi)$, in which case α_{3} is a complex conjugate of $\alpha_{2}, \alpha_{3}=\left|\alpha_{2}\right| \exp (-i \phi)$, and $\left|\alpha_{2}\right|>$ $\left|\alpha_{4}\right|$. In the first case,

$$
\left|\alpha_{2}^{n}+\cdots+\alpha_{d}^{n}\right| \geq\left|\alpha_{2}\right|^{n}-(d-2)\left|\alpha_{3}\right|^{n}>\left|\alpha_{2}\right|^{n} / n
$$

for each sufficiently large n. (So the lower bound in (10) holds, e.g., with $\lambda=1$.) In the second case, $\alpha_{2}^{n}+\alpha_{3}^{n}=2 \cos (n \phi)\left|\alpha_{2}\right|^{n}$; hence

$$
\left|\alpha_{2}^{n}+\cdots+\alpha_{d}^{n}\right| \geq 2|\cos (n \phi)|\left|\alpha_{2}\right|^{n}-(d-3)\left|\alpha_{4}\right|^{n} .
$$

In order to prove the lower bound in (10) it suffices to show that $|\cos (n \phi)|>n^{-\lambda}$. Take the nearest number to $n \phi$ of the form $\pi(m+1 / 2), m \in \mathbb{Z}$. Using $|\sin y| \geq$ $2|y| / \pi \geq|y| / 2$ where $|y| \leq \pi / 2$, we deduce that

$$
\begin{aligned}
|\cos (n \phi)| & =|\sin (n \phi-\pi(m+1 / 2))| \\
& \geq \frac{|n \phi-\pi(m+1 / 2)|}{2}=\frac{|2 n \phi / \pi-(2 m+1)|}{4} .
\end{aligned}
$$

But ϕ / π is a quotient of two logarithms of algebraic numbers and is an irrational number. So, by Gelfond's result on approximation of such numbers by rational fractions (see e.g. [12]), we obtain that $|2 n \phi / \pi-(2 m+1)|>(2 n)^{-c}$, where c is positive constant depending only on α. Since $(2 n)^{-c} / 4>n^{-2 c}$ for each sufficiently large n, the lower bound in (10) holds with $\lambda=2 c$. This completes the proof of part (c).

Finally, for the proof of part (d), suppose that $\beta=\alpha^{m}$ is a Pisot number of degree $d \geq 2$. Here, $m \geq 2$. As in part (b), we shall consider n running through every arithmetic progression $n=\ell+m k, k=0,1,2, \ldots$, where ℓ is a fixed number of the set $\{0,1, \ldots, m-1\}$. If $\ell=0$, then $\alpha^{n}=\alpha^{m k}=\beta^{k}$. By part (c),

$$
\left\|\alpha^{m k}\right\|^{1 /(m k)}=\left\|\beta^{k}\right\|^{1 /(m k)} \rightarrow\left|\beta_{2}\right|^{1 / m}=\left|\alpha_{2}\right|
$$

as $k \rightarrow \infty$. Suppose that $\ell \in\{1, \ldots, m-1\}$. We then claim that the number $\alpha^{\ell+m k}$ has one more conjugate of modulus $\alpha^{\ell+m k}$. Indeed, otherwise $\alpha^{\ell+m k}$ is a Pisot number because it is an algebraic integer all of whose conjugates lie in $|z| \leq$ $\left|\alpha_{2}\right|^{\ell+m k}<1$. But if α^{m} and $\alpha^{\ell+m k}$ (for some $k \geq 0$) are Pisot numbers, then by Lemma 8 it follows that α^{ℓ} is a Pisot number, which contradicts the choice of m.

Since $\alpha^{\ell+m k}$ has one more conjugate of modulus $\alpha^{\ell+m k}$ (different from $\alpha^{\ell+m k}$ itself), $\alpha^{\ell+m k}$ is not a pseudo-Pisot number in the sense of the definition given in [3]. (Pseudo-Pisot numbers are the usual Pisot numbers and those algebraic numbers with integral trace that have a unique conjugate in $|z|>1$ and all other conjugates in $|z|<1$.) Thus, by the Main Theorem of [3] we obtain that, for any $\varepsilon>0$, the inequality $\left\|\alpha^{\ell+m k}\right\|<(1-\varepsilon)^{\ell+m k}$ holds for finitely many $k \in \mathbb{N}$ only. Hence $\left\|\alpha^{\ell+m k}\right\|^{1 /(\ell+m k)} \rightarrow 1$ as $k \rightarrow \infty$. This completes the proof of part (d).

Proof of Theorem 2. Fix any closed subinterval $[u, v]$ of I, where $1<u<v$. Take any sequence $r_{1}, r_{2}, r_{3}, \ldots \in(0,1)$ satisfying $1 /(3 k)<r_{k}<\exp (-1 / k)$ for each $k \geq 1$ that is everywhere dense in $[0,1]$. For every τ from the interval $(1 / 3,1 / e)$, the sequence

$$
r_{1}, \tau, r_{2}, \tau, r_{3}, \tau, \ldots
$$

is also everywhere dense in $[0,1]$. Moreover, the k th element of this sequence is also greater than $1 /(3 k)$ and smaller than $\exp (-1 / k)$. Hence, by Lemma 9, there is an $\alpha=\alpha(\tau) \in[u, v]$ for which the sequence $\left\|\alpha^{n}\right\|^{1 / f(n)}, n=1,2,3, \ldots$, is everywhere dense in $[0,1]$. Furthermore, all these $\alpha(\tau)$ are distinct because the limits $\lim _{k \rightarrow \infty}\left\|\alpha(\tau)^{n_{2 k}}\right\|^{1 / f\left(n_{2 k}\right)}=\tau$ are distinct. There are uncountably many such $\alpha(\tau)$ because there are uncountably many $\tau \in(1 / 3,1 / e)$. This proves the second claim of the theorem. The first part is a particular case of the second part with the function $f(n)=n$ for each $n \in \mathbb{N}$.

5. Proofs of the Metrical Results

We begin with an easy consequence of the Cantelli lemma. A dimension function $f: \mathbb{R}_{>0} \mapsto \mathbb{R}_{>0}$ is a continuous increasing function such that $f(r) \rightarrow 0$ when $r \rightarrow 0$. (Actually, it is enough to assume that f is defined on some open interval $(0, t)$ with t positive.) For any positive real number δ and any real set E, define

$$
\mathcal{H}_{\delta}^{f}(E)=\inf _{\mathcal{J}} \sum_{j \in \mathcal{J}} f\left(\left|U_{j}\right|\right)
$$

where the infimum is taken over all the countable coverings $\left\{U_{j}\right\}_{j \in \mathcal{J}}$ of E by intervals U_{j} of length $\left|U_{j}\right|$ at most δ. Clearly, the function $\delta \mapsto \mathcal{H}_{\delta}^{f}(E)$ is nonincreasing. Consequently,

$$
\mathcal{H}^{f}(E)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{f}(E)=\sup _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{f}(E)
$$

is well-defined and lies in $[0,+\infty]$; this is the \mathcal{H}^{f}-measure of E.
When f is a power function $x \mapsto x^{s}$ with s a positive real number, we write $\mathcal{H}^{s}(E)$ instead of $\mathcal{H}^{f}(E)$. The Hausdorff dimension of E is then the critical value of s at which $\mathcal{H}^{s}(E)$ "jumps" from $+\infty$ to 0 . In other words, we have

$$
\operatorname{dim} E=\inf \left\{s: \mathcal{H}^{s}(E)=0\right\}=\sup \left\{s: \mathcal{H}^{s}(E)=+\infty\right\}
$$

Lemma 10. Let a and b be real numbers with $1 \leq a<b$. Let f be a dimension function. If the sum

$$
\begin{equation*}
\sum_{n \geq 1} \sum_{a^{n} \leq g \leq b^{n}} f\left(\frac{3 \varphi(n)}{n g^{(n-1) / n}}\right) \tag{11}
\end{equation*}
$$

converges, then $\mathcal{H}^{f}\left(\mathcal{K}_{a, b}(\varphi)\right)=0$.
Proof. Let $B(\varphi, a, b)$ denote the set of real numbers α in (a, b) such that there are infinitely many positive integers n with

$$
\begin{equation*}
\left\|\alpha^{n}\right\|=\left|\alpha^{n}-g\right| \leq \varphi(n) \tag{12}
\end{equation*}
$$

for some integer g with $a^{n} \leq g \leq b^{n}$. Proceeding as in [7], we infer from (12) that if both n and g are given then, for n sufficiently large, α is restricted to an interval

$$
J_{n}(g)=\left[(g-\varphi(n))^{1 / n},(g+\varphi(n))^{1 / n}\right] \cap(a, b)
$$

whose length does not exceed $3 \varphi(n) /\left(n g^{(n-1) / n}\right)$ provided that n is sufficiently large. Consequently, the total \mathcal{H}^{f}-measure of all the intervals $J_{n}(g)$ corresponding to possible values of g is not greater than

$$
\sum_{a^{n} \leq g \leq b^{n}} f\left(\frac{3 \varphi(n)}{n g^{(n-1) / n}}\right)
$$

Since the sum (11) is convergent, the \mathcal{H}^{f}-measure of the set of points contained in infinitely many intervals $J_{n}(g)$ is zero, as asserted.

The proofs of our metrical theorems rest on Theorem 5 and on the mass transference principle from [1]. In what follows, μ denotes the Lebesgue measure. For a positive real number r and for $x \in \mathbb{R}$, let $I(x, r)$ denote the closed interval $[x-r$, $x+r]$. Furthermore, for a function f, we denote by $I^{f}=I^{f}(x, r)$ the closed interval $[x-f(r), x+f(r)]$.

Theorem 11 [1]. Let J be a closed interval in $[1,+\infty)$. Let f be a dimension function. Let $\left(I_{i}\right)_{i \geq 1}$ be a sequence of closed intervals in J such that the length of I_{i} tends to zero as i tends to infinity. Suppose that, for any interval I in J,

$$
\begin{equation*}
\mu\left(I \cap \limsup _{i \rightarrow \infty} I_{i}^{f}\right)=\mu(I) . \tag{13}
\end{equation*}
$$

Then, for any interval I in J,

$$
\begin{equation*}
\mathcal{H}^{f}\left(I \cap \limsup _{i \rightarrow \infty} I_{i}\right)=\mathcal{H}^{f}(I) . \tag{14}
\end{equation*}
$$

We begin with some preliminaries for the proofs of Theorems 6 and 4.
Let a and b be real numbers with $1 \leq a<b$. Let $\varphi: \mathbb{R}_{>0} \mapsto \mathbb{R}_{\geq 0}$ be a nonincreasing function that tends to zero. We are concerned with the set $\mathcal{K}_{a, b}(\varphi)$ defined in Section 2.

Suppose that $\psi: \mathbb{N} \mapsto \mathbb{R}_{>0}$ is a nonincreasing function such that the sum $\sum_{n=1}^{\infty} \psi(n)$ diverges and $\psi(n)$ tends to zero as n tends to infinity. Arguing as in the proof of Lemma 10, Theorem 5 implies that

$$
\begin{equation*}
(a, b) \cap \limsup _{n \rightarrow \infty} \bigcup_{a^{n} \leq g \leq b^{n}} I\left(g^{1 / n}, n^{-1} g^{-(n-1) / n} \psi(n)\right) \tag{15}
\end{equation*}
$$

has full Lebesgue measure in (a, b).
Assume that we have found a suitable function f such that

$$
f\left(n^{-1} g^{-(n-1) / n} \varphi(n)\right) \geq \frac{\psi(n)}{n g^{(n-1) / n}}
$$

for all sufficiently large integers n and for all integers g with $a^{n} \leq g \leq b^{n}$. Then, by (15), the set

$$
(a, b) \cap \limsup _{n \rightarrow \infty} \bigcup_{a^{n} \leq g \leq b^{n}} I\left(g^{1 / n}, f\left(n^{-1} g^{-(n-1) / n} \varphi(n)\right)\right)
$$

has full Lebesgue measure in (a, b); that is, assumption (13) is satisfied. Theorem 11 then yields, by (14), that the \mathcal{H}^{f}-measure of

$$
(a, b) \cap \limsup \bigcup_{n \rightarrow \infty} \bigcup_{a^{n} \leq g \leq b^{n}} I\left(g^{1 / n}, n^{-1} g^{-(n-1) / n} \varphi(n)\right),
$$

which is contained in $\mathcal{K}_{a, b}(\varphi)$, is equal to the \mathcal{H}^{f}-measure of (a, b). Consequently, the \mathcal{H}^{f}-measure of $\mathcal{K}_{a, b}(\varphi)$ is greater than or equal to the \mathcal{H}^{f}-measure of (a, b).

Proof of Theorem 6. In view of Theorem 5, we need only prove the second assertion. Without any restriction, we assume that $a>1$. Let us consider the family of dimension functions

$$
f_{u}: x \mapsto x(\log 1 / x)^{u} \quad \text { for } u>0
$$

Observe that

$$
f_{\tau-1}\left(\frac{n^{-\tau-1}}{g^{(n-1) / n}}\right)=\frac{n^{-\tau}\left(\log \left(n^{\tau+1} g^{(n-1) / n}\right)\right)^{\tau-1}}{n g^{(n-1) / n}}
$$

Since $g \geq a^{n}$, we get

$$
\begin{aligned}
n^{-\tau}\left(\log \left(n^{\tau+1} g^{(n-1) / n}\right)\right)^{\tau-1} & \geq n^{-\tau}(\tau \log n+(n-1) \log a)^{\tau-1} \\
& \geq(1-1 / n)^{\tau}(\log a)^{\tau-1}(n-1)^{-1}
\end{aligned}
$$

Because the sum $\sum_{n=2}^{\infty}(1-1 / n)^{\tau}(n-1)^{-1}$ diverges, we may argue as in the preliminaries with $\psi(n)=(1-1 / n)^{\tau}(\log a)^{\tau-1}(n-1)^{-1}$ to infer from Theorem 11 that

$$
\mathcal{H}^{f_{\tau-1}}\left(\mathcal{K}_{a, b}(\tau)\right)=+\infty .
$$

This proves that the Hausdorff dimension of the set $\mathcal{K}_{a, b}(\tau)$ is equal to 1 , as asserted.
Furthermore, it easily follows from Lemma 10 that

$$
\mathcal{H}^{f_{\tau-1}}\left(\mathcal{K}_{a, b}(\tau+1 / k)\right)=0 \quad \text { if } k \geq 1
$$

Consequently, we get

$$
\mathcal{H}^{f_{\tau-1}}\left(\mathcal{K}_{a, b}(\tau) \backslash \bigcup_{k \geq 1}\left(\mathcal{K}_{a, b}(\tau+1 / k)\right)=+\infty\right.
$$

and (1) is established.
Proof of Theorem 4. Put $\mathcal{S}_{a, b}(\tau)=\{\alpha \in(a, b): P(\alpha) \leq 1 / \tau\}$. Note that, for any $\varepsilon>0, \mathcal{S}_{a, b}(\tau) \subseteq \mathcal{K}_{a, b}(\varphi)$ with $\varphi(n)=(\tau-\varepsilon)^{-n}$. It follows straightforwardly from Lemma 10 that the Hausdorff dimension of the set $\mathcal{S}_{a, b}(\tau)$ is bounded from above by $\log b / \log (b \tau)$.

For a lower bound, we shall work with the family of dimension functions $g_{s}: x \mapsto x^{s}$, where $0<s<1$. According to the preliminaries, we must find a nonincreasing function ψ such that $\sum_{n=1}^{\infty} \psi(n)$ diverges, $\psi(n)$ tends to zero as n tends to infinity, and

$$
g_{s}\left(\frac{\tau^{-n}}{n g^{(n-1) / n}}\right) \geq \frac{\psi(n)}{n g^{(n-1) / n}}
$$

in other words, such that

$$
\psi(n) \leq n^{1-s} \tau^{-n s} g^{(1-s)(n-1) / n}
$$

for every integer g in the interval $\left[a^{n}, b^{n}\right]$. If s does not exceed $\log a / \log (a \tau)$, then $\tau^{-n s} g^{(1-s)(n-1) / n} \geq a^{s-1}$ for every integer g in the interval $\left[a^{n}, b^{n}\right]$ and a suitable choice for the function ψ is given by $\psi(n)=1 / n$.

Consequently, we get the lower bound

$$
\operatorname{dim} \mathcal{S}_{a, b}(\tau) \geq \frac{\log a}{\log (a \tau)}
$$

However, $\mathcal{S}_{a, b}(\tau)$ contains $\mathcal{S}_{a^{\prime}, b}(\tau)$ for any a^{\prime} with $a<a^{\prime}<b$. Hence

$$
\operatorname{dim} \mathcal{S}_{a, b}(\tau) \geq \frac{\log b}{\log (b \tau)}
$$

giving $\operatorname{dim} \mathcal{S}_{a, b}(\tau)=\log b / \log (b \tau)$, as claimed.

6. Open Questions

We showed at the end of Section 2 that the function λ takes every value in $\{0\} \cup[1,+\infty)$. In view of this, we address the following question.

Problem 12. Do there exist real numbers $\alpha>1$ such that

$$
0<\lambda(\alpha)<1 ?
$$

The distribution of the integer powers of a fixed rational number >1 is far from being understood. Mahler's result [6] motivates the following question.

Problem 13. Let $\alpha=p / q>1$ be a noninteger rational number. Is there a nondecreasing sequence $t_{n}, n=1,2, \ldots$, of positive real numbers such that $\lim _{n \rightarrow \infty} t_{n}=\infty$ and

$$
\liminf _{n \rightarrow \infty}\left\|(p / q)^{n}\right\|^{t_{n} / n}=1 ?
$$

It is most likely that, in order to answer Problem 13 in the affirmative, one must first improve upon the key tool in the proof of Mahler's result [6]-namely, the Ridout theorem [9], which is the non-Archimedean analogue of Roth's theorem. Recall that Roth [10] established that, for any irrational algebraic number ξ and any positive real number ε, there are only finitely many rational numbers p / q such that $q \geq 1$ and $|\xi-p / q|<q^{-2-\varepsilon}$. A standard conjecture in Diophantine approximation (often referred to as the Lang conjecture) claims that, for any irrational algebraic number ξ and any positive real number ε, there are only finitely many rational numbers p / q such that $q \geq 2$ and $|\xi-p / q|<q^{-2}(\log q)^{-1-\varepsilon}$. If we believe in this conjecture and in its non-Archimedean extension (as Ridout's theorem extends Roth's theorem) then the latter would imply that, for any relatively prime integers p, q with $p>q \geq 2$ and any positive real number ε, the inequality

$$
\left\|(p / q)^{n}\right\|^{1 / n} \geq e^{-(1+\varepsilon)(\log n) / n}
$$

holds for every sufficiently large integer n.
In another direction, currently known results cannot even rule out the existence of a positive constant c such that the inequality

$$
\left\|(p / q)^{n}\right\| \geq c
$$

holds for every sufficiently large integer n. Consequently, we do not have a single result on the function λ evaluated at rational nonintegers $p / q>1$.

Acknowledgments. This research was supported by the Gilibert project between Vilnius and Strasbourg universities. The research of the second-named author was also supported in part by the Lithuanian State Studies and Science Foundation.

References

[1] V. Beresnevich and S. L. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2) 164 (2006), 971-992.
[2] A. S. Besicovitch, Sets of fractional dimension. IV: On rational approximation to real numbers, J. London Math. Soc. 9 (1934), 126-131.
[3] P. Corvaja and U. Zannier, On the rational approximations to the powers of an algebraic number: Solution of two problems of Mahler and Mendès France, Acta Math. 193 (2004), 175-191.
[4] V. Jarník, Diophantischen Approximationen und Hausdorffsches Mass, Mat. Sb. 36 (1929), 371-382.
[5] J. F. Koksma, Sur la théorie métrique des approximations diophantiques, Indag. Math. 7 (1945), 54-70.
[6] K. Mahler, On the fractional parts of the powers of a rational number, II, Mathematika 4 (1957), 122-124.
[7] K. Mahler and G. Szekeres, On the approximation of real numbers by roots of integers, Acta Arith. 12 (1967), 315-320.
[8] Ch. Pisot, Répartition (mod 1) des puissances successives des nombres réels, Comment. Math. Helv. 19 (1946), 153-160.
[9] D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131.
[10] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; Corrigendum, 168.
[11] C. J. Smyth, The conjugates of algebraic integers, Amer. Math. Monthly 82 (1975), 86.
[12] M. Waldschmidt, Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables, Grundlehren Math. Wiss., 326, Springer-Verlag, Berlin, 2000.

Y. Bugeaud
U. F. R. de Mathématiques
Université Louis Pasteur
F-67084 Strasbourg
France
bugeaud@math.u-strasbg.fr

A. Dubickas

Department of Mathematics and Informatics Vilnius University
Vilnius LT-03225
Lithuania
arturas.dubickas@mif.vu.lt

