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1. Introduction

A classical theorem of Hahn [8] and Mazurkiewicz [19] states that X is a locally
connected continuum if and only if there exists a continuous surjection f : [0,1] →
X. Since any cube [0,1]n is a continuous image of [0,1], an equivalent statement
is: X is a locally connected continuum if and only if there exists a continuous sur-
jection f : [0,1]n → X.

The purpose of this paper is to generalize the Hahn–Mazurkiewicz theorem to
differentiable and weakly differentiable mappings. Not surprisingly, our assump-
tions on X will be stronger.

Following Kirchheim [15], we say that a map f : � → X from an open set� ⊂
Rn to a metric space X is metrically differentiable at x ∈� if there is a seminorm
‖·‖x on Rn such that

d(f(x), f(y))− ‖y − x‖x = o(|y − x|) for y ∈�. (1.1)

The seminorm assumption means that ‖a + b‖x ≤ ‖a‖x + ‖b‖x and ‖ta‖x =
|t |‖a‖x but ‖·‖x can vanish on a linear subspace on Rn, and (1.1) means that

lim
y→x

d(f(x), f(y))− ‖y − x‖x
|y − x| = 0.

Clearly, if f : � → Rk is (classically) differentiable at x ∈�, then it is metrically
differentiable with ‖u‖x = |Df(x)(u)|. It is also easy to see that f : (a, b) → X

is metrically differentiable at x ∈ (a, b) if and only if the limit

lim
h→0

d(f(x + h), f(x))

|h|
exists and is finite.

A classical theorem of Rademacher [6] says that Lipschitz continuous functions
f : � → Rk are differentiable a.e. Kirchheim [15] generalized this theorem to the
case of metric space–valued mappings as follows.

Theorem 1.1 (Kirchheim). A Lipschitz continuous map f : � → X from an
open set � ⊂ Rn to a metric space X is metrically differentiable a.e.
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A function f : � → R belongs to the Sobolev space W 1,p(�), 1 ≤ p < ∞, if f ∈
Lp(�) and the weak gradient |∇f | belongs to Lp(�). The following definition for
the Sobolev space of mappings with values in a metric space was introduced by
Reshetnyak [22] and elaborated in [24] and [13].

Definition 1.2. Let � ⊂ Rn be a bounded open set and let (X, d) be a com-
pact metric space. A map f : � → X belongs to the Reshetnyak–Sobolev space
R1,p(�,X) if there is a nonnegative function g ∈ Lp(�) such that for every Lip-
schitz continuous ϕ : X → R we have ϕ 
f ∈W 1,p(�) and |∇(ϕ 
f )| ≤ Lip(ϕ)g
a.e. Here Lip(ϕ) stands for the Lipschitz constant of ϕ.

Definition 1.2 can be extended to arbitrary open sets � ⊂ Rn and metric spaces
(X, d), but in this case one must also take into account the Lp-integrability of the
mapping. This issue and other equivalent approaches to the definition of Sobolev
mappings with values in metric spaces are carefully discussed in Section 2.

Our aim in this paper is to investigate a class of compact metric spaces X for
which there exists a continuous surjection f : [0,1]n → X that either is metrically
differentiable a.e. or belongs to a Sobolev space.

Let f : [0,1]n → X be a continuous map with

f |(0,1)n ∈R1,p((0,1)n,X); (1.2)

henceforth we write f ∈ R1,p([0,1]n,X) if (1.2) is satisfied. Because Sobolev
mappings are absolutely continuous on almost all lines (Lemma 2.13), the image
of almost every segment in [0,1]n parallel to one of the coordinate axes is a rectifi-
able curve. Thus f must be constant if there are no nonconstant rectifiable curves
inX. In the statement of Theorem 1.3 we assume that the class of rectifiable curves
in X is rich in a certain qualitative way.

Suppose that any two points x, y ∈ X can be connected by a curve of finite
length. Then d�(x, y), defined as the infimum of lengths of curves connecting x

to y, is a metric. We call it the length metric. Since d�(x, y) ≥ d(x, y), it easily
follows that if X is compact with respect to d� then X is compact with respect to
d. We say that X is length compact if (X, d�) is compact. Our main result reads
as follows.

Theorem 1.3. Let X be a length compact metric space. If n ≥ 2, then there is
a continuous and a.e. metrically differentiable surjection f in the Sobolev class
R1,n([0,1]n,X). Moreover, there is a continuous and a.e. metrically differentiable
surjection f : [0,1] → X.

In fact, the maps that we construct will be locally Lipschitz continuous on the
complement of sets of Hausdorff dimension 0 and hence metrically differentiable
a.e. by the theorem of Kirchheim.

Observe that if f ∈ R1,n, then f ∈ R1,p for all 1 ≤ p < n. However, we
cannot replaceR1,n byR1,p (p > n ≥ 2) in the theorem, because Sobolev embed-
ding into the space of Hölder continuous functions [13, Thm. 6.2] yields an upper
bound for the Hausdorff dimension of f([0,1]n) whereas the space X in Theo-
rem 1.3 may have infinite dimension (for example, X may be the Hilbert cube).
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On the other hand, the absolute continuity of Sobolev maps on one-dimensional
intervals implies that f([0,1]) is rectifiable whenever f ∈ R1,1([0,1],X). Hence
in the one-dimensional case we cannot always obtain Sobolev regularity for f.

Although the length compactness condition is quite strong, it covers, from the
topological point of view, the class of all locally connected continua. This follows
because Bing [2; 3] and Moise [20] proved that every locally connected contin-
uum admits a topologically equivalent convex metric (d is convex if d = d�), and
with such a metric Theorem 1.3 applies.

Lebesgue [16, pp. 44–45] was the first to construct Peano-type space-filling
curves with a.e. differentiable coordinate functions. A careful review of various
classical constructions of space-filling curves—including those of Peano, Hilbert,
Lebesgue, and Schoenberg—can be found in Sagan [23]. The existence of contin-
uous and a.e. metrically differentiable surjections from [0,1] to any length compact
metric spaceX can be established by starting with a continuous surjection from the
Cantor set to X and then linearly interpolating to the omitted intervals along con-
necting geodesics. The proof that we give is a concrete realization of this scheme.
However, the primary content of Theorem 1.3 resides in the higher-dimensional
(n ≥ 2) statement, where we must work harder to guarantee membership in the
Sobolev space.

A minor modification of the proof of Theorem 1.3 leads to the following result.

Theorem 1.4. LetX = Rn and let d be a metric onX that is topologically equiv-
alent to the Euclidean metric and has the property that every two points in Rn can
be connected by a C∞-smooth curve of finite length with respect to d. Then there
is a continuous surjection f ∈ R1,2(R2,X) that is C∞-smooth on R2 \ F, where
F is a closed set of Hausdorff dimension 0 contained in the x-axis.

Carnot groups are nilpotent stratified Lie groups (equipped with the so-called
Carnot–Carathéodory metric) that verify the assumptions of Theorem 1.4; see for
example [7, Sec. 1.2B; 21]. Thus Theorem 1.4 implies the following statement.

Corollary 1.5. Let G be a Carnot group equipped with the Carnot–Carathé-
odory metric. Then there is a continuous surjection f ∈R1,2(R2, G) that is smooth
outside a set F of Hausdorff dimension 0.

The map that we construct in Corollary 1.5 is horizontal. In other words, its dif-
ferential takes values in the horizontal distribution of G on R2 \ F.

The Heisenberg group H1 is the simplest nontrivial Carnot group. It is homeo-
morphic to R3, but as a metric space (equipped with the Carnot–Carathéodory
metric dcc) it has Hausdorff dimension 4. In this case Corollary 1.5 contrasts with
the pure k-unrectifiability of H1 for k = 2, 3, 4: Every Lipschitz map f : A → H1,
A ⊂ Rk, has Hk(f(A)) = 0, where Hk denotes k-dimensional Hausdorff measure
in the metric dcc (see e.g. [1]). In particular, any C1-horizontal map f : Rk → H1

satisfies Hk(f(Rk )) = 0 for k = 2, 3, 4. In a forthcoming paper [11] we construct
C1-horizontal surjections from R5 to H1 as well as Cα-surjections from R4 to H1

for each α < 1.
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Although spaces that are the image of [0,1]n under a continuous Sobolev map-
ping must carry a rich family of rectifiable curves, it is not necessary that every
two points be connected by a rectifiable curve.

Example 1.6. Let f : [0,1] → R be a continuous function such that f ∈
C∞((0,1]), f(0) = 0, f(1) = 0, and the graph of f over [0, ε) has infinite
length for any ε > 0. Let X be the graph of f over [0,1]. Then (0, 0), (1, 0) ∈X

are the endpoints of X. Note that (0, 0) cannot be connected to any other point
in X by a rectifiable curve. Let γ : [0, ∞) → X \ {(0, 0)} be the arc length pa-
rameterization such that γ (0) = (1, 0) and lim t→∞ γ (t) = (0, 0). The function
f : Bn(0, e−1) → X defined by the formula

f(x) =
{
γ (log|log|x||) if x �= 0,

(0, 0) if x = 0

is continuous, belongs to W 1,n(Bn(0, e−1),X), maps Bn(0, e−1) onto X, and is
C∞-smooth in Bn(0, e−1) \ {0} (as a map to R2).

The paper is organized as follows. In Section 2 we compare different approaches
to the theory of Sobolev mappings into metric spaces. In Section 3 we prove The-
orem 1.3, and in Section 4 we prove Theorem 1.4.

Acknowledgments. We are grateful to the referee for helpful suggestions that
improved the paper’s exposition.

Near the completion of this work, we learned the sad news that our colleague,
mentor, and friend Juha Heinonen had passed away. Juha’s influence on geomet-
ric analysis in metric spaces cannnot be overstated; his passion for the subject and
vision for its future were instrumental in dramatically expanding its scope and vis-
ibility. Our mathematical community has suffered the grievous loss of a central
leader in the prime of his career. We mourn his passing, and we dedicate this paper
with deep respect to his memory.

2. Sobolev Mappings into Banach and Metric Spaces

Throughout the paper, all Banach spaces will be over the field of real numbers.
If V is a Banach space and A ⊂ Rn is (Lebesgue) measurable, then we say that

f ∈Lp(A,V ) (resp. f ∈L
p

loc(A,V )) if the following statements hold.

(1) f is essentially separably valued : f(A \ Z) is a separable subset of V for
some Lebesgue null set Z.

(2) f is weakly measurable: for every v∗ ∈ V ∗ with ‖v∗‖ ≤ 1, 〈v∗, f 〉 is mea-
surable.

(3) ‖f ‖ ∈Lp(A) (resp. ‖f ‖ ∈L
p

loc(A)).

The Bochner integral of an essentially separably valued and weakly measurable
function f : A → V is defined as∫

A

f(x) dx := lim
i→∞

∫
A

fi(x) dx,

where the limit is taken over any sequence (fi) of simple functions
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fi =
Ji∑
j=1

vijχAij

converging pointwise a.e. to f and where
∫
A
fi(x) dx := ∑Ji

j=1|Aij |vij . It is well
known that the Bochner integral exists for any f ∈L1(A,V ) and that it satisfies〈

v∗,
∫
A

f(x) dx

〉
=

∫
A

〈v∗, f(x)〉 dx
for every v∗ ∈V ∗ and ∥∥∥∥

∫
A

f(x) dx

∥∥∥∥ ≤
∫
A

‖f(x)‖ dx.
For more information about vector-valued Lp spaces, see [4] and [25, Chap. 5,
Secs. 4–5].

We now introduce a class of Banach space-valued first-order Sobolev functions.

Definition 2.1. Let � ⊂ Rn be an open set. The Sobolev space W 1,p(�,V ),
1 ≤ p < ∞, is defined as the class of all functions f ∈ Lp(�,V ) such that for
i = 1, 2, . . . , n there exist fi ∈Lp(�,V ) such that, for every ϕ ∈C∞

0 (�),∫
�

∂ϕ

∂xi
f = −

∫
�

ϕfi,

where the integrals are taken in the sense of Bochner (note that the integrands are
supported on compact subsets of �). We denote fi = ∂f/∂xi and call these func-
tions weak partial derivatives of f. We also write ∇f = (∂f/∂x1, . . . , ∂f/∂xn) and

|∇f | =
( n∑

i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥

2)1/2

. (2.1)

The spaceW 1,p(�,V ) is equipped with the norm

‖f ‖1,p =
(∫

�

‖f ‖p
)1/p

+
(∫

�

|∇f |p
)1/p

.

It is easy to prove thatW 1,p(�,V ) is a Banach space.

Another definition of the Sobolev space with values in a Banach space was in-
troduced by Reshetnyak [22] and carefully developed in [13]. Definition 2.2 is
equivalent to but slightly different from that introduced in [22] (cf. [13] and Prop-
osition 2.16).

Definition 2.2. Let � ⊂ Rn be an open set, let V be a Banach space, and let
1 ≤ p < ∞. The Reshetnyak–Sobolev space R1,p(�,V ) is the class of all func-
tions f ∈Lp(�,V ) such that:

(i) for every v∗ ∈V ∗, ‖v∗‖ ≤ 1, we have 〈v∗, f 〉 ∈W 1,p(�); and
(ii) there is a nonnegative function g ∈Lp(�) such that

|∇〈v∗, f 〉| ≤ g a.e. (2.2)

for every v∗ ∈V ∗ with ‖v∗‖ ≤ 1.
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It is easy to prove that R1,p(�,V ) is a Banach space with respect to the norm

‖f ‖R1,p = ‖f ‖p + inf‖g‖p,

where the infimum is over the class of all g that satisfy (2.2). The proof mimics
the standard proof of completeness of Lp.

Proposition 2.3. If �⊂ Rn is open andV is a Banach space, thenW 1,p(�,V )⊂
R1,p(�,V ) and ‖f ‖R1,p ≤ ‖f ‖1,p for all f ∈W 1,p(�,V ).

Proof. Let f ∈W 1,p(�,V ). Then, for every i = 1, 2, . . . , n and every ϕ ∈C∞
0 (�),∫

�

∂ϕ

∂xi
f = −

∫
�

ϕ
∂f

∂xi
.

Hence for every v∗ ∈V ∗, ‖v∗‖ ≤ 1, we have∫
�

∂ϕ

∂xi
〈v∗, f 〉 =

〈
v∗,

∫
�

∂ϕ

∂xi
f

〉
=

〈
v∗, −

∫
�

ϕ
∂f

∂xi

〉
= −

∫
�

ϕ

〈
v∗,

∂f

∂xi

〉
.

This proves that 〈v∗, f 〉 ∈W 1,p(�) and ∂
∂xi

〈v∗, f 〉 = 〈
v∗, ∂f

∂xi

〉
. Therefore,∣∣∣∣ ∂

∂xi
〈v∗, f 〉

∣∣∣∣ =
∣∣∣∣
〈
v∗,

∂f

∂xi

〉∣∣∣∣ ≤
∥∥∥∥ ∂f∂xi

∥∥∥∥
and thus

|∇〈v∗, f 〉| ≤ |∇f |,
where |∇f | is defined by (2.1).

In order to prove the opposite inclusionR1,p ⊂ W 1,p, we will prove thatR1,p func-
tions are absolutely continuous on almost all lines and that we can integrate by
parts. It turns out that we can prove a suitable integration-by-parts formula only
in the case when V is dual to a separable Banach space.

Definition 2.4. Let V be a Banach space. We say that a function f : [a, b] →
V is absolutely continuous if for every ε > 0 there is a δ > 0 such that,
if [a1, b1], . . . , [an, bn] ⊂ [a, b] are intervals with disjoint interiors such that∑n

i=1|bi − ai | < δ, then
∑n

i=1‖f(bi)− f(ai)‖ < ε.

Lemma 2.5. If f : [a, b] → V is absolutely continuous, then it is a rectifiable
curve of length

�(f ) = sup
n∑
i=1

‖f(ai)− f(ai−1)‖ < ∞,

where the supremum is over all n and all partitions a = a0 < a1 < · · · < an = b.

The proof is straightforward and is left to the reader. With a rectifiable curve
f : [a, b] → V we can associate a length function

sf : [a, b] → [0, �(f )], sf (t) = �(f |[a,t]).
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Lemma 2.6. If f : [a, b] → V is absolutely continuous, then the length function
sf : [a, b] → [0, �(f )] is absolutely continuous.

The proof is standard and is left to the reader. It is actually easy to see that, in the
case of sf , the choice of δ > 0 for a given ε > 0 is the same as for the function f.

Every rectifiable curve f : [a, b] → V has an arc length parameterization;
that is, there exists a unique function f̃ : [0, �(f )] → V such that f = f̃ 
 sf .
Moreover, �(f̃ |[0,t]) = t for every t ∈ [0, �(f )]. In particular, f̃ : [0, �(f )] → V

is 1-Lipschitz; see [10, Thm. 3.2].

Lemma 2.7. If f : [a, b] → V is absolutely continuous, then the function

g(x) = lim sup
h→0

∥∥∥∥f(x + h)− f(x)

h

∥∥∥∥ ≤ |s ′
f (x)| a.e. (2.3)

is integrable on [a, b].

Proof. The inequality in (2.3) follows from the 1-Lipschitz condition for f̃ , and
integrability of g stems from the fact that s ′

f ∈L1([a, b]) as a derivative of a real-
valued absolutely continuous function.

If V = Y ∗ is a dual of a Banach space Y, then by the canonical embedding Y ⊂
Y ∗∗ = V ∗ we can interpret elements of Y as functionals on V. The next lemma is
similar to [1, Thm. 3.5].

Lemma 2.8. Let V = Y ∗ be dual to a separable Banach space Y. If f : [a, b] →
V is absolutely continuous, then for a.e. x ∈ (a, b) there is a vector f ′(x) ∈ V

such that ‖f ′(x)‖ ≤ |s ′
f (x)| and〈

v∗,
f(x + h)− f(x)

h

〉
→ 〈v∗, f ′(x)〉 as h → 0

for all v∗ ∈ Y. We call f ′(x) the w∗-derivative of f at x.

Remark 2.9. In general, f need not be differentiable in the Fréchet sense at any
point unless V has the Radon–Nikodym property (cf. [17, p. 259]).

Proof of Lemma 2.8. Let D ⊂ Y be a countable dense subset. We can assume
that D is a linear space over the field of rational numbers (i.e., if a, b ∈ D and if
s, t ∈ Q then sa + tb ∈D). For v∗ ∈D, the function

x �→ 〈v∗, f(x)〉
is a real-valued absolutely continuous function and hence is differentiable a.e.
Since D is countable we conclude that, for a.e. x ∈ (a, b) and every v∗ ∈D, there
is an f ′

v∗(x)∈ R such that〈
v∗,

f(x + h)− f(x)

h

〉
→ f ′

v∗(x) as h → 0.

Observe that v∗ �→ f ′
v∗(x) is a linear functional defined on D. It is bounded for

a.e. x because
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|f ′
v∗(x)| = lim

h→0

∣∣∣∣
〈
v∗,

f(x + h)− f(x)

h

〉∣∣∣∣ ≤ |s ′
f (x)|‖v∗‖ (2.4)

by Lemma 2.7. Therefore, the functional v∗ �→ f ′
v∗(x) extends to an element of

Y ∗ = V. Denote this element by f ′(x)∈V, so 〈v∗, f ′(x)〉 = f ′
v∗(x) for all v∗ ∈D.

Inequality (2.4) yields ‖f ′(x)‖ ≤ |s ′
f (x)|. Now it easily follows from continuity

that, for a.e. x ∈ (a, b) and all v∗ ∈ Y,〈
v∗,

f(x + h)− f(x)

h

〉
→ 〈v∗, f ′(x)〉 as h → 0.

This finishes the proof of Lemma 2.8.

The following lemma is well known, but we provide a proof for the sake of
completeness.

Lemma 2.10. If s : [a, b] → R is absolutely continuous then, for every a < c <

d < b,

lim
h→0

∫ d

c

∣∣∣∣ s(x + h)− s(x)

h
− s ′(x)

∣∣∣∣ dx = 0.

Proof. Given ε > 0, let f ∈C([a, b]) be such that∫ b

a

|s ′(x)− f(x)| dx < ε

3
.

The function f is uniformly continuous and hence there is a δ > 0 such that
|f(x) − f(y)| < ε/(3(d − c)) whenever |x − y| < δ. For 0 < h < δ such that
d + h < b, we have∫ d

c

∣∣∣∣ s(x + h)− s(x)

h
− s ′(x)

∣∣∣∣ dx ≤ 1

h

∫ d

c

∫ x+h

x

|s ′(τ )− s ′(x)| dτ dx

≤ 1

h

∫ d

c

∫ x+h

x

|s ′(τ )− f(τ)| dτ dx

+ 1

h

∫ d

c

∫ x+h

x

|s ′(x)− f(x)| dτ dx

+ 1

h

∫ d

c

∫ x+h

x

|f(τ)− f(x)| dτ dx

≤
∫ d+h

c

|s ′(τ )− f(τ)| dτ

+
∫ d

c

|s ′(x)− f(x)| dx

+ 1

h

∫ d

c

∫ x+h

x

ε

3(d − c)
dτ dx

≤ ε.

This proves that the limit equals 0 as h → 0+. A similar argument shows that the
limit equals 0 as h → 0−.
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Lemma 2.11. Let V = Y ∗ be dual to a separable Banach space Y. If f : [a, b] →
V is absolutely continuous, then∫ b

a

ϕ ′(t)f(t) dt = −
∫ b

a

ϕ(t)f ′(t) dt

for all ϕ ∈C∞
0 (a, b), where f ′(t) is the w∗-derivative of f at t.

Proof. For every v∗ ∈ Y ⊂ V ∗ and ϕ ∈C∞
0 (a, b), we have〈

v∗,
∫ b

a

ϕ ′(t)f(t) dt
〉

=
∫ b

a

ϕ ′(t)〈v∗, f(t)〉 dt

= lim
h→0

∫ b

a

ϕ(t + h)− ϕ(t)

h
〈v∗, f(t)〉 dt

= lim
h→0

−
∫ b

a

ϕ(t)

〈
v∗,

f(t − h)− f(t)

−h
〉
dt

= −
∫ b

a

ϕ(t)〈v∗, f ′(t)〉 dt = −
〈
v∗,

∫ b

a

ϕ(t)f ′(t) dt
〉
.

We can pass the limit under the integral in view of Lemma 2.10. Indeed, we ap-
ply the lemma to s(t) = 〈v∗, f(t)〉 and [c, d ], a < c < d < b, such that suppϕ ⊂
[c, d ]. Since equality holds for all v∗ ∈ Y, the lemma follows.

Lemma 2.12. Let � ⊂ Rn be open and let V = Y ∗ be dual to a separable Ba-
nach space Y. If f ∈ Lp(�,V ) is absolutely continuous on compact intervals in
�∩� for almost all lines � parallel to coordinate axes ( possibly after redefinition
on a set of measure 0) and if w∗-partial derivatives exist and satisfy ‖∂f/∂xi‖ ≤
g a.e. for some g ∈Lp(�), then f ∈W 1,p(�,V ) and ‖f ‖1,p ≤ ‖f ‖p + √

n‖g‖p.
Proof. Let � be a line parallel to the xi-axis such that f is absolutely continuous
on compact intervals in � ∩�. Let ϕ ∈C∞

0 (�). It follows from Lemma 2.11 that∫
�∩�

∂ϕ

∂xi
f = −

∫
�∩�

ϕ
∂f

∂xi
,

and hence Fubini’s theorem yields∫
�

∂ϕ

∂xi
f = −

∫
�

ϕ
∂f

∂xi
.

This proves that the w∗-partial derivatives ∂f/∂xi are actually weak partial deriva-
tives and hence f ∈W 1,p(�,V ). Now the inequality ‖∂f/∂xi‖ ≤ g easily implies
that ‖f ‖1,p ≤ ‖f ‖p + √

n‖g‖p.
The following result is related to [13, Thm. 3.17 and Prop. 5.4].

Lemma 2.13. Let f ∈R1,p(�,V ), 1 ≤ p < ∞. Then, for every ν ∈ S n−1 and al-
most every line � parallel to ν, f is absolutely continuous on compact intervals in
� ∩� (after possible redefinition on a set of measure 0). Moreover, if g ∈Lp(�)

satisfies (2.2) then, for every ν ∈ S n−1 and a.e. x ∈ �, the following limit exists
and satisfies



696 Piotr Hajłasz & Jeremy T. Tyson

lim
h→0

∥∥∥∥f(x + hν)− f(x)

h

∥∥∥∥ ≤ g(x). (2.5)

As a result, the w∗-partial derivatives exist and satisfy ‖∂f/∂xi‖ ≤ g a.e.

Proof. The mapping f ∈ R1,p(�,V ) is essentially separably valued. Let {vi}∞i=1
be a dense subset in the difference set

f(� \ Z)− f(� \ Z) = {f(x)− f(y) : x, y ∈� \ Z},
and let v∗

i ∈ V ∗, ‖v∗
i ‖ = 1, be such that 〈v∗

i , vi〉 = ‖vi‖. Then, for almost every
line � parallel to ν ∈ S n−1, we have:

(a) g ∈Lp(� ∩�);
(b) � ∩ Z has one-dimensional measure 0;
(c) 〈v∗

i , f 〉 is absolutely continuous on compact subintervals in � ∩ � for i =
1, 2, . . . and, for a.e. x ∈ � ∩�,

|Dν〈v∗
i , f 〉(x)| ≤ g(x)

for all i = 1, 2, . . . .

Properties (a) and (b) follow from the Fubini theorem, and (c) is a consequence
of the fact that, for every v∗ ∈V ∗ with ‖v∗‖ = 1, we have 〈v∗, f 〉 ∈W 1,p(�) and
hence 〈v∗, f 〉 is absolutely continuous on almost all lines parallel to ν with

|Dν〈v∗, f 〉| = |(∇〈v∗, f 〉) · ν| ≤ g a.e.

Let � be a line parallel to ν ∈ S n−1 and for which conditions (a)–(c) are satis-
fied. Choose a compact interval I ⊂ � ∩ �. Such an interval is of the form I =
{x0 + tν : t ∈ [a, b]}. Then the inequality in (c) implies that∣∣∣∣ ddt 〈v∗

i , f(x0 + tν)〉
∣∣∣∣ ≤ g(x0 + tν)

for all i = 1, 2, . . . and a.e. t ∈ [a, b]. For almost all s, t ∈ [a, b], for x0 + sν /∈ Z

and x0 + tν /∈Z, and for i = 1, 2, 3, . . . , we have

〈v∗
i , f(x0 + tν)− f(x0 + sν)〉 =

∫ t

s

d

dτ
〈v∗

i , f(x0 + τν)〉 dτ

≤
∫ t

s

g(x0 + τν) dτ.

It follows from the definition of the set {v∗
i }∞i=1 that there is a sequence v∗

ij
such that

〈v∗
ij

, f(x0 + tν)− f(x0 + sν)〉 → ‖f(x0 + tν)− f(x0 + sν)‖ as j → ∞.

Accordingly,

‖f(x0 + tν)− f(x0 + sν)‖ ≤
∫ t

s

g(x0 + τν) dτ. (2.6)

This proves the absolute continuity of f on compact intervals in � ∩ � and also
proves inequality (2.5).

Now we are prepared to prove the main result of this section.
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Theorem 2.14. If � ⊂ Rn is open and V = Y ∗ is dual to a separable Banach
space Y, then

W 1,p(�,V ) = R1,p(�,V )

and ‖f ‖R1,p ≤ ‖f ‖1,p ≤ √
n‖f ‖R1,p .

Proof. According to Proposition 2.3, it suffices to prove that R1,p ⊂ W 1,p and
‖f ‖1,p ≤ √

n‖f ‖R1,p . Let f ∈R1,p(�,V ) and g ∈Lp be as in (2.2). Lemma 2.13
and Lemma 2.12 imply that ‖f ‖1,p ≤ ‖f ‖p + √

n‖g‖p, and the theorem follows
upon taking the infimum over all the functions g as before.

In the sequel we will also need the following fact.

Lemma 2.15. Let � ⊂ Rn be a bounded and open set and let V = Y ∗ be dual to
a separable Banach space Y. If f ∈W 1,p(�), f(�) ⊂ [a, b], and γ : [a, b] → V

is 1-Lipschitz , then γ 
 f ∈W 1,p(�,V ) and ‖∇(γ 
 f )‖p ≤ √
n‖∇f ‖p.

Proof. According to Theorem 2.14, it suffices to prove that γ 
 f ∈ R1,p(�,V )
and that g = |∇f | satisfies (2.2) with f replaced by γ 
 f , because then (2.5)
will imply that ‖∂(γ 
 f )/∂xi‖ ≤ |∇f | a.e. and hence |∇(γ 
 f )| ≤ √

n|∇f |
a.e. If v∗ ∈ V ∗, ‖v∗‖ ≤ 1, then 〈v∗, γ 
 f 〉 = ϕ 
 f , where ϕ : [a, b] → R and
ϕ(x) = 〈v∗, γ (x)〉 is a 1-Lipschitz function. Hence 〈v∗, γ 
 f 〉 ∈ W 1,p(�) and
|∇〈v∗, γ 
 f 〉| = |∇(ϕ 
 f )| ≤ |∇f | a.e.

The following result links the definition of R1,p(�,V ) to that provided in the
Introduction. Compare [13, Thm. 3.17] and [22, Thm. 5.1].

Proposition 2.16. Let � ⊂ Rn be open, let V be a Banach space, and let 1 ≤
p < ∞. Then f ∈ R1,p(�,V ) if and only if f ∈ Lp(�,V ) and there is a non-
negative function g ∈ Lp(�) such that, for every Lipschitz continuous function
ϕ : V → R, we have ϕ 
 f ∈W 1,p(�) and |∇(ϕ 
 f )| ≤ Lip(ϕ)g a.e.

Proof. (⇐) This implication is obvious because, for v∗ ∈ V ∗ with ‖v∗‖ ≤ 1,
ϕ(v) = 〈v∗, v〉 is 1-Lipschitz continuous and hence 〈v∗, f 〉 ∈ W 1,p(�) with
|∇〈v∗, f 〉| ≤ g a.e.
(⇒) Let f ∈ R1,p(�,V ) and g ∈ Lp(�) be as in the definition of R1,p(�,V ),

and let ϕ : V → R be a Lipschitz continuous function.
Let ν ∈ S n−1. We proved in Lemma 2.13 that, for almost all lines � parallel to ν,

the function f is absolutely continuous on compact intervals contained in � ∩ �

and

‖f(x0 + tν)− f(x0 + sν)‖ ≤
∫ t

s

g(x0 + τν) dτ

provided {x0 + τν : τ ∈ [s, t]} ⊂ � ∩�; see (2.6). Hence

‖(ϕ 
 f )(x0 + tν)− (ϕ 
 f )(x0 + sν)‖ ≤ Lip(ϕ)
∫ t

s

g(x0 + τν) dτ.

This proves that ϕ 
 f is absolutely continuous on almost all lines. Hence ϕ 
 f ∈
W 1,p(�) and |Dν(ϕ 
 f )| ≤ Lip(ϕ)g a.e. Taking the supremum over all ν in a
countable dense subset of S n−1 yields |∇(ϕ 
 f )| ≤ Lip(ϕ)g a.e.
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Let � ⊂ Rn be open and let X be a metric space. We can always assume that
X is isometrically embedded into a Banach space V. Indeed, every metric space
X admits an isometric embedding to V = �∞(X), the Banach space of bounded
functions onX. In this case we have two natural definitions of the space of Sobolev
mappings from � to X :

W 1,p(�,X) = {f ∈W 1,p(�,V ) : f(�) ⊂ X};
R1,p(�,X) = {f ∈R1,p(�,V ) : f(�) ⊂ X}.

Since every Lipschitz function ϕ : X → R can be extended to a Lipschitz func-
tion ϕ̃ : V → R with the same Lipschitz constant (McShane extension theorem;
see e.g. [12, Thm. 6.2]), Proposition 2.16 shows that the preceding definition of
R1,p(�,X) is equivalent to that in the Introduction. In particular, the definition of
R1,p(�,X) does not depend on the isometric embedding of X to a Banach space.
Moreover, Theorem 2.14 yields the following.

Theorem 2.17. If � ⊂ Rn is open,V = Y ∗ is dual to a separable Banach space,
1 ≤ p < ∞, and X ⊂ V, then W 1,p(�,X) = R1,p(�,X).

Observe that if X is separable then it admits an isometric embedding to �∞. The
space �∞ is dual to a separable Banach space (�∞ = (�1)∗), so in this case
W 1,p(�,X) and R1,p(�,X) coincide.

3. Proof of Theorem 1.3

In the proof we will employ some ideas from [18] and [14] (cf. [9]). Without loss
of generality we may assume that the diameter of X with respect to d� is 1. Since
X is length compact, for every � = 0,1, 2, 3, . . . there is a finite 2−�-net X� =
{x�i }k�i=1 with respect to d�; that is, every point of X can be connected to a point in
the set X� by a curve of length ≤ 2−�. Because the length metric diameter equals
1, we may assume that X0 = {x0

1 }. For every i = 1, 2, . . . , k�+1 there is a curve
γ �+1
i of length ≤ 2−� that connects x�+1

i to a point x�j(i,�+1) ∈ X�. We may as-
sume that γ �+1

i is parameterized by arc length [10, Thm. 3.2]—in other words, that
γ �+1
i : [0, �(γ �+1

i )] → X is 1-Lipschitz with �(γ �+1
i ) ≤ 2−�, γ �+1

i (0) = x�j(i,�+1),
and γ �+1

i (�(γ �+1
i )) = x�+1

i .

The idea of the proof is to construct a sequence of Lipschitz continuous map-
pings f� : [0,1]n → X that converge uniformly and in the Sobolev norm to a sur-
jection f : [0,1]n → X. The mapping f0 is defined as a constant map that maps
[0,1]n onto the point x0

1 ∈ X0. The mapping f1 will be a modification of f0 on
an open set of small measure that connects x0

1 to points in the set X1 through the
curves γ 1

i . The mapping f2 will be a modification of f1 on an open set of small
measure that connects points of X1 to points of X2 through the curves γ 2

i , and so
on. The lengths of the curves at each step decrease at a geometric rate, which guar-
antees uniform convergence. Since the limiting mapping f covers a dense subset
ofX, it is surjective. In each step the Sobolev norm of the difference f�−f�+1 does
not exceed 2−(�−1), which guarantees that the sequence converges in the Sobolev
norm. Finally, we will modify the mappings on a rapidly decreasing family of
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open sets whose intersection is a compact set E of Hausdorff dimension 0. The
limit mapping will be locally Lipschitz continuous in [0,1]n \ E and hence a.e.
metrically differentiable according to the theorem of Kirchheim.

To construct the sequence f� we need auxiliary Lipschitz functions. It is well
known and easy to prove that, for n ≥ 2, η(x) = log|log|x|| ∈W 1,n(B(0, e−1)).

Define the truncation of η between levels s and t, 0 < s < t < ∞, by

ηts(x) =


t − s if η(x) ≥ t,

η(x)− s if s ≤ η(x) ≤ t,

0 if η(x) ≤ s.

Fix τ > 0. For every ε > 0 there is a sufficiently large s such that ηε,τ := ηs+τ
s is

a Lipschitz continuous function on Rn with the following properties:

supp ηε,τ ⊂ B(0, ε);
0 ≤ ηε,τ ≤ τ, ηε,τ = τ in a neighborhood of 0; (3.1)

‖∇ηε,τ‖n < ε. (3.2)

Equivalently, the existence of a function ηε,τ with these properties follows from
the fact that the capacity of a point is zero. However, the construction here is more
straightforward.

Since X is compact, we may assume that X is isometrically embedded in V =
�∞. For simplicity we will denote the norm in �∞ by |·|, and for two continuous
functions g,h : [0,1]n → X ⊂ �∞ we define ‖g − h‖∞ = supx |g(x)− h(x)|.

Suppose n ≥ 2. We define f0 : [0,1]n → X to be a constant map, f0([0,1]n) =
{x1

0}. Let y1
1, . . . , y1

k1
∈ (0,1)n be distinct points and let ε1 > 0 be so small

that
√
nk1ε1 < 1 and the balls B(y1

i , ε1) ⊂ (0,1)n are pairwise disjoint for i =
1, 2, . . . , k1. Define

f1(x) =
{
f0(x) if x /∈ ⋃k1

i=1B(y
1
i , ε1),

γ 1
i (ηε1,�(γ

1
i
)(x − y1

i )) if x ∈B(y1
i , ε1).

Clearly, f1 is Lipschitz continuous. The mapping f1 differs from f0 on the set⋃k1
i=1B(y

1
i , ε1) and ‖f1 − f0‖∞ ≤ 1, because

|γ 1
i (ηε1,�(γ

1
i
)(x − y1

i ))− x1
0| = |γ 1

i (ηε1,�(γ
1
i
)(x − y1

i ))− γ 1
i (0)|

≤ |ηε1,�(γ
1
i
)(x − y1

i )|
≤ �(γ 1

i ) ≤ 1

by (3.1) and the 1-Lipschitz continuity of γ 1
i . Since [0,1]n has unit measure, we

have ‖f0 − f1‖n ≤ ‖f0 − f1‖∞. Moreover, f0 is constant in each ball B(y1
i , ε1),

so its gradient equals zero there and hence

‖f0 − f1‖1,n ≤ ‖f0 − f1‖∞ +
k1∑
i=1

‖∇(γ 1
i 
 ηε1,�(γ

1
i
)(· − y1

i ))‖n

≤ 1 + k1
√
nε1 < 2

by Lemma 2.15 and (3.2). Clearly f1(y
1
i ) = x1

i and f1 is constant in a neighbor-
hood of y1

i ; that is, there is an ε̃1 > 0 such that
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f1(B(y
1
i , ε̃1)) = {x1

i } for i = 1, 2, . . . , k1.

For i = 1, 2, . . . , k2, the curve γ 2
i connects x 2

i with x1
j(i,2) for some j(i, 2) ∈

{1, 2, . . . , k1}. Let y2
i ∈B(y1

j(i,2), ε̃1) be distinct points and let ε2 > 0 be so small
that

√
nk2ε2 < 2−1 and

B(y2
i , ε2) ⊂ B(y1

j(i,2), ε̃1)

are pairwise disjoint. Observe that the mapping f1 is constant on each ball
B(y2

i , ε2) and that f1(B(y
2
i , ε2)) = {x1

j(i,2)}. We define f2 as follows:

f2(x) =
{
f1(x) if x /∈ ⋃k2

i=1B(y
2
i , ε2),

γ 2
i (ηε2,�(γ

2
i
)(x − y2

i )) if x ∈B(y2
i , ε2).

Clearly, f2 is Lipschitz continuous. The mapping f2 differs from f1 on the set⋃k2
i=1B(y

2
i , ε2) and ‖f2 − f1‖∞ ≤ 2−1, because f1 ≡ x1

j(i,2) on B(y2
i , ε2) and

hence, for x ∈B(y2
i , ε2),

|f2(x)− f1(x)| = |γ 2
i (ηε2,�(γ

2
i
)(x − y2

i )− xij(i,2)|
= |γ 2

i (ηε2,�(γ
2
i
)(x − y2

i )− γ 2
i (0)|

≤ |ηε2,�(γ
2
i
)(x − y2

i )| ≤ �(γ 2
i ) ≤ 2−1

by (3.1) and the 1-Lipschitz continuity of γ 2
i . Moreover,

‖f1 − f2‖1,n ≤ ‖f1 − f2‖∞ +
k2∑
i=1

‖∇(γ 2
i 
 ηε2,�(γ

2
i
)(· − y2

i ))‖n

≤ 2−1 + √
nk2ε2 < 1

by Lemma 2.15 and (3.2). Clearly f2(y
2
i ) = x 2

i and f2 is constant in a neighbor-
hood of y2

i .

Similarly, we construct Lipschitz mappings f3, f4, f5, . . . so that f�+1 differs
from f� on the set

k�+1⋃
i=1

B(y�+1
i , ε�+1),

‖f�+1 − f�‖∞ ≤ 2−�, (3.3)

‖f�+1 − f�‖1,n ≤ 2−(�−1), (3.4)
and

f�+1(y
�+1
i ) = x�+1

i ,

where f�+1 is constant in a neighborhood of y�+1
i . The mappings f� are Lip-

schitz continuous, and by (3.3) they converge uniformly to a continuous map-
ping f : [0,1]n → X. Since the image of f covers a dense subset

⋃∞
n=0 Xn ⊂

f([0,1]n), it follows that f([0,1]n) = X. The sets
k�⋃
i=1

B(y�i , ε�)

form a decreasing sequence of open sets. Because the radii ε� can be taken arbi-
trarily small, we can guarantee that the intersection
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E =
∞⋂
�=1

k�⋃
i=1

B(y�i , ε�)

is a compact set of Hausdorff dimension 0. Observe that the consecutive map-
pings in the sequence are obtained by modifications of preceding mappings on a
decreasing sequence of sets. Hence

f = f� on [0,1]n
∖ k�+1⋃

i=1

B(y�+1
i , ε�+1),

and we conclude that f is locally Lipschitz continuous in [0,1]n \ E. Therefore,
f is a.e. metrically differentiable according to Kirchheim’s theorem.

Finally, (3.4) implies that (f�) is Cauchy in the Sobolev normW 1,n. Hence the
limit mapping f belongs toW 1,n([0,1]n,X) = R1,n([0,1]n,X).

If n = 1, then the functions ηε,τ are still Lipschitz continuous but the Sobolev
norm estimate (3.2) is no longer true. We can repeat the previous construction also
for n = 1; then the limit mapping f : [0,1] → X will be a surjection that is locally
Lipschitz on the complement of a set of Hausdorff dimension 0 and hence met-
rically differentiable a.e. However, in this case f will not belong to the Sobolev
spaceW 1,1 = R1,1.

4. Proof of Theorem 1.4

The functions ηε,τ constructed in the proof of Theorem 1.3 are not smooth, but
we can make them smooth via convolution approximation. Then—using smooth
curves to connect points—we can follow the construction from the proof of The-
orem 1.3 to obtain, for every positive integer k, a mapping Fk : [−1/2,1/2]2 →
X that is C∞ smooth outside a compact set Ek of Hausdorff dimension 0 and that
satisfies ‖Fk‖1,2 < 2−k and B(0, k) ⊂ Fk([−1/2,1/2]2), where B(x, r) denotes a
ball in X with respect to the metric d. Furthermore, it follows from the proof of
Theorem 1.3 that the set Ek can be located on the x-axis. We can also put Fk = 0
near the boundary of the cube, so we can extend it by zero to a mapping from R2

to X. Now the mapping

f(x, y) =
∞∑
k=1

Fk(x − k, y)

satisfies the claim of the theorem.
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