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Zeros of Regular Functions and Polynomials
of a Quaternionic Variable

Graziano Gentil i & Caterina Stoppato

1. Introduction

Let H denote the skew field of real quaternions. Its elements are of the form q =
x0 + ix1 + jx2 + kx3, where the xl are real and i, j, k are imaginary units (i.e.,
the square of each equals −1) such that ij = −ji = k, jk = −kj = i, and ki =
−ik = j. The richness of the theory of holomorphic functions of one complex
variable, along with motivations from physics, aroused a natural interest in a the-
ory of quaternion-valued functions of a quaternionic variable. In fact, in the last
century, several interesting theories have been introduced. The best known is due
to Fueter [3; 4; 5], who defined the differential operator

∂

∂q̄
= 1

4

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
,

now known as the Cauchy–Fueter operator, and defined the space of regular func-
tions as the space of solutions of the equation associated to this operator. All
regular functions are harmonic, and Fueter proved that this definition led to close
analogues of Cauchy’s theorem, Cauchy’s integral formula, and the Laurent ex-
pansion. This theory is extremely successful and is now very well developed in
many different directions. We refer the reader to [14] for the basic features of these
functions. More recent work in this subject includes [1] and [9] and the references
therein. Regarding the zero set of a Fueter-regular function, we remark here that
it does not necessarily consist of isolated points and that its real dimension can be
0, 1, 2, or 4.

Inspired by an idea of Cullen [2], Gentili and Struppa [6; 7] have offered an
alternative definition and theory of regularity for functions of a quaternionic vari-
able. Cullen-regular functions are not harmonic in general. This new theory allows
the study of natural power series (and polynomials) with quaternionic coefficients,
which is excluded when the Fueter approach is followed. The papers [6] and [7]
also include a study of the first properties of the zero set of Cullen-regular functions.

In order to present the definition of Cullen regularity, we start by using S to
denote the 2-dimensional sphere of imaginary units of H; that is, S = {q ∈ H :
q2 = −1}. The definition given by Cullen can then be rephrased as follows.
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Definition 1.1. Let
 be a domain in H. A real differentiable function f : 
 →
H is said to be C-regular if, for every I ∈ S, its restriction fI to the complex line
LI = R + RI passing through the origin and containing 1 and I is holomorphic
on 
 ∩ LI . In other words, f is C-regular if, for every I in S,

∂̄If(x + Iy) := 1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x + yI ) = 0

on 
 ∩ LI .

Since no confusion can arise, we will refer to C-regular functions simply as regu-
lar functions. Since for all n∈ N and all I ∈ S we have
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(x + yI )n = 0,

it follows by definition that the monomial M(q) = qn is regular. Because ad-
dition and right multiplication by a constant preserve regularity, all natural poly-
nomials of the form P(q) = qmam + · · · + qa1 + a0 (with m ∈ N and aj ∈ H ,
j = 0, . . . ,m) are regular. As observed in [6; 7], for each quaternionic power
series

f(q) =
∞∑
n=0

qnan

there exists a ball B(0,R) = {q ∈ H : |q| < R} such that f converges absolutely
and uniformly on the compact subsets of B(0,R) (where its sum defines a regular
function) and diverges in H \ B(0,R).

For regular functions, a notion of derivative can be introduced.

Definition 1.2. Let 
 be a domain in H , and let f : 
 → H be a regular func-
tion. The (Cullen) derivative of f , ∂f

∂q
, is defined as follows:
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As explained in [6; 7], this definition of derivative is well-posed because it applies
only to regular functions. It turns out that regular functions defined on domains
containing the origin of H can be expanded in power series. Namely, if B(0,R)
is the open ball of H centered at 0 with radius R > 0, then we have the following
result.

Theorem 1.3. If f : B(0,R) → H is regular, then it has a series expansion of
the form

f(q) =
∞∑
n=0

qn
1

n!

∂nf

∂qn
(0)

converging on B(0,R). In particular, f is C∞ on B(0,R).



Zeros of Regular Functions and Polynomials of a Quaternionic Variable 657

Roughly speaking, there is a correspondence between quaternionic power series
centered at 0 and regular functions on domains containing the origin of H. In [6; 7]
the first fundamental results of the theory of (Cullen) regular functions are proved:
the identity principle, the maximum modulus principle, the Cauchy representa-
tion formula, the Liouville theorem, and the Morera theorem. A version of the
Schwarz lemma opens possible advances in the study of the geometry of the unit
ball of H , of the 4-dimensional analogue of the Siegel right half-plane (biregular
to the unit ball via the analogue of a Cayley map), and their transformations. Fi-
nally, we recall the statement of a first (purely algebraic) property of the zeros of
regular functions that is proved in [6; 7].

Theorem 1.4. Let f(q) = ∑+∞
n=0 q

nan be a quaternionic power series converg-
ing in B(0,R), and let x, y ∈ R be such that y �= 0 and x 2 + y2 < R2. If there
exist two distinct imaginary units I, J ∈ S such that f(x+ yI ) = 0 = f(x+ yJ ),
then f vanishes on the whole 2-sphere x + yS = {x + yL : L∈ S}.
The same result was previously proven for polynomials in [12]. Theorem 1.4 en-
lightens a symmetry property of the zeros of regular functions, but it does not
predict the topological features of the zero set of such functions.

We begin this paper by proving the following topological property of the zero
set of regular functions, which urges a comparison with the case of holomorphic
functions of one complex variable.

Theorem 2.4 (Structure of the zero set). Let f be a regular function on an open
ball B(0,R) centered in the origin of H. If f is not identically zero then its zero
set consists of isolated points or isolated 2-spheres of the form S = x + yS for
x, y ∈ R, y �= 0.

This result is proven for the polynomial case in [12] by means of simpler tech-
niques. It naturally leads to the formulation of an identity principle that generalizes
the one stated in [6; 7].

Theorem 2.5 (Strong identity principle). Let f , g : B(0,R) → H be regular
functions. If there exist x, y ∈ R such that S = x + yS ⊆ B(0,R) and a subset
T ⊆ B(0,R)\S having an accumulation point in S such that f ≡ g on T , then
f ≡ g on the whole domain of definition B(0,R).

Observe that S = x + yS is a 2-sphere if y �= 0 or a real singleton {x} if y = 0.
The proof of Theorem 2.4 is much harder than the proof of the homologous result
in complex analysis, and it has a different structure. In fact, the factorization prop-
erty of the zeros of holomorphic functions does not extend to regular functions
because of the lack of commutativity. Nevertheless, the techniques employed to
prove Theorem 2.4 suggest the use of the following multiplication between regu-
lar power series.

Definition 3.1. Let f(q) = ∑+∞
n=0 q

nan and g(q) = ∑+∞
n=0 q

nbn be given
quaternionic power series with radii of convergence greater than R. We define the
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regular product of f and g as the series f ∗ g(q) = ∑+∞
n=0 q

ncn, where cn =∑n
k=0 akbn−k for all n.

We point out that the sequence of the coefficients of the regular product f ∗ g is
the discrete convolution of the sequences of the coefficients of f and g. In the
polynomial case, the regular multiplication concides with the classical multipli-
cation of the polynomial ring over the quaternions, H[X]. In terms of the prod-
uct just defined we obtain a factorization result for the zeros of regular functions
(Theorem 3.2) and completely describe the zero set of a regular product in terms
of the zero sets of the two factors (Theorem 3.3).

Theorem 3.3 (Zeros of a regular product). Let f and g be given quaternionic
power series with radii greater than R, and let p ∈ B(0,R). Then f ∗ g(p) = 0
if and only if f(p) = 0 or f(p) �= 0 and g(f(p)−1pf(p)) = 0.

This extends to quaternionic power series the theory presented in [10] for polyno-
mials. In particular, given the power series expansion of any regular function f ,
we construct the symmetrization f s of f that has real coefficients and vanishes
exactly on the 2-spheres (or singletons) x + yS where f has a zero.

When applied to polynomials, the foregoing results and the fundamental theo-
rem of algebra for quaternions (see Section 5) lead to the following factorization
theorem (for the classical algebraic theory, see [15]).

Theorem 5.2 (Factorization). Let a0, . . . , an ∈ H (an �= 0) and let f(q) =
a0 + qa1 + · · · + qnan. Then there exist points p1, . . . ,pn ∈ H such that f(q) =
(q − p1) ∗ · · · ∗ (q − pn)c, where c = an.

They also lead to the complete identification of the zeros of polynomials in terms
of their factorization. These last results have already been proven in [13] from an
algebraic point of view. Our new approach enriches them with a technique to lo-
calize the zeros of polynomials.

Finally, the most natural definition of multiplicity leads to the result that the
degree of a polynomial might exceed the sum of the multiplicities of its zeros
(Proposition 5.6).

Acknowledgments. We thank the attentive, anonymous referee for valuable
comments and remarks. In particular, a subsequent paper will follow the referee’s
suggestion to compare Fueter regularity and Cullen regularity.

2. Structure of the Zero Set of Regular Functions

One of the basic properties of holomorphic functions of a complex variable is
the discreteness of their zero sets (except when the function vanishes identically).
Given a regular quaternionic function f on a ball B(0,R), all of its restrictions fI
to complex lines LI are holomorphic and hence either have a discrete zero set or
vanish identically. By the identity principle proven in [6; 7], if fI ≡ 0 for some
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I ∈ S then f ≡ 0. Therefore, the zeros of a nontrivial f cannot accumulate on a
single complex line LI . However, this does not prevent the zeros of f from accu-
mulating tout court: as we have seen in Theorem 1.4, a regular function may well
have a whole 2-sphere x + yS of zeros. The result announced in the Introduction
as Theorem 2.4 tells us that this is the only way the zeros of a regular function
can accumulate: every zero of f is either isolated or part of an isolated 2-sphere
of zeros.

In order to prove the desired result, we need to take some preliminary steps.
First of all, we describe a necessary and sufficient condition for a quaternionic
regular function f to have a zero at point p in terms of the coefficients of the
power series expansion of f. This result is a noncommutative generalization of
a well-known property of holomorphic functions of a complex variable: a holo-
morphic function f has a zero at point p if and only if there exists a holomorphic
function g such that f(z) = (z− p)g(z) for all z in a neighborhood of p.

Theorem 2.1. Let
∑+∞

n=0 q
nan be a given quaternionic power series with radius

of convergence R, and let p ∈B(0,R). Then
∑+∞

n=0 p
nan = 0 if and only if there

exists a quaternionic power series
∑+∞

n=0 q
ncn with radius of convergence R such

that a0 = −pc0 and an = cn−1 − pcn for all n > 0.

Proof. Let I ∈ S be an imaginary unit such that p ∈LI , and let J ∈ S be such that
I ⊥ J. There exist sequences {αn}+∞

n=0 and {βn}+∞
n=0 in LI such that an = αn +βnJ

for all n. The equation

0 =
+∞∑
n=0

pnan =
+∞∑
n=0

pnαn +
+∞∑
n=0

pnβnJ

is equivalent to 0 = ∑+∞
n=0 p

nαn = ∑+∞
n=0 p

nβn. By identifying LI with the
complex plane C, we can consider the two complex power series

∑+∞
n=0 z

nαn,∑+∞
n=0 z

nβn whose radii of convergence R1,R2 are such that min(R1,R2) = R.

These two series have a zero at p if and only if there exist complex power series∑+∞
n=0 z

nγn,
∑+∞

n=0 z
nδn with radii R1,R2 such that

+∞∑
n=0

znαn = (z− p)

+∞∑
n=0

znγn = −pγ0 +
+∞∑
n=1

zn(γn−1 − pγn),

+∞∑
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znβn = (z− p)

+∞∑
n=0

znδn = −pδ0 +
+∞∑
n=1

zn(δn−1 − pδn),

in other words, such that α0 = −pγ0 and β0 = −pδ0 as well as αn = γn−1 −pγn
and βn = δn−1 − pδn for all n > 0. Recalling that an = αn + βnJ and setting
cn = γn + δnJ for all n, the latter is equivalent to

a0 = −pc0, an = cn−1 − pcn for all n > 0.

It is now sufficient to remark that the radius of convergence of
∑+∞

n=0 q
ncn equals

min(R1,R2) = R.
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Theorem 2.1 enables our second step toward the proof of Theorem 2.4. For any
quaternionic power series f , we are able to construct a new quaternionic power
series f s in such a way that, whenever f(x + yI ) = 0 for some I ∈ S, we can
conclude f s(x + yL) = 0 for all L∈ S.

Definition 2.2. Let f(q) = ∑+∞
n=0 q

nan be a given quaternionic power series
with radius of convergence R. We define the symmetrization of f as the series
f s(q) = ∑+∞

n=0 q
nrn, where rn = ∑n

k=0 ak ān−k for all n.

It is easy to prove that f s also has radius of convergence R. Notice that the co-
efficients rn = ∑n

k=0 ak ān−k all belong to R. We now prove the aforementioned
relation between the zeros of a series and the zeros of its symmetrization.

Proposition 2.3. Let f(q) = ∑+∞
n=0 q

nan be a given quaternionic power series
with radius of convergence R. If x, y ∈ R, I ∈ S, and f(x + yI ) = 0, then
f s(x + yL) = 0 for all L∈ S.

Proof. Let p = x + yI be a zero of f. By Theorem 2.1, this implies the existence
of a series g(q) = ∑+∞

n=0 q
ncn with radius R such that a0 = −pc0 and

an = cn−1 − pcn

for all n > 0. If we set rn = ∑n
k=0 ak ān−k and sn = ∑n

k=0 ck c̄n−k for all n,
the displayed equality implies (by direct computation) that r0 = |p|2s0, r1 =
−2xs0 + |p|2s1, and

rn = sn−2 − 2xsn−1 + |p|2sn
for all n > 1. From this we get

f s(q) =
+∞∑
n=0

qnrn =
+∞∑
n=0

qn+2sn − 2x
+∞∑
n=0

qn+1sn + |p|2
+∞∑
n=0

qnsn

= (q2 − 2xq + |p|2)g s(q) = [(q − x)2 + y2]gs(q),

which gives immediately that f s(x + yL) = 0 for all L∈ S.

We are now ready to prove Theorem 2.4. Symmetrization allows us indeed to
transform any zero into a “spherical” zero, and these zeros cannot accumulate: if
they did then zeros would accumulate in each complex line LI ; and this is im-
possible, as discussed at the beginning of this section. We state our result before
giving the detailed proof.

Theorem 2.4 (Structure of the zero set). Let f : B(0,R) → H be a regular
function and suppose f does not vanish identically. Then the zero set of f con-
sists of isolated points or isolated 2-spheres of the form S = x + yS for x, y ∈ R.

Proof. Let f : B(0,R) → H be any regular function and let Zf be its zero set.
Consider any 2-sphere (or singleton) S = x + yS ⊆ B(0,R) containing zeros of
f. We already know, by Theorem 1.4, that either f has exactly one zero in S or f
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vanishes at all points of S. We need only prove that if Zf\S has an accumulation
point in S then f ≡ 0.

Let p = x + yI ∈ S be such a point; there exists a sequence of zeros of f not
belonging to S, {pn}+∞

n=0 ⊆ Zf\S, that converges to p. Consider the power series
expansion f(q) = ∑+∞

n=0 q
nan and its symmetrization f s(q) = ∑+∞

n=0 q
nrn. For

any given n, the fact that f vanishes at pn = xn + ynIn implies f s(xn + ynJ ) =
0 for all J ∈ S. Now identify LI with the complex plane C: the complex series
(with real coefficients)

∑+∞
n=0 z

nrn is zero at all points xn + ynI, which accumu-
late at p. By a well-known property of complex power series, the coefficients rn
must all vanish. It can be easily proven by induction that the vanishing of rn =∑n

k=0 ak ān−k for all n implies the vanishing of all coefficients an. This means
f ≡ 0, as desired.

As a consequence of Theorem 2.4, we can strengthen the identity principle proven
in [6; 7].

Theorem 2.5 (Strong identity principle). Let f , g : B(0,R) → H be regular
functions. If there exist x, y ∈ R such that S = x + yS ⊆ B(0,R) and a subset
T ⊆ B(0,R)\S having an accumulation point in S such that f ≡ g on T , then
f ≡ g on the whole domain of definition B(0,R).

Proof. Consider the regular function h = f − g : B(0,R) → H and its zero set
Zh. We know that T ⊆ Zh, so Zh\S has an accumulation point in S. By the struc-
ture theorem, h ≡ 0. This implies f ≡ g, as desired.

3. Regular Multiplication

The proof of the structure theorem given in Section 2 required quite a lot of work
as compared to the proof of the analogous result in complex analysis. In fact, the
factorization property of the zeros of holomorphic complex functions is replaced
by Theorem 2.1, which is apparently a weaker result because of the noncommu-
tativity of multiplication in H. This makes handling the zeros harder than in the
complex case. In this section we show that, using a different notion of multipli-
cation between regular functions, Theorem 2.1 can be turned into a factorization
result.

Definition 3.1. Let f(q) = ∑+∞
n=0 q

nan and g(q) = ∑+∞
n=0 q

nbn be given
quaternionic power series with radii of convergence greater than R. We define the
regular product of f and g as the series f ∗g(q) = ∑+∞

n=0 q
ncn whose coefficients

cn = ∑n
k=0 akbn−k are obtained by discrete convolution from the coefficients of

f and g.

The regular product of f and g, which we may denote as f ∗ g, f ∗ g(q), or
f(q)∗g(q), has radius of convergence greater thanR. It can be easily proved that
the regular multiplication ∗ is an associative, noncommutative operation. We can
now restate Theorem 2.1 as follows.
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Theorem 3.2. Letf(q) = ∑+∞
n=0 q

nan be a given quaternionic power series with
radius of convergence R, and let p ∈B(0,R). Then f(p) = 0 if and only if there
exists a quaternionic power series g(q) with radius of convergence R such that

f(q) = (q − p) ∗ g(q). (1)

This result would, of course, be uninteresting if the other zeros of f did not depend
on the zeros of g. Fortunately, this is not the case: the zeros of a regular product
f ∗ g are strongly related with those of f and g.

Theorem 3.3 (Zeros of a regular product). Let f and g be given quaternionic
power series with radii greater than R and let p ∈B(0,R). Then f ∗ g(p) = 0 if
and only if f(p) = 0 or f(p) �= 0 and g(f(p)−1pf(p)) = 0.

Proof. It can be easily proved that if g(q) = ∑+∞
n=0 q

nbn then f ∗ g(q) =∑+∞
n=0 q

nf(q)bn. Hence f(p) = 0 implies f ∗ g(p) = 0 and f(p) �= 0 implies

f ∗ g(p) = f(p)

+∞∑
n=0

f(p)−1pnf(p)bn = f(p)g(f(p)−1pf(p)),

so that f ∗ g(p) = 0 iff (if and only if ) g(f(p)−1pf(p)) = 0.

In particular, if f ∗ g has a zero in S = x + yS then either f or g has a zero in S.
However, the zeros of g in S need not be in one-to-one correspondence with the
zeros of f ∗ g in S that are not zeros of f.

Example 3.4. Let I ∈ S be an imaginary unit. The regular product

(q − I ) ∗ (q + I ) = q2 + 1

has S as its zero set while q − I and q + I vanish only at I and −I, respectively.

Example 3.5. Let I, J ∈ S be different imaginary units and suppose I �= −J.
The regular product

(q − I ) ∗ (q − J ) = q2 − q(I + J )+ IJ

vanishes at I but has no other zero in S. Indeed, given any L∈ S, we obtain

L2 − L(I + J )+ IJ = 0 iff L(I + J ) = −1 + IJ

iff L(I + J ) = I(I + J ) iff L = I,

since I + J �= 0.

4. Symmetrization and Computation of the Zeros

In this section we complete the characterization of the zero set of f s in terms of
the zero set of f. This leads to a method for computing the zeros of a quaternionic
regular function. The new result on the zeros of f s is based on the fact that f s =
f ∗ f c, where f c is a new series called the regular conjugate of f.
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Definition 4.1. Let f(q) = ∑+∞
n=0 q

nan be a given quaternionic power series
with radius of convergence R. We define the regular conjugate of f as the series
f c(q) = ∑+∞

n=0 q
nān.

We remark that f c also has radius R and that f s = f ∗ f c. Moreover, we prove
the following.

Proposition 4.2. Let f be a given quaternionic power series with radius of con-
vergence R and let x, y ∈ R be such that S = x + yS ⊆ B(0,R). The zeros of f
in S are in one-to-one correspondence with those of f c.

Proof. Since (f c)c = f , we need only prove that the vanishing of f at one or all
points of S implies the vanishing of f c at one or all points of S, respectively.

Let f(q) = ∑+∞
n=0 q

nan and for all n∈ N let sn, tn ∈ R be such that (x+yL)n =
sn + Ltn for all L∈ S. Then

f(x + yL) =
+∞∑
n=0

(x + yL)nan =
+∞∑
n=0

(sn + Ltn)an = b + Lc,

f c(x + yL) =
+∞∑
n=0

(x + yL)nān =
+∞∑
n=0

(sn + Ltn)ān = b̄ + Lc̄

for all L∈ S, where b = ∑+∞
n=0 snan and c = ∑+∞

n=0 tnan. If f ≡ 0 on S then for
all L∈ S we get 0 = f(x + yL) = f(x − yL). Hence 0 = b+Lc = b−Lc and
b = c = 0, so that b̄ = c̄ = 0 and f c(x + yL) = 0 for all L∈ S. Now suppose f
has exactly one zero in S—namely, p = x + yI. Then c �= 0: if c vanished then
0 = f(p) = b + Ic would imply b = c = 0 and f ≡ 0 in S. Hence c̄ �= 0, and
from 0 = f(p) = b + Ic we can conclude that

0 = b + Ic = b̄ − c̄I = b̄ − (c̄Ic̄−1)c̄

= b̄ + Jc̄ = f c(x + yJ ),

where J = −c̄Ic̄−1 ∈ S.

We are now ready to study the zero set of f s.

Theorem 4.3. Let f be any given quaternionic power series with radiusR. Then
f s vanishes exactly on the 2-spheres (or singletons) x + yS where f has a zero.

Proof. Proposition 2.3 tells us that the zero set of f s includes all the 2-spheres (or
singletons) x + yS on which f has a zero. Conversely, any zero of f s lies on a
2-sphere (or singleton) x + yS on which f has a zero: if f s = f ∗ f c vanishes at
x + yI, then either f or f c have a zero in x + yS. By the previous proposition,
this implies that f has a zero in x + yS.

Theorem 4.3 radically simplifies the computation of the zeros of a given power
series f(q) = ∑+∞

n=0 q
nan. Consider, indeed, the symmetrization f s(q) =∑+∞

n=0 q
nrn and its restriction to a complex line LI . This restriction can be iden-

tified, as discussed in previous sections, with the complex series (with real coef-
ficients) H(z) = ∑+∞

n=0 z
nrn. Computing the zeros of the complex function H
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immediately determines the zero set of f s and hence the real points and 2-spheres
where f has zeros. For any such 2-sphere S = x+ yS we can compute, as we did
when proving Theorem 4.2, constants b, c ∈ H such that f(x + yL) = b+Lc for
all L∈ S. If b = c = 0 then f vanishes at all points of S; otherwise, c �= 0 and f
has exactly one zero in S, the point p = x + yJ with J = −bc−1 ∈ S.

Example 4.4. Consider the polynomial

f(q) = (q − I ) ∗ (q − J ) = q2 − q(I + J )+ IJ

for I, J ∈ S with I �= −J. By an easy computation, f s(q) = (q2 +1)2, which has
S as its zero set. Hence the zeros of f are contained in S. We already proved that
the only zero of f in S is point I, so f vanishes only at I.

It seems natural for (q − I ) ∗ (q − I ) to vanish only at I. On the other hand, that
the zero set of (q − I ) ∗ (q − J ) is a singleton even when I �= J seems peculiar
and suggests a deeper study of quaternionic polynomials.

Before proceeding toward that study, which is the aim of the next section, we
remark on two useful multiplicative properties of regular conjugation and sym-
metrization. These properties are naturally connected to the relation between the
zeros of f and those of f c, f s, and they will prove quite useful in the polyno-
mial case.

Theorem 4.5. Let f and g be given quaternionic power series. Then (f ∗g)c =
gc ∗ f c and

(f ∗ g)s = f sg s = gsf s. (2)

The first property can be proved by direct computation of the coefficients of the
series, and the second property follows.

5. Zeros of Quaternionic Polynomials and Multiplicity

This section is dedicated to the study of quaternionic polynomials and their zeros.
First of all, we prove that all quaternionic polynomials have a “regular factoriza-
tion” (for the classical algebraic theory, see [15]). Thanks to the results proved in
Section 4, we can easily predict the zeros of a polynomial knowing its factoriza-
tion and vice versa. By defining the concept of multiplicity in the most natural
way, we are led to the result that the sum of the multiplicities of the zeros of a
polynomial need not equal its degree.

Our factorization result makes use of the fundamental theorem of algebra for
quaternions. This theorem is well known and can be proven by different tech-
niques. We will rephrase here the interesting proof given in [12].

Theorem 5.1 (Fundamental theorem of algebra for quaternions). A quaternionic
polynomial a0 + qa1 + · · · + qnan of degree n ≥ 1 has at least one zero in H.

Proof. Let f(q) = a0 + qa1 + · · · + qnan; then its symmetrization f s(q) =
r0 + qr1 + · · · + q2nr2n is a polynomial of degree 2n ≥ 2 with real coefficients
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rm = ∑m
k=0 ak ām−k ∈ R. By the fundamental theorem of algebra for complex

polynomials, f s must have a zero in H. By Theorem 4.3, f s has zeros if and only
if f has at least one zero. Thus f has a zero in H , too.

An algebraic proof of the same theorem can be found, for instance, in [11]. A re-
cent topological proof that applies to all division algebras is given in [8]. We are
now ready to prove the announced factorization result.

Theorem 5.2. Let a0, . . . , an ∈ H (an �= 0) and f(q) = a0 + qa1 + · · · + qnan.

Then there exist points p1, . . . ,pn ∈ H such that

f(q) = (q − p1) ∗ · · · ∗ (q − pn)c, (3)

where c = an.

Proof. If n = 0 then our thesis is obvious. Supposing the theorem holds for all
polynomials of degree n, we will prove it for a polynomial f of degree n+ 1. By
the fundamental theorem of algebra, f has a zero p ∈ H. By Theorem 3.2, there
exists a polynomial g of degree n such that f(q) = (q−p)∗g(q). Hence g(q) =
(q − p1) ∗ · · · ∗ (q − pn)c for some p1, . . . ,pn, c ∈ H and the thesis follows.

We will now study how many different factorizations a polynomial can have. If
f(q) = (q − p1) ∗ · · · ∗ (q − pn)c then, supposing pk = xk + ykIk for all k, by
Theorem 4.5 we get

f s(q) = |c|2
n∏
k=1

[(q − xk)
2 + y2

k ].

This formula leads easily to the following statement.

Proposition 5.3. Consider two polynomials f(q) = (q −p1) ∗ · · · ∗ (q −pn)c

and g(q) = (q − p ′
1) ∗ · · · ∗ (q − p ′

m)c
′ and suppose pk = xk + ykIk and p ′

h =
x ′
h + y ′

hI
′
h for all k,h. Then f s = gs if and only if n = m, |c| = |c ′|, and

(x1, y1), . . . , (xn, yn) is a permutation of (x ′
1, y ′

1), . . . , (x
′
n, y ′

n).

This is, in particular, a necessary condition for f to equal g. In order to find a
condition that is also sufficient, we focus on the case where n = 2 and c = 1.
Consider a polynomial

f(q) = (q − a) ∗ (q − b) = q2 − q(a + b)+ ab.

If a = b̄ and a, b ∈ S = x + yS, then f(q) = (q − x)2 + y2. Given Proposi-
tion 5.3, it is easy to prove that f(q) = (q − a ′) ∗ (q − b ′) if and only if a ′, b ′ ∈
S and a ′ = b̄ ′.

If a and b lie on the same S but a �= b̄, then f can only be factored as f(q) =
(q − a) ∗ (q − b). Supposing indeed that f(q) = (q − a ′) ∗ (q − b ′), we get
a ′, b ′ ∈ S by Proposition 5.3 and can easily conclude that a ′ = a and b ′ = b.

Now suppose a, b lie on different 2-spheres (or real singletons) Sa , Sb. Suppos-
ing a ′ ∈ Sa and b ′ ∈ Sb, it is easy to prove that f(q) = (q − a ′) ∗ (q − b ′) if and
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only if a ′ = a and b ′ = b and that f(q) = (q − b ′) ∗ (q − a ′) if and only if a ′ =
cac−1 and b ′ = cbc−1, where c = a− b̄ �= 0. By Proposition 5.3, there is no other
alternative. So f has exactly two factorizations: f(q) = (q − a) ∗ (q − b) and
f(q) = (q − cbc−1) ∗ (q − cac−1).

Recall that, by Theorem 3.2, every zero can be factored “on the left”. Hence
the three configurations just described correspond to different structures of the
zero set.

Theorem 5.4. Let a, b ∈ H and f(q) = (q−a)∗ (q−b). If a and b lie on differ-
ent 2-spheres (or real singletons) then f has two zeros, a and (a− b̄)b(a− b̄)−1.

If a and b lie on the same 2-sphere S but a �= b̄, then f vanishes only at a. Finally,
if a = b̄ ∈ S then the zero set of f is S.

It seems perfectly natural, thanks to the study accomplished in Section 2, that
some polynomials have as many zeros as their degrees predict and some have a
whole 2-sphere instead of a pair of zeros. It also seems natural for the “regular
square” (q − a) ∗ (q − a) to vanish only at a. The peculiar case is that of a poly-
nomial (q−a)∗ (q−b)where a, b are different, nonconjugate points of the same
2-sphere; the uniqueness of the zero a does not seem to be justified by multiplic-
ity arguments. We now translate this impression into a more rigorous result. First
of all, we define the regular power of a series f in the most obvious way:

f ∗n = f ∗ · · · ∗ f (n times).

Now we define the multiplicity of a zero.

Definition 5.5. Let f(q) = ∑+∞
n=0 q

nan be a given quaternionic power series
with radius R, and let p ∈ B(0,R). We define the multiplicity of p as a zero of
f and denote by mp(f ) the largest n ∈ N such that there exists a series g with
f(q) = (q − p)∗n ∗ g(q).
Letting I ∈ S be such that p ∈LI , the equality f(q) = (q − p)∗n ∗ g(q) implies
by restriction to the complex line LI that fI(z) = (z− p)ngI(z). Hence the mul-
tiplicity of a zero of f is well-defined: by a well-known fact in complex analysis,
there is a finite set of natural numbers n such that (z − p)n can be factored from
the holomorphic function fI(z).

Conversely, it can be proven that if there exists a complex series (with quater-
nionic coefficients) H(z) = ∑+∞

n=0 z
nan such that fI(z) = (z − p)nH(z), then

f(q) = (q−p)∗n ∗g(q)with g(q) = ∑+∞
n=0 q

nan. Hence the quaternionic multi-
plicity just defined extends coherently the definition of complex multiplicity. Nev-
ertheless, it leads to the following result.

Proposition 5.6. The degree of a polynomial can exceed the sum of the multi-
plicities of its zeros.

We conclude with an explicit example to prove and make clear our last statement.
Consider (again) the polynomial
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f(q) = (q − I ) ∗ (q − J ) = q2 − q(I + J )+ IJ

and suppose I, J ∈ S with I �= J and I �= −J. We have already proved that the
zero set of f is {I }. It is easy to see that mI(f ) = 1 while f has degree 2.
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