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1. Introduction

The Langlands classification is a fundamental result in representation theory and
the theory of automorphic forms. It gives a bijective correspondence between ir-
reducible admissible representations of a connected reductive groupG and triples
of Langlands data. It was proved by Langlands for real groups [L]. The proof for
p-adic groups is due to Borel and Wallach [BoW], Silberger [Si], and Konno [Ko].

We consider thep-adic case, so letG denote a connected reductivep-adic group.
Let (P, ν, τ) be a set of Langlands data in the subrepresentation setting of the Lang-
lands classification. Then P = MU is a standard parabolic subgroup ofG, τ is an
irreducible tempered representation ofM, and ν ∈ (aM)∗− (see Section 2 for defini-
tions). Write π = L(P, ν, τ) for the irreducible representation ofG corresponding
to (P, ν, τ). Then π is the unique irreducible subrepresentation of the correspond-
ing standard module—that is, the induced representation iG,M(exp ν⊗τ).We show
that the (normalized) Jacquet module rM,G(iG,M(exp ν ⊗ τ)) contains exp ν ⊗ τ
with multiplicity 1 and has no other subquotients with central exponent ν. This
is a useful result (e.g., [J2, Lemma 3.4] is essentially a special case) that was ex-
pected but for which there seems to be no proof available in the literature. Our
main purpose here is to fill that gap.

As an application, we prove a dual version of the Langlands classification, es-
sentially extending the Zelevsinky classification from general linear groups to
connected reductive groups (cf. [Z]). An irreducible representation θ with unitary
central character is called anti-tempered if it satisfies the Casselman criterion for
temperedness but with the usual inequalities reversed. Equivalently, θ̂—its dual
under the involution of [Au; Ber; SSt]—is tempered. If π is an irreducible admis-
sible representation ofG, then there exists a unique triple (Q,µ, θ)withQ = LU a
standard parabolic subgroup,µ∈ (aL)∗+ , and θ an irreducible anti-tempered repre-
sentation ofL such that π is equivalent to the unique irreducible subrepresentation
of iG,L(expµ⊗ θ) (Theorem 6.3). The growing role of duality in representation
theory and its conjectured relation with the Arthur parameterization convinced the
authors to include this application, especially as it contains information on the
composition series (the existence of a unique irreducible subrepresentation) that is
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not a simple consequence of duality. We note that this is also essentially a known
result for which we do not know of a proof in the literature.

In [Ko] it was noted that there is a problem with [Si, Lemma 5.3]. We remark
that the main result in this paper can serve as a substitute for Lemma 5.3 in Sil-
berger’s proof of the Langlands classification. The main result also gives another
proof that the Langlands subrepresentation appears with multiplicity 1 in the cor-
responding standard module.

Our proof of the Jacquet module result is essentially combinatorial in nature.
By a result of [BeZ; Ca], we can calculate rM,G � iG,M(exp ν ⊗ τ) or the cor-
responding exponents that appear. Our argument uses the inequalities that arise
from having ν ∈ (aM)∗− and τ tempered (the Casselman criterion) to show that
any other exponents appearing in rM,G � iG,M(exp ν⊗ τ) are necessarily different.
As a technical remark we note that, in order to carry out this analysis, the vari-
ous exponents must be converted to exponents in a∗ (the dual of the Lie algebra
associated to the maximal split torus of the minimal parabolic subgroup).

For general linear groups, the Langlands classification and the Zelevinsky clas-
sification are related by the Zelevinsky involution (cf. [T]). The duality of [Au;
Ber; SSt] generalizes the Zelevinsky involution, and it may be used in a similar
fashion to construct the dual Langlands data for an irreducible admissible repre-
sentation from the (ordinary) Langlands data for its dual. One issue arises in this
process: the duality of [Au; Ber; SSt] is at the Grothendieck group level and so
does not preserve composition series. To show that π is the unique irreducible
subrepresentation of iG,L(expµ⊗ θ), we note that duality does imply expµ⊗ θ
is the unique irreducible subquotient of rL,G � iG,L(expµ ⊗ θ) having its central
exponent; the result then follows from Frobenius reciprocity.

We now briefly discuss the contents of this paper section by section. In Sec-
tion 2, we introduce notation and review some background results. In Section 3,
we prove a technical lemma that describes the action of the Weyl group on certain
elements in the dual Lie algebra a∗. This result, together with a criterion for tem-
peredness proved in Section 4 (a variation of the Casselman criterion), is the basis
for proving the uniqueness of central characters and central exponents in Section 5.
In Section 6 we apply these results to obtain the dual Langlands classification; in
Section 7 we show that, for general linear groups, it is essentially the same as the
Zelevinsky classification.

Before closing the Introduction, we would like to take this opportunity to note
an error in the paper [BJ2]: the ordering on a∗0 defined in the beginning of Sec-
tion 3 of that paper should match that in Section XI.1 of [BoW], but it does not.
We give the correct definition in Remark 2.3. Note that this does not affect the ar-
guments given in [BJ2]. We also take this opportunity to thank P. Schneider and
the referee for their comments, which were helpful in revising the paper.

2. Preliminaries

In this section, we review some background material and notation that will be used
in what follows.
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Let F be a non-Archimedean local field with finite residue field Fq . We denote
by |·| the absolute value on F satisfying |� | = q−1 for a uniformizer �. Let G
be the group of F -points of a connected reductive algebraic group defined over F.
Fix a maximal split torus A in G. We denote by W = W(G,A) the Weyl group
of G with respect to A. Let � = �(G,A) be the set of roots. Fix a minimal par-
abolic subgroup P0 containing A. The choice of P0 determines the set of simple
roots � ⊂ � and the set of positive roots �+ ⊂ �. If α ∈�+, we write α > 0.

Let P = MU ⊂ G be a standard parabolic subgroup ofG.We denote by�M ⊂
� the corresponding set of simple roots. Let AM be the split component of the
center of M and let X(M)F be the group of F -rational characters of M. The dis-
cussion here follows [A2, Sec. 5]. The restriction homomorphism X(M)F →
X(AM)F is injective and has a finite cokernel. Therefore, we have a canonical lin-
ear isomorphism

a∗M = X(M)F ⊗Z R ∼−→X(AM)F ⊗Z R.

If L is a standard Levi subgroup such that L < M, then

AM ⊂ AL ⊂ L ⊂ M.
The restriction X(M)F → X(L)F is injective and induces a linear injection
ιLM : a∗M → a∗L. The restriction X(AL)F → X(AM)F is surjective and induces
a linear surjection rLM : a∗L → a∗M. Let (aML )

∗ denote the kernel of the restriction
rLM. Then

a∗L = ιLM(a∗M)⊕ (aML )∗
(see [A2, Sec. 5] for details). In the case of the dual Lie algebra a∗ = a∗A corre-
sponding to the maximal split torus A of G, we write simply

ιM : a∗M → a∗ and rM : a∗ → a∗M.

Note that we have rM � ιM = id.
There is a homomorphism (cf. [H-C]) HM : M → aM such that q〈χ,HM(m)〉 =
|χ(m)| for all m∈M and χ ∈X(M)F . Given ν ∈ a∗M , let us write

exp ν = q〈ν,HM(·)〉
for the corresponding character ofM.

LetR(G) denote the Grothendieck group of the category of smooth finite-length
representations ofG. For a smooth finite-length representation π ofG, we denote
by s.s.(π) the image of π in R(G). There exists a natural partial order on R(G).
If π1 and π2 are smooth finite-length representations of G, we write π1 ≤ π2 if
s.s.(π1) ≤ s.s.(π2). In particular, if π1 is irreducible then π1 ≤ π2 means that π1

is a subquotient of π2.

We denote by iG,M the functor of normalized parabolic induction and by rM,G

the normalized Jacquet functor. The Aubert duality operator DG is defined on
R(G) by

DG =
∑
M≤G

(−1)|�M |iG,M � rM,G,
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where the sum runs over the set of all standard Levi subgroups of G. Let π be an
irreducible smooth representation of G. We define π̂ = ±DG(π), taking the sign
+ or − so that π̂ is a positive element in R(G).

Lemma 2.1. Let π be an irreducible smooth representation of G and let χ be a
character of G. Then χ̂ ⊗ π = χ ⊗ π̂ (where χ ⊗ π denotes the representation
of G defined by (χ ⊗ π)(g) = χ(g)π(g)).
Proof. If P = MU is a standard parabolic subgroup of G and if σ is a smooth
representation ofM, then [BeZ, Prop. 1.9] implies

iG,M(χ ⊗ σ) = χ ⊗ iG,M(σ), rM,G(χ ⊗ π) = χ ⊗ rM,G(π).

The lemma now follows from the definition of DG.

Let �(P,AM) = {rM(α) | α ∈ � − �M} denote the set of simple roots for the
pair (P,AM). Choose aW -invariant inner product 〈·, ·〉 : a∗ ×a∗ → R. As in [Si],
identifying a∗M with the subspace ι(a∗M) ⊂ a∗, we set

(aM)
∗
+ = {x ∈ a∗M | 〈x,α〉 > 0 ∀α ∈�(P,AM)},

+ā∗M =
{
x ∈ a∗M

∣∣∣ x = ∑
α∈�(P,AM)

cαα, cα ≥ 0

}
,

and
(aM)

∗
− = −(aM)∗+ , −ā∗M = −(+ā∗M).

A set of Langlands data for G is a triple (P, ν, τ) with the following properties:

(1) P = MU is a standard parabolic subgroup of G;
(2) ν ∈ (aM)∗−; and
(3) τ is (the equivalence class of ) an irreducible tempered representation ofM.

We now state the Langlands classification (cf. [BoW; Ko; Si]).

Theorem 2.2 (The Langlands classification). Suppose (P, ν, τ) is a set of Lang-
lands data for G. Then the induced representation iG,M(exp ν ⊗ τ) has a unique
irreducible subrepresentation, which we denote by L(P, ν, τ). Conversely, if π is
an irreducible admissible representation of G, then there exists a unique (P, ν, τ)
as before such that π ∼= L(P, ν, τ).

This theorem describes the Langlands classification in the subrepresentation set-
ting. It can also be formulated in the quotient setting, in which case ν ∈ (aM)∗+.
We work in the subrepresentation setting for technical reasons: if π ∼= L(P, ν, τ),
then exp ν ⊗ τ ≤ rM,G(π).

Remark 2.3. This is a correction to our paper [BJ2], where the order≥ and strict
order > on a∗ are defined incorrectly. Let � = {α1, . . . ,αn} be the set of simple
roots and let β1, . . . ,βn be the elements of

∑
Rαi satisfying 〈βi,αj〉 = δij . As in

[BoW, Sec. XI.2], define µ ≥ ν if 〈µ − ν,βi〉 ≥ 0 for all βi. Define µ > ν if
µ ≥ ν and 〈µ− ν,βi〉 > 0 for some βi.
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3. A Combinatorial Lemma

In this section, we prove a technical lemma that plays a key role in the proof of
Proposition 5.3.

Let � = {α1, . . . ,αn} (the set of simple roots). As in [BoW, Chap. IX], set
F = ∑

Rαi. Then a∗ = z∗ ⊕ F, where z∗ = {x ∈ a∗ | 〈x,α〉 = 0 ∀α ∈ �}.
Define β1, . . . ,βn ∈ F by 〈βi,αj〉 = δij . Then F = ∑

Rβi. More generally, if
I ⊂ {1, . . . , n}, then a∗ = z∗ +∑

i /∈I Rβi +∑
i∈I Rαi (see [BoW, Chap. IV.6.6]).

Note that ifM is the standard Levi factor with�M = {αi | i ∈ I }, then iM(a∗M) =
z∗ +∑

i /∈I Rβi. The set of simple roots � is a basis of an abstract root system in
F. Let

F̄+ = ā∗+ ∩ F = {x ∈F | 〈x,α〉 ≥ 0 ∀α ∈�}.
Lemma 3.1. Let x, y ∈ F̄+ and w ∈W with w �= 1. Then 〈wx, y〉 ≤ 〈x, y〉.
Proof. That 〈wx − x, y〉 ≤ 0 is an immediate consequence of Proposition 18 in
[Bou, Chap. 5, Sec. 1.6].

We take a moment to recall a geometric result of Langlands (see e.g. [BoW,
Chap. IV.4.6]), reformulating it slightly for the situation at hand. For F ⊂
{1, . . . , n}, set

TF =
{
x ∈F

∣∣∣ x =∑
i /∈F
ciβi +

∑
j∈F

cj αj

with ci < 0 for i /∈F and cj ≥ 0 for j ∈F
}

,

noting that TF = −SF in the notation of [BoW].

Theorem 3.2. The sets TF partition F into 2n disjoint subsets. In particular, if
F �= F ′, then TF ∩ TF ′ = ∅. Further, if x ∈F, then there exists a unique F ⊂ �
such that x ∈ TF .
Proof. This follows immediately from Lemmas IV.6.9–11 in [BoW].

Let x ∈ F and let F ⊂ {1, . . . , n} be the corresponding subset. Then x =∑
i /∈F ciβi +

∑
j∈F cj αj for unique ci < 0 (i /∈ F ) and cj ≥ 0 (j ∈ F ). We

then let x0 denote the projection onto span i /∈F {βi}; that is,

x0 =
∑
i /∈F
ciβi .

Set WM,A = {w ∈W | wα > 0 for all α ∈ �M}. We then have the following
statement.

Lemma 3.3. Let P = MU be a standard parabolic subgroup of G. Let F ⊂
{1, . . . , n} be such that �M = {αi | i ∈ F }. If x ∈ TF and w ∈WM,A with w �= 1,
then (wx)0 �= x0.
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Proof. Suppose the simple roots of G are labeled so that �M = {αk+1, . . . ,αn}.
Let x = c1β1+ · · · + ckβk + ck+1αk+1+ · · · + cnαn ∈F, with c1, . . . , ck < 0 and
ck+1, . . . , cn ≥ 0. It suffices to show that, ifwx = d1β1+· · ·+dkβk+dk+1αk+1+
· · · + dnαn, then di �= ci for some i ∈ {1, . . . , k}.

Let

w =


a11 . . . a1n
...

...

an1 . . . ann




be the matrix for the action of w with respect to the basis β1, . . . ,βk ,αk+1, . . . ,αn.
Observe that, for i, j ∈ {1, . . . , k}, we have

〈wβi,βj〉 = 〈a1iβ1+ · · · + akiβk + a(k+1)iαk+1+ · · · + aniαn,βj〉
= a1i〈β1,βj〉 + · · · + aki〈βk ,βj〉.

Also, for j ∈ {1, . . . , k} and l ∈ {k + 1, . . . , n} we have

〈wαl ,βj〉 = 〈a1lβ1+ · · · + aklβk + a(k+1)lαk+1+ · · · + aniαn,βj〉
= a1l〈β1,βj〉 + · · · + akl〈βk ,βj〉.

Let

Q =


a11 . . . a1n
...

...

ak1 . . . akn


, R =



〈β1,β1〉 . . . 〈β1,βk〉
...

...

〈βk ,β1〉 . . . 〈βk ,βk〉


,

and

S =


〈wβ1,β1〉 . . . 〈wβk ,β1〉 〈wαk+1,β1〉 . . . 〈wαn,β1〉

...
...

...
...

〈wβ1,βk〉 . . . 〈wβk ,βk〉 〈wαk+1,βk〉 . . . 〈wαn,βk〉


.

Then, noting R = RT, we have RQ = S. Now consider wx:

wx =




a11 . . . a1n
...

...

ak1 . . . akn
...

...

an1 . . . ann







c1
...

ck
...

cn


 =

(
Q

∗
)




c1
...

ck
...

cn


 =


Q


 c1
...

cn




∗


;

here the entries for ∗ are left unspecified because they do not play a role in what
follows. That is, if wx = d1β1+ · · · + dkβk + dk+1αk+1+ · · · + dnαn, then


d1
...

dk


 = Q



c1
...

cn


 = R−1S



c1
...

cn




(noting that R is invertible because β1, . . . ,βk are linearly independent and 〈·, ·〉 is
nondegenerate).
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We would like to show that R−1S

(
c1···
cn

)
�=

(
c1···
ck

)
or, equivalently, that S

(
c1···
cn

)
�=

R

(
c1···
ck

)
. We have

S



c1
...

cn




=


c1〈wβ1,β1〉 + · · · + ck〈wβk ,β1〉 + ck+1〈wαk+1,β1〉 + · · · + cn〈wαn,β1〉

...

c1〈wβ1,βk〉 + · · · + ck〈wβk ,βk〉 + ck+1〈wαk+1,βk〉 + · · · + cn〈wαn,βk〉




and (using R = RT )

R



c1
...

ck


 =



c1〈β1,β1〉 + · · · + ck〈βk ,β1〉

...

c1〈β1,βk〉 + · · · + ck〈βk ,βk〉


.

Therefore, the ith entry of R

(
c1···
ck

)
− S

(
c1···
cn

)
is equal to

c1〈β1,βi〉 + · · · + ck〈βk ,βi〉
− [c1〈wβ1,βi〉 + · · · + ck〈wβk ,βi〉 + ck+1〈wαk+1,βi〉 + · · · + cn〈wαn,βi〉]

= c1〈β1− wβ1,βi〉 + · · · + ck〈βk − wβk ,βi〉
− ck+1〈wαk+1,βi〉 − · · · − cn〈wαn,βi〉.

Now, w ∈WM,A implies that for j = k + 1, . . . , n we have wαj > 0 and hence
〈wαj ,βi〉 ≥ 0. Lemma 3.1 tells us that, for j = 1, . . . , k, 〈βj − wβj ,βi〉 ≥ 0. By
assumption, c1, . . . , ck < 0 and −ck+1, . . . ,−cn ≤ 0, so the ith entry is ≤ 0. Now
fix i ∈ {1, . . . , k} such that βi−wβi �= 0. Since the inner product is symmetric and
W -invariant, we have

0 < 〈βi − wβi,βi − wβi〉 = 〈βi,βi〉 − 2〈wβi,βi〉 + 〈βi,βi〉 = 2〈βi − wβi,βi〉.
Therefore, the ith entry is less than zero, from which the lemma follows.

4. Criterion for Temperedness

In this section, we give a variation of the Casselman criterion for temperedness
(cf. [Ca; Wa]). The arguments later in this paper use exponents in a∗ (rather than
in the different a∗M that arise) to facilitate comparison. Thus, in this section, we
reformulate the Casselman criterion in terms of exponents in a∗ (Corollary 4.4)
to set up these later arguments. Our starting point is the Cassleman criterion as
formulated in [Wa, Prop. III.2.2.].

Let π be an irreducible admissible representation of G. Let

Mmin(π) = {L standard Levi | rL,G(π) �= 0 but rN,G(π) = 0 ∀N < L}.
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We define

Exp(π) = {ι(µ) | expµ⊗ ρ ≤ rL,G(π)

for some irreducible unitary ρ and some L∈Mmin(π)}
(noting that such a ρ is necessarily supercuspidal). If π is reducible, we say ν ∈
Exp(π) when ν ∈Exp(π ′) for some irreducible π ′ ≤ π.

We use ExpM(π) for the exponents of rM,G(π) defined by Waldspurger and
ExpR

M(π) for their real parts (see [Wa, Secs. I.3 and I.1] resp.). In particular, if π
is a representation of G and χ is a character of AM , let

Vχ = {v ∈VU | ∃n∈N such that [(rM,Gπ)(a)− χ(a)]nv = 0 ∀a ∈AM},
where VU is the space for rM,Gπ. Then χ ∈ ExpM(π) if Vχ �= 0. We have that ν ∈
a∗M is in ExpR

M(π) if there is a character χ of AM such that χ = exp ν.

Lemma 4.1. Let π be an irreducible representation and L ∈Mmin(π). If M >

L is a standard Levi factor and ξ ∈ ExpR
L (π), then rLM(ξ) ∈ ExpR

M(π), and every
µ∈ ExpR

M(π) has this form ( for some L∈Mmin and ξ ∈ ExpR
L (π)).

Proof. This follows from [BeZ, Prop. 1.9(f )] and (Jacquet) restriction in stages.

Lemma 4.2. Let A = (〈αi,αj〉)i,j∈{1,...,n}. Then A−1 = (〈βi,βj〉)i,j∈{1,...,n} and
the entries of A−1 are nonnegative.

Proof. The characterization ofA−1 is an immediate consequence of 〈αi,βj〉 = δij .
For the nonnegativity of its entries, see [K, Lemma 8.57].

Lemma 4.3. Consider the following condition (cf. Condition (ii) in Proposition
III.2.2 of [W]): For every standard parabolic subgroup P = MU of G and every
ξ ∈ ExpR

M(π), we have ξ ∈ +(āM)∗. This condition holds if and only if every ex-
ponent ν ∈Exp(π) satisfies ν ∈+ā∗.

Proof. We check both directions. Observe that both conditions require that the z∗
component be zero.

(⇐). Let P = LU be a standard parabolic subgroup, with�L = {αi | i ∈ IL}.
If we do not have L ≥ M for some M ∈Mmin(π), then rL,Gπ = 0 and there is
nothing to prove. Thus, we assume L ≥ M for someM ∈Mmin(π).

Let µ ∈ a∗L ∈ ExpR
L (π). By Lemma 4.1, µ = rML (ξ) for some ξ ∈ ExpR

M(π).

Then ν = ιM(ξ)∈ a∗ ∈Exp(π). Note that

rL(ν) = rL � ιM(ξ) = rML � rM � ιM(ξ) = rML (ξ) = µ.
Write ν = z+∑n

i=1 ciαi . Then

µ = rL(ν) = rL(z)+
n∑
i=1

cirL(αi) = rL(z)+
∑
i /∈IL

ciα
L
i ,

where αLi = rL(αi) (a simple root in�(P,AL) when i /∈ IL). Of course, µ∈+ā∗L
is then equivalent to
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ci ≥ 0 for all i /∈ IL.
On the other hand, the assumption ν ∈+ā∗ is equivalent to ci ≥ 0 for all i, from
which it immediately follows that µ∈+ā∗L.

(⇒). Consider ν ∈Exp(π). Then ν ∈ ιM(a∗M) for someM ∈Mmin. In partic-
ular, ν ∈ span i /∈IM{βi}. Write

ν =
n∑
i=1

ciαi =
∑
i /∈IM

diβi .

Our goal is to show ci ≥ 0 for all i. IfM�−{αi} ≥ L for some L∈Mmin(π), then
one can use the same basic argument as before to show that ci ≥ 0. However, this
need not hold for all i. In particular, such an argument will tell us that ci ≥ 0 for
all i /∈ IM; we need to extend this to show that ci ≥ 0 for all i.

If we let

A =


〈α1,α1〉 . . . 〈α1,αn〉
...

...

〈αn,α1〉 . . . 〈αn,αn〉


 and B =



〈β1,β1〉 . . . 〈β1,βn〉
...

...

〈βn,β1〉 . . . 〈βn,βn〉




then, by Lemma 4.2,

A


 c1
...

cn


 =


 d1
...

dn


 and B


 d1
...

dn


 =


 c1
...

cn


,

noting that di = 0 for i ∈ IM. For convenience and without loss of generality,
suppose the roots are ordered so that IM = {m+ 1, . . . , n}. Let

C1 =

 c1
...

cm


, C2 =


 cm+1

...

cn


, and D1 =


 d1
...

dm


.

We may then write (block matrices)(
C1

C2

)
=

(
B1,1 B1,2

B2,1 B2,2

)(
D1

0

)
so that C2 = B2,1D1. Now(

D1

0

)
=

(
A1,1 A1,2

A2,1 A2,2

)(
C1

C2

)
implies D1 = A1,1C1+ A1,2C2 and therefore

C2 = B2,1D1 = B2,1A1,1C1+ B2,1A1,2C2.

Thus, (I−B2,1A1,2)C2 = B2,1A1,1C1. It follows fromBA = I that I−B2,1A1,2 =
B2,2A2,2. BecauseA2,2 andB2,2 are invertible (from e.g. linear independence con-
siderations), this gives

C2 = A−1
2,2B

−1
2,2B2,1A1,1C1.
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Again, it follows from BA = I that B2,1A1,1 = −B2,2A2,1. Therefore,

C2 = −A−1
2,2A2,1C1.

Since A2,2 is the matrix from Lemma 4.2 for a subroot system, A−1
2,2 has non-

negative entries. Also, since A2,1 contains no diagonal entries, −A2,1 also has
nonnegative entries. It now follows from c1, . . . , cm ≥ 0 that cm+1, . . . , cn ≥ 0, as
needed.

The following is now an immediate consequence of [Wa, Prop. III.2.2].

Corollary 4.4. Let π be an irreducible admissible representation of G. Sup-
pose that the central character of π is unitary. Then π is tempered if and only if
every exponent ν ∈Exp(π) satisfies ν ∈+ā∗.

We now give a lemma (Lemma 4.6) for future use (see Section 6). LetM be a stan-
dard Levi subgroup of G and let w0 be the longest element in WM,A. Then [Au,
p. 2180] w0(�M) ⊂ � and w0(� − �M) ⊂ −�+. Let L be the standard Levi
subgroup corresponding to the set of simple roots w0(�M). Then L = w0(M).

Further, w0(AM) = AL and w0(a
∗
M) = a∗L.

Lemma 4.5. With notation as before,

ν ∈ (+a∗) ∩ ι(a∗M) ⇐⇒ w0ν ∈ (−a∗) ∩ ι(a∗L).
Proof. Let ν ∈ (+a∗) ∩ ι(a∗M). Since ν ∈ +a∗, we may write ν = ∑

α∈� xαα
with xα ≥ 0 for all α. Further, since ν ∈ ι(a∗M), we have xα = 0 for all α ∈�M;
that is, ν =∑

α∈�−�M xαα. Since w0α < 0 for all α ∈� −�M , it follows that
w0ν ∈−a∗. Because w0(a

∗
M) = a∗L, we have w0ν ∈ (−a∗) ∩ ι(a∗L). The converse

is similar.

Lemma 4.6. Let π be an irreducible admissible representation of G. Suppose
that the central character of π is unitary. Then π̂ is tempered if and only if every
exponent µ∈Exp(π) satisfies µ∈−ā∗.

Proof. Suppose ν ∈Exp(π). Then there is an M ∈Mmin(π) and a ν ′ ∈ a∗M such
that exp ν ′ ⊗ ρ ≤ rM,Gπ (for some irreducible unitary ρ) and ν = ιM(ν ′). Set
µ′ = w0(ν

′). Then Lemma 2.1 and [Au, Thm. 1.7] imply

expµ⊗ w0 ρ̂ = w0(exp ν ⊗ ρ̂) = w0 ̂(exp ν ⊗ ρ) ≤ rL,G(π̂);
in other words, µ = ιL(µ′)∈Exp(π̂). Since w0 � ιM = ιL �w0, we see that µ =
w0ν. The result now follows from Lemma 4.5 and Corollary 4.4.

5. Multiplicity 1 in the Jacquet Module
of a Standard Module

In this section, we prove the main technical result needed in this paper: If (P, ν, τ)
is a set of Langlands data, then exp ν ⊗ τ is the only irreducible subquotient
rM,G � iG,M(exp ν⊗ τ) with its central character, and it occurs with multiplicity 1.
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Let θ be an irreducible representation ofM. Let us write |ωθ | = exp νθ for νθ ∈
a∗M , where ωθ is the central character of θ. Then we may (uniquely) write θ as
exp νθ ⊗ θ ′ with νθ ∈ a∗M and θ ′ having unitary central character. We call ι(νθ )
the central exponent for θ (a slight abuse of terminology, as it would be a little
more natural to call νθ the central exponent). Note that exp ν ⊗ τ has central ex-
ponent ι(ν).

Let Exp denote the set of exponents defined in Section 4.

Lemma 5.1. Let θ be a representation ofM and let χ be a character ofM. Then

Exp(χ ⊗ θ) = ι(νχ )+ Exp(θ).
Proof. It follows from rL,M(χ ⊗ θ) = χ ⊗ rL,M(θ) that

expµ⊗ ρ ≤ rL,M(θ) ⇐⇒ χ · expµ⊗ ρ ≤ rL,M(χ ⊗ θ).
Write χ = exp νχ ⊗ χu, where χu is a unitary character. Then

χ · expµ⊗ ρ = exp νχ · expµ⊗ χuρ = exp(νχ + µ)⊗ χuρ
and the claim follows.

Lemma 5.2. LetL andM be standard Levi subgroups, and suppose thatL < M.
Let θ be an irreducible representation of M and let µ ∈ a∗L with ι(µ) ∈ Exp(θ).
Write

µ = µM + µML , µM ∈ ιLM(a∗M), µML ∈ (aML )∗.
If ωθ is unitary, then µM = 0. In general, µM = ιLM(νθ ).
Proof. Suppose ωθ is unitary. Then |ωθ | = 1. According to [Ca, p. 45],

|ωθ(a)| = expµ(a) for all a ∈AM.
Since µML (a) = 0 for all a ∈ AM , it follows that µM(a) = 0 for all a ∈ AM.
Therefore, µM = 0.

Now we consider the general case. Write θ = exp νθ ⊗ θ ′, with θ ′ having uni-
tary central character. Suppose µ ∈ a∗L satisfies ι(µ) ∈ Exp(θ). Lemma 5.1 tells
us that µ = ιLM(νθ )+ µ′ for some µ′ ∈ a∗L such that ι(µ′)∈Exp(θ ′). Therefore,

µ = ιLM(νθ )+ µ′M + (µ′)ML .
Since µ′M = 0 and νθ ∈ a∗M , it follows that µM = ιLM(νθ ).
Proposition 5.3. Let π = L(P, ν, τ). Then exp ν ⊗ τ is the unique irreducible
subquotient of rM,G � iG,M(exp ν ⊗ τ) having central exponent ι(ν), and it occurs
with multiplicity 1.

Proof. Let F =∑n
i=1 Rαi =∑n

i=1 Rβi be as in Section 3, so that a∗ = z∗ ⊕ F.
If µ ∈ a∗, we denote by µ0 the orthogonal projection of µ onto F. Let IM =
{i | αi ∈�M}. If µ∈ a∗, then we can write

µ = z+
∑
i /∈IM

ciβi +
∑
i∈IM

ciαi,

where z∈ z∗. In particular, if µ∈Exp(exp ν ⊗ τ) then
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z+
∑
i /∈IM

ciβi = ι(ν),
∑
i∈IM

ciαi ∈Exp(τ).

Since ν ∈ (aM)∗−, we have ci < 0 for i /∈ IM. Corollary 4.4 implies that ci ≥ 0 for
i ∈ IM. Therefore, µ0 satisfies the conditions of Lemma 3.3.

For µ = z +∑
i /∈IM ciβi +

∑
i∈IM ciαi, let pM(µ) = ∑

i /∈IM ciβi . If θ is an
irreducible representation of M and if µ ∈ Exp(θ), then Lemma 5.2 tells us that
ι(νθ )

0 = pM(µ). It follows from [BeZ, Lemma 2.12] and [Ca, Sec. 6] that

Exp(iG,M(exp ν ⊗ τ)) ⊆ WM,A · Exp(exp ν ⊗ τ).
We now combine the preceding observations. Let θ ≤ rM,G � iG,M(exp ν ⊗ τ)

be irreducible. Then

Exp(θ) ⊆ Exp(iG,M(exp ν ⊗ τ)) ⊆ WM,A · Exp(exp ν ⊗ τ)
"⇒ CentExp(θ)0 ∈ {pM(WM,A · Exp(exp ν ⊗ τ))},

where CentExp denotes the (M-)central exponent. Thus, to show that exp ν ⊗ τ
is the unique irreducible subquotient of rM,G � iG,M(exp ν ⊗ τ) having central ex-
ponent ι(ν), it suffices to show that pM(wµ) �= ι(ν)0 for any µ∈Exp(exp ν ⊗ τ)
and w ∈WM,A having w �= 1. This follows from Lemma 3.3.

Corollary 5.4. Let π = L(P, ν, τ). Then exp ν ⊗ τ is the unique irreducible
subquotient of rM,G � iG,M(exp ν ⊗ τ) having central character exp ν ⊗ ωτ .
Corollary 5.4. Proposition 5.3 and Corollary 5.4 also hold forO(2n,F ); this
is essentially the same combinatorial statement as for Sp(2n,F ) or SO(2n+1,F ).
In particular, all three have the same Weyl group, the same concrete realization of
the Langlands classification (cf. [BJ1] and the Appendix to [BJ3]), and the same
relevant double-coset representatives for the Weyl group (cf. [J3, Lemma 3.6]).

6. The Dual Langlands Classification

In this section we give a nice application of the main result: the dual Langlands
classification (Theorem 6.3).

If θ is an irreducible representation of G with unitary central character, we say
that θ is anti-tempered if every exponent ν ∈Exp(θ) satisfies ν ∈−ā∗. Note that
this is equivalent to having θ̂ be tempered (Lemma 4.6).

Let P = MU be a standard parabolic subgroup of G. If w0 ∈ WM,A is the
longest element, then L = w0(M) is also the Levi factor of a standard parabolic
subgroup Q of G. Further, if τ is an irreducible tempered representation of M,
then w0τ is an irreducible tempered representation of L and θ = w0τ̂ is an irre-
ducible anti-tempered representation of L (Lemma 4.6).

Lemma 6.1. If ν ∈ (aM)∗−, then µ = w0ν ∈ (aL)∗+.
Proof. Let ν ∈ (aM)∗− and µ = w0ν. If γ ∈�(Q,AL), then γ = rL(αj ) for some
αj ∈ � − �L. Proposition 1.1.4 of [Ca] implies w−1

0 (αj ) < 0. It follows that
w−1

0 (αj ) =
∑n

i=1 ciαi, ci ≤ 0. Then
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w−1
0 (γ ) = rM

( n∑
i=1

ciαi

)
=

∑
α∈�(P,AM)

cαα,

where cα ≤ 0 and not all cα are equal to 0. By assumption, 〈ν,α〉 < 0 for all α ∈
�(P,AM). It follows that

〈µ, γ〉 = 〈w−1
0 µ,w−1

0 γ〉 =
〈
ν,

∑
α∈�(P,AM)

cαα

〉
=

∑
α∈�(P,AM)

cα〈ν,α〉 > 0,

so µ∈ (aL)∗+.
Lemma 6.2. Let π = L(P, ν, τ). Then π̂ is the unique irreducible subrepresen-
tation of iG,L(expµ⊗ θ) with L,µ, θ as before.

Proof. We have exp ν ⊗ τ ≤ rM,G(π). Corollary 5.4 tells us that exp ν ⊗ τ is the
unique irreducible subquotient of rM,G(π) having central character exp ν ⊗ ωτ .
Let ZM denote the center of M and ZL = w0(ZM). Combining Lemma 2.1 and
[Au, Thm. 1.7], we have

expµ⊗ θ = w0(exp ν ⊗ τ̂ ) = w0 ̂(exp ν ⊗ τ) ≤ rL,G(π̂),

and this is the unique irreducible subquotient of rL,G � iG,L(expµ⊗θ) having cen-
tral character expµ⊗ ωθ .

We now need the following standard result [Ca; G; Wa]: If (ρ,V ) is an admis-
sible representation of L and ω is a character of ZL, write

Vω = {v ∈V | ∃n∈N such that [ρ(z)− ω(z)]nv = 0 ∀z∈ZL}.
Then V = ⊕

ω Vω as a direct sum of L-modules. In particular, let ρ = rL,G(π̂)

and λ = expµ⊗ωθ . Then Vλ is just theL-module expµ⊗θ (since it is the unique
subquotient of rL,G(π̂) having this central character), so it appears as a direct sum-
mand in rL,G(π̂). The lemma now follows from Frobenius reciprocity.

Theorem 6.3 (The dual Langlands classification). Let Q = LU be a stan-
dard parabolic subgroup of G, let µ ∈ (aL)∗+ , and let θ be an (equivalence
class of an) anti-tempered representation of L. Then the induced representa-
tion iG,L(expµ⊗ θ) has a unique irreducible subrepresentation, which we denote
byDL(Q,µ, θ). Conversely, if π is an irreducible admissible representation ofG
then there is a unique triple (Q,µ, θ), withQ a standard parabolic subgroup, µ∈
(aL)

∗+ , and θ an anti-tempered representation of L such that π ∼= DL(Q,µ, θ).
Further, suppose that π̂ = L(P, ν, τ) in the Langlands classification. If P =

MU and w0 ∈WM,A is the longest element, then L = w0(M), µ = w0ν, and
θ = w0τ̂.

Proof. If (P, ν, τ) is the Langlands data for π̂, it follows immediately from Lemma
6.2 that (Q,µ, θ) is the dual Langlands data for π. This shows the existence of
dual Langlands data. Conversely, if one starts with dual Langlands data (Q,µ, θ)
for π, then Lemma 6.2 implies that (P,µ, τ) is Langlands data for π̂ . The unique-
ness of dual Langlands data then follows from the uniqueness of Langlands data.
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The relationship given between the dual Langlands data for π and the Langlands
data for π̂ is immediate from the preceding discussion.

Corollary 6.4. Let π = DL(Q,µ, θ). Then the multiplicity of π in the in-
duced representation iG,L(exp ν ⊗ θ) is 1.

Proof. This follows from the corresponding result for the Langlands classification
and the previous theorem.

Remark 6.5. By Remark 5.5, we know that Corollary 5.4 holds for O(2n,F ).
Further, by [J3] we have a duality operator forO(2n,F ) with the properties from
[Au, Thm. 1.7]. It is then a straightforward matter to check that Lemma 6.2 and
Theorem 6.3 hold for O(2n,F ) as well.

7. Dual Langlands Classification for GL(n, F )

and the Zelevinsky Classification

We close by considering the case of general linear groups. In this case, the
dual Langlands classification, suitably interpreted, is the same as the Zelevin-
sky classification.

We start by reviewing some notation regarding general linear groups, most of
which is taken from [Z]. If π1 and π2 are admissible representations of GL(k1,F )
and GL(k2,F ), respectively, then we define π1 × π2 = iG,M(π1 ⊗ π2), where
M ∼= GL(k1,F )×GL(k2,F ) is the Levi factor of a standard parabolic subgroup
ofG = GL(k1+ k2,F ). Let ν = |det|. Let ρ be an irreducible supercuspidal rep-
resentation of GL(m,F ) and let k ≥ 0 be an integer. The set D = [ρ, ν kρ] =
{ρ, νρ, . . . , ν kρ} is called a segment. The induced representation ρ×νρ×· · ·×ν kρ
has a unique irreducible subrepresentation, which we denote by 〈D〉, and a unique
irreducible quotient, which we denote by δ(D). For GL(n,F ), the Aubert invo-
lution coincides with the Zelevinsky involution (cf. [Au, Thm. 2.3]) and δ̂(D) =
〈D〉. The representation δ(D) is square integrable if the segment is balanced—that
is, of the form D = [ν−kρ, ν kρ], where ρ is unitary and k is a half-integer. Any
irreducible square-integrable representation of GL(n,F ) is isomorphic to δ(D)
for some balanced segment D. In addition, if τ is a tempered representation of
GL(n,F ), then τ ∼= δ1 × · · · × δs for some square integrable representations
δ1, . . . , δs; this follows from the irreducibility of induced-from-unitary representa-
tions of GL(n,F ).All this implies the following description of the dual Langlands
classification for GL(n,F ).

Proposition 7.1 (Dual Langlands classification for GL(n,F )).

(a) Suppose D1, . . . ,Dk are balanced segments and α1 ≥ · · · ≥ αk are real num-
bers. Then the induced representation να1〈D1〉 × · · · × ναk〈Dk〉 has a unique
irreducible subrepresentation; denote it by π(να1D1, . . . , ναkDk).

(b) The representations π(να1D1, . . . , ναkDk) and π(νβ1D′1, . . . , νβFD′F) are iso-
morphic if and only if k = F, (α1, . . . ,αk) = (β1, . . . ,βk), and (D′1, . . . ,D′k) =
(Dp(1), . . . ,Dp(k)) for some permutation p such that αi = αp(i) for all i ∈
{1, . . . , k}.
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(c) Any irreducible admissible representation of GL(n,F ) is isomorphic to some
representation of the form π(να1D1, . . . , ναkDk).

Proof. This follows from Theorem 6.3, with a modification in expressing induc-
ing data. More precisely, let Q = LU be a standard parabolic subgroup of
GL(n,F ), let µ ∈ (aL)∗+ , and let θ be an anti-tempered representation of L. The
Levi factor L is of the form L ∼= GL(n1,F ) × · · · × GL(nr ,F ). Then expµ =
νγ1 ⊗ · · · ⊗ νγr, where γ1 > · · · > γr , and θ = θ1 ⊗ · · · ⊗ θr , where each θi is
an anti-tempered representation of GL(ni,F ). We know from the previous dis-
cussion that θi can be expressed as θi ∼= 〈Di,1〉 × 〈Di,2〉 × · · · × 〈Di,ki〉 for some
balanced segments Di,1, . . . ,Di,ki . This expression is not unique—we have θi ∼=
〈Di,p(1)〉 × 〈Di,p(2)〉 × · · · × 〈Di,p(ki )〉 for any permutation p of {1, . . . , ki}. Now

iG,L(expµ⊗θ) ∼= νγ1〈D1,1〉×· · ·×νγ1〈D1,k1〉×· · ·×νγr〈Dr,1〉×· · ·×νγr〈Dr,kr 〉,
and the proposition follows from Theorem 6.3.

Next we review the Zelevinsky classification [Z]. We say that the segmentsD1 and
D2 are linked if D1 �⊂ D2 and D2 �⊂ D1 and if D1 ∪ D2 is also a segment. Sup-
pose that D1 and D2 are linked and that D1 = [ρ1, ν k1ρ1] and D2 = [ρ2, ν k2ρ2 ].
If ρ2 = νFρ1 for some F > 0, we say that D1 precedes D2.

Let (D1,D2, . . . ,Dk) be a sequence of segments. We say that D1,D2, . . . ,Dk
are Zelevinsky data if, for each pair of indices i < j, Di does not precede Dj .

If D1, . . . ,Dk are Zelevinsky data, then the representation 〈D1〉 × · · · × 〈Dk〉
has a unique irreducible subrepresentation that we denote by 〈D1, . . . ,Dk〉. Any
irreducible admissible representation of GL(n,F ) is isomorphic to some repre-
sentation of the form 〈D1, . . . ,Dk〉, and the choice ofD1, . . . ,Dk is unique up to a
permutation [Z, Thm. 6.1].

In the next proposition, we give the connection between Zelevinsky classifica-
tion and dual Langlands classification for GL(n,F ).

Proposition 7.2. Suppose D1, . . . ,Dk are balanced segments and α1 ≥ · · · ≥
αk are real numbers. Let D′i = ναiDi. Then D′1, . . . ,D′k are Zelevinsky data and
〈D′1, . . . ,D′k〉 = π(να1D1, . . . , ναkDk).

Proof. SupposeD1,D2, . . . ,Dk are balanced segments and α1 ≥ · · · ≥ αk are real
numbers. Set D′i = ναiDi. We claim that D′1, . . . ,D′k are Zelevinsky data. Sup-
pose, on the contrary, that there exist indices i < j such thatD′i precedesD′j . Set
α = αi, β = αj , Di = [ν−rρ, ν rρ], and Dj = [ν−sρ, ν sρ], where r, s ≥ 0. Then
D′i = [να−rρ, να+rρ] and D′j = [νβ−sρ, νβ+sρ]. Suppose first that D′i ∩ D′j =
∅. Then α + r + 1 = β − s, which is impossible because α ≥ β and r, s ≥ 0.
Therefore,

α − r < β − s ≤ α + r < β + s.
If r ≥ s then α + r ≥ β + s, contradicting the above expression. Similarly, r <
s implies α − r > β − s, again contradicting this expression. Therefore, if i < j
then D′i does not precede D′j .
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Conversely, if we start with Zelevinsky data then we can obtain corresponding dual
Langlands data. SupposeD′1, . . . ,D′k are Zelevinsky data. For i ∈ {1, . . . , k}, write
D′i = νβiD′′i , whereD′′i is balanced and βi is a real number. Let (να1D1, . . . , ναkDk)
be a permutation of (νβ1D′′1, . . . , νβkD′′k) such that α1 ≥ · · · ≥ αk. According to
Proposition 7.2, D′p(1), . . . ,D′p(k) are Zelevinsky data and 〈D′p(1), . . . ,D′p(k)〉 =
π(να1D1, . . . , ναkDk). Then from [Z,Thm. 6.1(b)], we haveπ(να1D1, . . . , ναkDk) ∼=
〈D′1, . . . ,D′k〉.
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