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1. Introduction

We find the minimal elements in three different (but essentially equivalent) par-
tially ordered categories of mathematical objects:

(A) finite-volume, noncompact, complete, locally symmetric spaces of higher
rank;

(B) nonuniform, irreducible lattices in semisimple Lie groups of higher real rank;
and

(C) isotropic, simple algebraic Q-groups of higher real rank.

The main interest is in categories (A) and (B), but the proof is carried out using
the machinery of (C). (For completeness, we also provide a generalization that ap-
plies to algebraic groups over any number field, not only Q.) Justification of the
examples and facts stated in the Introduction can be found in Section 2.

1A. Locally Symmetric Spaces

It is well known that if G is a connected, semisimple Lie group and R-rankG ≥
2, then G contains a closed subgroup that is locally isomorphic to either SL3(R)

or SL2(R)× SL2(R). Passing from semisimple Lie groups to the corresponding
symmetric spaces yields the following geometric translation of this observation.

1.1. Fact. Let X̃ be a symmetric space of noncompact type, with no Euclidean
factors, such that rank X̃ ≥ 2. Then X̃ contains a totally geodesic submanifold
X̃ ′ such that X̃ ′ is the symmetric space associated to either SL3(R) or SL2(R)×
SL2(R). In other words, X̃ ′ is isometric to either

(1) SL3(R)/SO(3) ∼= {3 × 3 positive-definite symmetric real matrices of deter-
minant 1} or

(2) the product H2 ×H2 of two hyperbolic planes.

In short, among all the symmetric spaces of noncompact type with rank ≥ 2,
there are only two manifolds that are minimal with respect to the partial order de-
fined by totally geodesic embeddings. Our main theorem provides an analogue of
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this result for noncompact finite-volume spaces that are locally symmetric, rather
than globally symmetric, but in this setting the partial order has infinitely many
minimal elements.

1.2. Theorem. Let X be a finite-volume, noncompact, irreducible, complete,
locally symmetric space of noncompact type, with no Euclidean factors (locally),
such that rankX ≥ 2. Then there is a finite-volume, noncompact, irreducible,
complete, locally symmetric space X ′ such that X ′ admits a totally geodesic,
proper immersion intoX and the universal cover ofX ′ is the symmetric space as-
sociated to either SL3(R), SL3(C), or a direct product SL2(R)

m×SL2(C)
n, with

m+ n ≥ 2.

1.3. Remark. The symmetric space associated to SL3(R) is given in Fact 1.1(1).
The others are:

(1) SL3(C)/SU(3) ∼= {3 × 3 positive-definite Hermitian matrices of determi-
nant 1}; and

(2) the product (H2)m×(H3)n ofm hyperbolic planes and n hyperbolic 3-spaces.

1.4. Remark. (1) Our main result actually provides a precise description of X ′
(modulo finite covers), not only its universal cover. It does this by specifying the
fundamental group π1(X

′); the possible fundamental groups appear in Section 1B.
(2) Our proof of the theorem is constructive: For a given locally symmetric

spaceX, our methods produce an explicit locally symmetric spaceX ′ that embeds
in X.

(3) Our theorem assumes X is not compact. It would be interesting to obtain
an analogous result that assumes X is compact (and that X ′ is also compact).

The Mostow rigidity theorem tells us that any locally symmetric space X as just
discussed is determined by its fundamental group. This means that the foregoing
geometric result can be reformulated in group-theoretic terms. This restatement
of the result is our next topic.

1B. Lattices in Semisimple Lie Groups

1.5. Definition. Let us say that an abstract group 
 is a nonuniform lattice
of higher rank if there exists a connected, semisimple, linear (real) Lie group G
such that

• 
 is isomorphic to an irreducible, nonuniform lattice in G; and
• R-rankG ≥ 2.

(Recall that a discrete subgroup 
 ′ of G is a nonuniform lattice if G/
 ′ has finite
volume but is not compact; the lattice 
 ′ is irreducible if no finite-index subgroup
of 
 ′ is isomorphic to a direct product 
 ′1× 
 ′2 with both 
 ′1 and 
 ′2 infinite.)

1.6. Remark. The nonuniform lattices of higher rank have made many appear-
ances in the literature. For example, the Margulis arithmeticity theorem [Ma1]
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was first proved for this class of groups, and Raghunathan [Rag2; Rag3] proved
the congruence subgroup property for these groups.

It is obvious that the collection of all nonuniform lattices of higher rank is closed
under passage to finite-index subgroups, so it has no elements that are minimal
under inclusion. Thus, it is natural to consider a slightly weaker notion of mini-
mality that ignores finite-index subgroups.

1.7. Definition. A nonuniform lattice 
 of higher rank is almost minimal if no
subgroup of infinite index in 
 is a nonuniform lattice of higher rank.

Our main result describes all the almost-minimal nonuniform lattices of higher
rank. The significance of this result lies in the fact that every nonuniform lattice
of higher rank must contain an almost-minimal one, so, for example, they can be
the base cases in a proof by induction.

1.8. Theorem. Every almost-minimal nonuniform lattice of higher rank is iso-
morphic to a nonuniform, irreducible lattice in either SL3(R), SL3(C), or a direct
product SL2(R)

m × SL2(C)
n with m+ n ≥ 2.

We now describe the almost-minimal lattices more explicitly.

1.9. Example. SL3(Z) is an almost-minimal nonuniform lattice of higher rank.

1.10. Remark. SL3(Z) is an arithmetic group whose Q-rank is 2. It is well
known that any irreducible lattice 
 with Q-rank
 ≥ 2 must contain a finite-
index subgroup of either SL3(Z) or Sp4(Z), and one can show that Sp4(Z) is not
almost minimal. Therefore, up to finite index, SL3(Z) is the only almost-minimal
lattice of higher rank whose Q-rank is ≥ 2.

Although (up to finite index) there is only one almost-minimal nonuniform lattice
whose Q-rank is 2, there are infinitely many whose Q-rank is 1.

1.11. Example. (1) If r is any square-free integer ≥ 2, then SL2
(
Z

[√
r

])
is an

almost-minimal nonuniform lattice of higher rank.
(2) More generally, let OK be the ring of integers of an algebraic number fieldK,

and assume K is neither Q nor an imaginary quadratic extension of Q. Then 
 =
SL2(OK) is a nonuniform lattice of higher rank. (We remark that if K is a totally
real extension of Q, as is the case in (1), then 
 is called a Hilbert modular group.)
This nonuniform lattice is almost minimal if and only if each proper subfield ofK
is either Q or an imaginary quadratic extension of Q.

1.12. Example. Let:

• F be either the field Q or an imaginary quadratic extension of Q;
• Fv = R if F = Q and Fv = C if F �⊂ R;
• L be any quadratic extension of F such that L ⊂ Fv;
• τ be the nontrivial Galois automorphism of L over F ;
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• f be the τ -Hermitian form on L3 defined by

f(x, y) = τ(x1)y1− τ(x2)y2 − τ(x3)y3;
and

• OL be the ring of integers of L.

Then

SU3(OL, f , τ) = {A∈ SL3(OL) | f(Ax,Ay) = f(x, y) ∀x, y ∈L3}
is a nonuniform lattice in SL3(Fv), so it is a nonuniform lattice of higher rank. It
is almost minimal if and only if either F = Q or L ∩ R = Q.

The preceding examples are well known (and are of classical type). Our main re-
sult shows there are no others.

1.13. Theorem. Every nonuniform lattice of higher rank contains a subgroup
that is isomorphic to a finite-index subgroup of a lattice described in Example 1.9,
Example 1.11(2), or Example 1.12.

1.14. Remark. Theorem 1.13 is a fundamental ingredient in the proof [LMo]
that if all nonuniform lattices of higher rank are boundedly generated by unipotent
elements, then no nonuniform lattice of higher rank can be right ordered.

The Margulis arithmeticity theorem tells us that (modulo finite groups) any non-
uniform lattice of higher rank can be realized as the integral points of a simple alge-
braic Q-group. Also, the Margulis superrigidity theorem tells us that any embed-
ding 
 ′ ↪→ 
 extends to an embedding of the corresponding algebraic Q-groups
(modulo finite groups). This means that the classification of almost-minimal non-
uniform lattices of higher rank is logically equivalent to a result on simple algebraic
Q-groups.

1C. Simple Algebraic Q-Groups

Let G be a connected algebraic group over Q that is almost simple. (Recall that,
by definition, this means every proper, normal Q-subgroup of G is finite.) It is
well known that if Q-rank G ≥ 2, then G contains a Q-split almost-simple sub-
group H such that Q-rank H = 2. (Indeed, one may choose H to be isogenous to
either SL3 or Sp4.) If we replace the assumption that G has large Q-rank with the
weaker assumption that G has large R-rank, then one cannot expect to find a sub-
group of large R-rank that is split over Q. (In any Q-split subgroup, the Q-rank
and R-rank are equal.) However, our main result states that if we add the obvious
necessary condition that G is Q-isotropic, then there is always a subgroup of large
R-rank that is quasisplit over Q.

1.15. Theorem. Suppose G is an isotropic, almost-simple algebraic group over
Q such that R-rank G ≥ 2. Then G has a connected, isotropic, almost-simple Q-
subgroup H such that H is quasisplit over Q and R-rank H ≥ 2.
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It was mentioned previously that H can be chosen to be isogenous to either SL3

or Sp4 if Q-rank G ≥ 2. So the theorem is interesting only when Q-rank G = 1.
Because there are very few quasisplit groups of Q-rank 1 (and it is not difficult to
find quasisplit proper subgroups of Sp4, as will be seen in the proof of Lemma 3.8),
we can restate the result in the following more precise form.

1.16. Definition. Suppose G is an isotropic, almost-simple algebraic group
over Q such that R-rank G ≥ 2. For convenience, let us say that G is minimal if
no proper, isotropic, almost-simple Q-subgroup of G has real rank ≥ 2.

1.17. Notation. RK/F denotes the Weil restriction of scalars functor from K

to F.

1.18. Theorem. Suppose G is an isotropic, almost-simple algebraic group over
Q such that R-rank G ≥ 2. If G is minimal, then G is isogenous to either :

(i) SL3 or
(ii) SU3(L, f , τ), where L is a real quadratic extension of Q, τ is the Galois

automorphism of L over Q, and

f(x1, x2, x3) = τ(x1)x1− τ(x2)x2 − τ(x3)x3; (1.19)

or
(iii) RK/Q SU3(L, f , τ), whereK is an imaginary quadratic extension of Q, L is

a quadratic extension of K, τ is the Galois automorphism of L over K, and
f is given by (1.19); or

(iv) RK/Q SL2 for some finite extension K of Q such that K is neither Q nor an
imaginary quadratic extension of Q.

1.20. Remark. Conversely:

(i) SL3 is minimal.
(ii) The groups described in Theorem 1.18(ii) are minimal.

(iii) A group as described in Theorem 1.18(iii) fails to be minimal if and only if
L contains a real quadratic extension of Q.

(iv) A group as described in Theorem 1.18(iv) fails to be minimal if and only if
K contains a proper subfield that is neither Q nor an imaginary quadratic ex-
tension of Q.

1.21. Remark. Under the additional assumption that some minimal parabolic R-
subgroup of G is defined over Q, Theorem 1.18 was proved long ago by Margulis
[Ma2, Lemma 2.4.2] and independently by Raghunathan [Rag3, Lemma 3.2(ii)].

1.22. Remark. Theorem 3.4 provides a generalization of Theorem 1.18 that ap-
plies to algebraic groups over any algebraic number field.

Outline of the Paper. Section 2 justifies statements made in the Introduction.
The remaining sections of the paper state and prove our main result (Theorem 3.4).
Section 3 covers some preliminaries and deals with groups that either have global
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rank ≥ 2 or are of type E7, E8, or G2. We treat groups of classical type in Sec-
tion 4, groups of typeF4 in Section 5, groups of type 3,6D4 in Section 6, and groups
of type 1,2E6 in Section 7.

2. Justification of the Introduction

In this section, we provide brief justifications for the assertions made in the Intro-
duction. The order of the topics there was chosen for purposes of exposition; they
will now be treated in reverse order (Section 1C, Section 1B, Section 1A).

Justification of Section 1C. The observation that Q-simple groups of higher
Q-rank contain subgroups isogenous to either SL3 or Sp4 appears in [Ma3, Prop.
I.1.6.2, p. 46].

The following sections will present a proof of (a generalization of ) Theorem1.18.
Because all of the groups in the conclusion of that theorem are quasisplit, Theo-
rem 1.15 is an immediate consequence.

To verify the observations in Remark 1.20, note the following.
1. The groups described in Theorem 1.18(i) and (ii) are isomorphic to SL3 over

the algebraic closure Q̄. Since SL3 has no semisimple, proper subgroups of abso-
lute rank ≥ 2, it is immediate that these groups are minimal.

2. Let G be one of the groups described in Theorem 1.18(iii). IfL contains a real
quadratic extension F of Q, then G contains SU3(F, f , τ |F ), so G is not minimal.

Conversely, if G is not minimal, then there is an isotropic, almost-simple, proper
Q-subgroup H of G such that R-rank H ≥ 2. Since G is isomorphic to SL3×SL3

over Q̄, we know that H must be isogenous to either SL3 or SL2 × SL2 over Q̄.

In either case, because R-rank H ≥ 2, there is a real quadratic extension F of Q

such that F-rank H = 2. Therefore F-rank G ≥ 2. If F �⊂ L, then τ extends to an
automorphism of L · F that is trivial on K · F, and G is F-isomorphic to

RK·F/F SU3(L · F, f , τ).

So F-rank G = 1. This is a contradiction, so we conclude that L does contain the
real quadratic extension F.

3. Let G be one of the groups described in Theorem 1.18(iv). Any Q-subgroup
of G that is almost simple is isogenous to RL/Q SL2 for some subfield L of K.
Thus, G fails to be minimal if and only if R-rank(RL/Q SL2) > 1 for some proper
subfield L of K.

Justification of Section 1B. The Margulis arithmeticity theorem [Ma3, Thm.
IX.1.16, p. 299, and Rem. IX.1.6(iii), p. 294] states that (up to isomorphism of
finite-index subgroups) the collection of nonuniform lattices of higher rank is the
same as

{G(Z) | G is an isotropic almost-simple Q-group with R-rank G ≥ 2}.
For isotropic almost-simple Q-groups G and G1 with R-rank G1 ≥ 2, the Mar-
gulis superrigidity theorem [Ma3, Thm. IX.5.12(ii), p. 327, and Rem. IX.1.6(iv),
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p. 295] implies there is a finite-index subgroup of G1(Z) that is isomorphic to a
subgroup of G(Z) if and only if G1 is isogenous to a subgroup of G. Hence, G(Z)
is almost minimal (as a nonuniform lattice of higher rank) if and only if G is min-
imal (as an algebraic Q-group). Therefore, all the assertions of Section 1B are
simply translations of results in Section 1C. For example, because SL3 is minimal,
it is immediate that SL3(Z) is almost minimal.

Justification of 1A. Let X be as in Theorem 1.2. It is well known (cf. [E,
Sec. 2.2, pp. 70–71] and [H, Thm. 5.6, p. 222]) that, up to isometry, we haveX =

\G/K, where

• G is a connected, semisimple, adjoint Lie group with no compact factors,
• K is a maximal compact subgroup of G, and
• 
 is a (torsion-free) nonuniform, irreducible lattice in G.

We have R-rankG = rankX (cf. [E, Sec. 2.7, pp. 76–77]), so, since rankX ≥ 2,
we see that 
 is a nonuniform lattice of higher rank. Hence, Theorem 1.13 implies
that 
 contains a subgroup 
 ′ that is isomorphic to a nonuniform, irreducible lat-
tice in a connected, semisimple, adjoint Lie groupH, andH is locally isomorphic
to either SL3(R), SL3(C), or a product SL2(R)

m×SL2(C) withm+ n ≥ 2. The
Margulis superrigidity theorem [Ma3, Thm. IX.5.12, p. 327] implies that (after
passing to a finite-index subgroup of 
 ′) the inclusion 
 ′ ↪→ 
 extends to an em-
bedding H ↪→ G, so we may assume H ⊂ G and 
 ′ = H ∩ 
. We may choose a
Cartan involution σ of G such that σ(H ) = H [Mos, Thm. 7.3]. Let

• g0 ∈G such that g0Kg
−1
0 is the maximal compact subgroup of G on which σ is

trivial [H, Thm. 2.2(i), p. 256],
• K ′ = (g0Kg

−1
0 ) ∩H, so K ′ is a maximal compact subgroup of H, and

• X ′ = 
 ′ \H/K ′.
Then X ′ is a a finite-volume, noncompact, irreducible locally symmetric space
whose universal cover is H/K ′. The immersion

X ′ → X : 
 ′hK ′ �→ 
hg0K

is proper [Rag1, Thm. 1.13, p. 23] and has totally geodesic image [E, Prop. 2.6.2,
p. 74].

3. Preliminaries

Throughout the remainder of this paper, G is a connected, isotropic, almost-simple
algebraic group over an algebraic number field F.

3.1. Remark. Our notation and terminology for discussing algebraic groups gen-
erally follows [PlRa]. However, we use boldface letters (G, H, T, etc.) to denote
algebraic groups. Also, if A is a central simple algebra and f is a Hermitian (or
skew-Hermitian) form onAm with respect to an involution τ, we use SUm(A, f , τ)
to denote the corresponding special unitary group, whereas [PlRa] writes merely
SUm(f ).
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3.2. Notation. Let SG be the set of all Archimedean places v of F such that
Fv-rank G ≥ 2.

3.3. Definition. We say G is minimal if SG �= ∅ and if there does not exist a
proper, isotropic, almost-simple F-subgroup H of G such that Fv-rank H ≥ 2 for
every v ∈ SG.

The following is a natural generalization of Theorem 1.18.

3.4. Theorem. Suppose G is an isotropic, almost-simple algebraic group over
an algebraic number field F such that SG �= ∅. If G is minimal, then G is isoge-
nous to either :

(i) SL3; or
(ii) SU3(L, f , τ), where

• L is a quadratic extension of F such that L ⊂ Fv for some Archimedean
place v of F,

• τ is the Galois automorphism of L over F, and
• f(x1, x2, x3) = τ(x1)x1− τ(x2)x2 − τ(x3)x3;
or

(iii) RK/F SU3(L, f , τ), where
• K is a quadratic extension of F such that K �⊂ Fv for some Archimedean

place v of F,
• L is a quadratic extension of K,
• τ is the Galois automorphism of L over K, and
• f(x1, x2, x3) = τ(x1)x1− τ(x2)x2 − τ(x3)x3;
or

(iv) RK/F SL2 for some nontrivial finite extension K of F such that either
|K : F | > 2 or K ⊂ Fv for some Archimedean place v of F.

3.5. Corollary. Suppose G is an isotropic, almost-simple algebraic group over
an algebraic number field F such that SG �= ∅. Then G contains an isotropic,
almost-simple F-subgroup H such that Fv-rank H ≥ 2 for every v ∈ SG, and H is
isogenous to a subgroup described in (i), (ii), (iii), or (iv) of Theorem 3.4.

The remainder of this paper provides a proof of Theorem 3.4.

3.6. Notation. For algebraic groups G1 and G2 over a fieldK, we write G1≈ G2

if they have the same simply connected covering.

Let us record an observation that will be used repeatedly.

3.7. Lemma. If a ∈F ∗ and
√
a /∈F, then

SO4(x
2
1 − x 2

2 − x 2
3 + ax 2

4 ) ≈ RF [
√
a ]/F SL2.

Proof. SO4 is of typeD2 = A1×A1. Since the discriminant of the quadratic form
under consideration is not a square, we know that the associated orthogonal group



Almost-Minimal Nonuniform Lattices of Higher Rank 461

is an outer form; thus, it is isogenous to RF [
√
a ]/F SL1(A), where A is a quater-

nion algebra over F
[√
a

]
. Since the group is isotropic over F, the algebra Amust

be split, so SL1(A) ∼= SL2.

Recall that a connected algebraic F-group is absolutely almost simple if it remains
simple over an algebraic closure F̄ of F. The following basic observations allow
us to assume that F-rank G = 1 and that G is absolutely almost simple.

3.8. Lemma. If G is minimal, then either :

(1) F-rank G = 1; or
(2) G is isogenous to SL3 (so Theorem 3.4(i) holds).

Proof. Assume F-rank G ≥ 2. It is well known that G contains an F-subgroup
that is isogenous to either SL3 or Sp4 [Ma3, Prop. I.1.6.2, p. 46]. By minimality,
G itself must be isogenous to either SL3 or Sp4.

Suppose G is isogenous to Sp4. Then G is a split group of type C2 = B2, so it
is also isogenous to

SO5(x
2
1 − x 2

2 − x 2
3 + x 2

4 + ax 2
5 )

for any a ∈F. It therefore contains a subgroup isogenous to

SO4(x
2
1 − x 2

2 − x 2
3 + ax 2

5 ).

By weak approximation, we may choose a such that a is a square in Fv for every
v ∈ SG but a is not a square in F. Then H is isogenous to RF [

√
a ]/F SL2 (see

Lemma 3.7), so it is isotropic and Fv-rank H = 2 for every v ∈ SG. This contra-
dicts the minimality of G.

3.9. Lemma. If G is minimal, then either :

(1) G is isogenous to RK/F SL2, with K as described in Theorem 3.4(iv); or
(2) G is absolutely almost simple; or
(3) G is isogenous to RK/F G0, where G0 is an absolutely almost simple group

over a quadratic extension K of F such that K �⊂ Fv for some v ∈ SG.

Proof. Assume (2) does not hold. Then there is an algebraic number fieldK ⊃ F

and an absolutely almost simple group G0 over K such that G is isogenous to
RK/F G0 [KMRT, Thm. 26.8, p. 365]. Since G is isotropic over F, we know G0 is
isotropic over K, so G0 contains a subgroup that is isogenous to SL2. Therefore,
G contains a subgroup H that is isogenous to RK/F SL2.

If Fv-rank H ≥ 2 for every v ∈ SG, then the minimality of G implies G = H,
so (1) holds. On the other hand, if Fv-rank H = 1 for some v ∈ SG, then K is a
quadratic extension of F and K �⊂ Fv , so (3) holds.

3.10. Lemma. If Theorem 3.4 holds ( for all algebraic number fields) under the
additional assumption that G is absolutely almost simple, then it holds in general.

Proof. Suppose G is minimal but is not absolutely almost simple. From Lemma 3.8,
we see that F-rank G = 1. We may assume Lemma 3.9(3) holds (for otherwise
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Theorem 3.4(iv) holds). Since G is minimal (as an F-group), it is clear that G0

is minimal (as a K-group). The only absolutely almost-simple group of global
rank 1 in the conclusion of Theorem 3.4 is in part (ii). Thus, we conclude that G0

is as described in Theorem 3.4(ii) but with F replaced by K. Then G = RK/F G0

is as described in Theorem 3.4(iii).

Lemma 3.8 immediately rules out some types of exceptional groups, as follows.

3.11. Corollary. If G is minimal, then G is not of type E7, E8, or G2.

Proof. The Tits classification [Ti, pp. 59–61] shows there are no rank-1 forms of
any of these types over a number field.

The following useful observation is well known and easy to prove.

3.12. Lemma. Let

• D be a quaternion algebra over a field L;
• τ be an involution of D (of either the first or second kind );
• f(x, y) = τ(x1)a1y1 + τ(x2)a2y2 + · · · + τ(xn)anyn be a nondegenerate τ -

Hermitian form on Dn for some n;
• d ∈D such that τ (d) = d;
• τ ′ = int(d ) � τ, where int(d ) is the inner conjugation in D by d; and
• f ′(x, y) = df(x, y) = τ ′(x1)da1y1+ τ ′(x2)da2y2 + · · · + τ ′(xn)danyn.
Then

(1) τ ′ is an involution (of the same kind as τ),
(2) f ′ is τ ′-Hermitian, and
(3) SUn(D, f ′, τ ′) = SUn(D, f , τ).

3.13. Definition [Ti, Sec. 2.2, p. 69]. Recall that if S is a maximalF-split torus
in G, then the semisimple part of the centralizer CG(S) is called the semisimple
F-anisotropic kernel of G. It is unique up to F-isomorphism.

3.14. Definition. A connected, semisimple subgroup H0 of G is standard if
H0 is normalized by a maximal torus T of G. (We remark that neither H0 nor T is
assumed to be defined overF.) Equivalently, there exist roots β1, . . . ,βr of G (with
respect to T) such that H0 is generated by the root subgroups U±β1 , . . . ,U±βr . For
short, we may say that H0 is generated by the roots ±β1, . . . ,±βr .
The following useful observation is well known (cf. [PlRa, p. 353]).

3.15. Proposition. Let :

• M be an anisotropic, semisimple group over F such that −1 is in the Weyl group
of M;

• L be a quadratic extension of F such that M is quasisplit over L; and
• α be a simple root of M that is fixed in the ∗-action shown in the Tits index

of M.



Almost-Minimal Nonuniform Lattices of Higher Rank 463

Then there is a maximal F-torus T of M such that the standard subgroup Mα gen-
erated by the roots ±α is defined over F.

Furthermore, if M is split over L, then T may be chosen to be split over L.

Proof. Letting σ be the Galois automorphism of L over F, there is a Borel L-
subgroup B of M such that T = B ∩ σ(B) is a maximal torus of M [PlRa,
Lemma 6.17, p. 329]. The Borel subgroup B determines an ordering of the roots of
M (with respect to T). Note that the negative roots are precisely those that appear
in σ(B).

Let K be a Galois splitting field of M that contains L. Since T is defined over
F, the Galois group Gal(K/F ) permutes the root spaces of M. Furthermore, for
any τ ∈Gal(K/F ), either τ sends every positive root to a positive root (if τ(B) =
B) or τ sends every positive root to a negative root (if τ(B) = σ(B)). Since α
is fixed in the ∗-action shown in the Tits index and since −1 belongs to the Weyl
group, this implies that τ(α) = ±α. Therefore, Mα is stable under Gal(K/F );
thus, it is defined over F.

It is easy to tell whether a standard subgroup of a simply connected group is sim-
ply connected, as the following remark indicates.

3.16. Remark [SpSt, II.5.3, p. 206]. Let G be a simply connected, semisimple
F-group, and let H be the standard, semisimple subgroup of G generated by the
roots ±β1, . . . ,±βr . Then H is simply connected if and only if the set of roots of
H contains every long root of G that is in the Q-span of {β1, . . . ,βr}.

4. Groups of Classical Type

4.1. Assumption. We assume in this section that G is a group of classical type
and that G is minimal. Furthermore, with Lemmas 3.8 and 3.10 in mind, we as-
sume that F-rank G = 1 and that G is absolutely almost simple.

We know G �= Spn (because Spn is F-split but F-rank G = 1< Fv-rank G for any
v ∈ SG). Thus, G is either a special linear group, an orthogonal group, or a uni-
tary group of either the first or second kind [PlRa, Sec. 2.3.4]. We consider each
of these possibilities separately.

4A. Special Linear Groups

4.2. Assumptions.

• D is a central division algebra over F.
• G = SL2(D).

Let K be a maximal subfield of D. For v ∈ SG, we have

Fv-rank G > 1= Fv-rank SL2.

Therefore D �= F, so K is a proper extension of F. Because RK/F SL2 ⊆ G, the
minimality of G implies there exists w ∈ SG such that Fw-rank(RK/F SL2) = 1.
Therefore |K : F | = 2, so D is a quaternion algebra over F.
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WriteD = (a, b)F . By weak approximation, there exist c1, c2, c3 ∈F such that

for every v ∈ SG, ac2
1 + bc2

2 − abc2
3 is a nonzero square in Fv. (4.3)

Let c = ac2
1 + bc2

2 − abc2
3 ∈ F, so c has a square root in D. Thus, letting H =

RF [
√
c ]/F SL2, we have H ⊆ G. Also, for every v ∈ SG, we know c is a square in

Fv by (4.3), so Fv-rank H ≥ 2. This contradicts the minimality of G.

4B. Orthogonal Groups

4.4. Assumptions.

• f is a nondegenerate quadratic form on F n for some n ≥ 5.
• G = SOn(f ).

• The maximal totally isotropic F-subspace of F n is 1-dimensional (in other
words, F-rank G = 1).

After a change of basis, to diagonalize the form we may write

f(x) = x 2
1 − x 2

2 + a3x
2
3 + a4x

2
4 + · · · + anx 2

n .

(We may assume the form begins with x 2
1 − x 2

2 because it is isotropic.) By nor-
malizing the form, we may assume a3 = −1. By weak approximation, there exist
b4, b5, . . . , bn ∈F such that

for every v ∈ SG, a4b
2
4 + · · · + anb2

n is a nonzero square in Fv. (4.5)

Let a = a4b
2
4 +· · ·+ anb2

n; then, after a change of basis, we may assume a4 = a.

Hence
H = SO4(x

2
1 − x 2

2 − x 2
3 + ax 2

4 ) ⊂ G.

For any v ∈ SG, we know Fv-rank H = 2 (since a is a square in Fv). Therefore,
the minimality of G implies

G = H ≈ RF [
√
a ]/F SL2.

Consequently, Theorem 3.4(iv) holds.

4C. Unitary Groups of the Second Kind

4.6. Assumptions.

• L is a quadratic extension of F.
• D is a central division algebra over L.
• τ is an involution ofD that fixes every element of F but fixes no other elements

of L.
• f is a τ -Hermitian form on Dn for some n.
• G = SUn(D, f , τ).
• The maximal totally isotropic D-subspace of Dn is 1-dimensional (in other

words, F-rank G = 1).

After a change of basis, to diagonalize the form we may write

f(x, y) = xτ1y1− xτ2y2 + xτ3a3y3 + xτ4a4y4 + · · · + xτnanyn,
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where aτj = aj for each j. (We may assume the form begins with xτ1y1 − xτ2y2

because it is isotropic.)

Case 1: Assume D = L. By normalizing the form f(x, y), we may assume
a3 = −1. We may also assume n ≥ 4; otherwise Theorem 3.4(ii) holds.

For each v ∈ SG:

• let Lv = Fv ⊗F L;
• identify Fv with Fv ⊗F F ⊂ Lv; and
• let τv be the extension of τ to an involution of Lv with fixed field Fv.

Claim. For every v ∈ SG, there exist bv,4, bv,5, . . . , bv,n ∈Lv such that

a4b
τv
v,4bv,4 + a5b

τv
v,5bv,5 + · · · + anbτvv,nbv,n is a nonzero square in Fv.

We consider two possibilities.

(i) If L �⊂ Fv , then Lv is a field extension of Fv and G is isomorphic over Fv to

SUn(Lv , x
τv
1 y1− xτv2 y2 − xτv3 y3 + a4x

τv
4 y4 + a5x

τv
5 y5 + · · · + anxτvn yn, τv).

The desired conclusion follows from the fact that Fv-rank G ≥ 2.
(ii) If L ⊂ Fv , then there is an isomorphism ϕv : (Lv , τv)→ (Fv ⊕ Fv , τ̄ ), where

τ̄ (x1, x2) = (x2, x1). Since (x,1)τ̄(x,1) = (x, x) is an arbitrary element of
ϕv(Fv), the desired conclusion is obvious.

This completes the proof of the claim.

Combining this claim with weak approximation yields b4, b5, . . . , bn ∈L such that,
for every v ∈ SG,

a4b
τv
4 b4 + a5b

τv
5 b5 + · · · + anbτvn bn is a nonzero square in Fv.

Let a = a4b
τv
4 b4+a5b

τv
5 b5+· · ·+anbτvn bn; then, after a change of basis, we may

assume a4 = a. Hence

H = SO4(x
1
1 − x 2

2 − x 2
3 + ax 2

4 ) ⊂ G.

From the choice of a, we know Fv-rank H = 2 for every v ∈ SG. (Also, since
F-rank G = 1, we know that a = a4 is not a square in F, so H ≈ RF [

√
a ]/F SL2 is

almost simple.) This contradicts the minimality of G.

Case 2: Assume D �= L. Choose a maximal subfield K of D such that K is
invariant under τ, and let K0 be the fixed field of τ in K. Then

G ⊃ RK0/F SU2(K, xτ1y1− xτ2y2, τ |K ) ≈ RK0/F SL2. (4.7)

Thus, we may assume K0 is a quadratic extension of F, for otherwise minimality
implies that Theorem 3.4(iv) holds. Then, since |L : F | = 2 = |K : K0|, we have

2 = |K0 : F | = |K : L| · |L : F |
|K : K0| = |K : L|,

so D is a quaternion algebra.
There is a quaternion algebraD ′ over F such thatD = D ′ ⊗F L and τ |D ′ is the

canonical involution [Sch, Thm. 11.2(ii), p. 314].
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Subcase 2.1: Assume n = 2. For every v ∈ SG, we know Fv splits D (because
n = 2 and Fv-rank G ≥ 2). Therefore, by weak approximation and the Hasse
principle, there is a quadratic extension E of F such that E splitsD ′ and, for each
v ∈ SG,

E ⊂ Fv ⇐⇒ L ⊂ Fv. (4.8)

Then D splits over E · L, so we may assume K = E · L. Since τ is nontrivial
on both E and L, we see from (4.8) that the fixed field K0 of τ is contained in Fv
for every v ∈ SG. So the minimality of G (together with (4.7)) implies that Theo-
rem 3.4(iv) holds.

Subcase 2.2: Assume n ≥ 3. By replacing τ with int(a−1
3 ) � τ, we may assume

a3 = 1 (cf. Lemma 3.12). By weak approximation and the Hasse principle, there
is a quadratic extension E of F such that E splits D ′ and, for each v ∈ SG,

L �⊂ Fv #⇒ E �⊂ Fv. (4.9)

Then D splits over E · L, so we may assume K = E · L.
Let H0 = SU3(K, xτ1y1− xτ2y2+ xτ3y3, τ |K) and H = RK0/F H0 ⊂ G. For any

v ∈ SG, the following statements hold.

• If K0 ⊂ Fv , then K0 ⊗F Fv ∼= Fv ⊕ Fv; therefore, it is clear that Fv-rank H ≥ 2
(since H0 is isotropic).

• If K0 �⊂ Fv then, from (4.9) and the fact that τ is nontrivial on both E and L,
we see that L ⊂ Fv; therefore, H0 is inner (hence split) over the fieldK0⊗F Fv ,
so Fv-rank H ≥ 2.

This contradicts the minimality of G.

4D. Unitary Groups of the First Kind

4.10. Assumptions.

• D is a quaternion algebra over F.
• τ is the canonical involution of D.
• f is a τ -Hermitian or τ -skew Hermitian form on Dn for some n.
• G = SUn(D, f , τ).
• The maximal totally isotropic D-subspace of Dn is 1-dimensional (in other

words, F-rank G = 1).

After a change of basis, to diagonalize the form we may write

f(x, y) =




xτ1y1− xτ2y2 + xτ3a3y3

+ xτ4a4y4 + · · · + xτnanyn if f is Hermitian,

xτ1y2 − xτ2y1+ xτ3a3y3

+ xτ4a4y4 + · · · + xτnanyn if f is skew-Hermitian.

(We may assume the form begins with xτ1y1− xτ2y2 or xτ1y2 − xτ2y1, respectively,
because F-rank G = 1 �= 0.) Note that a3, . . . , an are
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• elements of F if f is Hermitian, and
• purely imaginary if f is skew-Hermitian.

Case 1: Assume n ≤ 3. The quaternion algebra D must split over Fv for each
v ∈ SG (because Fv-rank G ≥ 2).

Subcase 1.1: Assume f is Hermitian. Let

G′ = SU2(D, xτ1y1− xτ2y2, τ) ⊂ G.

Then G′ is of type C2 (see [PlRa, Prop. 2.15(2), p. 86]), so it is also of type B2.

Therefore, it has a realization to which Section 4B applies.

Subcase 1.2: Assume f is skew-Hermitian. Because G is absolutely almost sim-
ple, we know it is not of type D2 = A1× A1; thus n = 3. Then G is of type D3,
so it is also of type A3. Therefore, it has a realization to which either Section 4A
or Section 4C applies.

Case 2: Assume n ≥ 4.

Subcase 2.1: Assume f is Hermitian. By weak approximation and the Hasse
principle, there is a quadratic extensionE ofF such thatE splitsD and, for v ∈ SG,

Fv splits D #⇒ E ⊂ Fv. (4.11)

By normalizing, we may assume a3 = −1. By weak approximation, there exist
b4, b5, . . . , bn ∈ F with the property that, for every v ∈ SG such that Fv does not
split D, we have

a4b
2
4 + a5b

2
5 + · · · + anb2

n > 0 in Fv. (4.12)

Let a = a4b
2
4 + a5b

2
5 + · · · + anb2

n; then, after a change of basis, we may assume
a4 = a.

Let
H = SU4(E, xτ1y1− x2y

τ
2 − x3y

τ
3 + axτ4y4, τ |E) ⊂ G.

For any v ∈ SG, the following statements hold.

• If E ⊂ Fv , then H is split over Fv , so Fv-rank H = 3.
• If E �⊂ Fv , then Fv does not split D (see (4.11)), so a > 0 in Fv (see (4.12)).

Hence Fv-rank H = 2.

This contradicts the minimality of G.

Subcase 2.2: Assume f is skew-Hermitian. Because f is skew-Hermitian, we
know that a3 and a4 are purely imaginary elements ofD, so there exists a nonzero,
purely imaginary α ∈D such that a3 and a4 both negate α; that is, a3α = −αa3

and a4α = −αa4. (To see this, note that a3 and a4 each negate a 2-dimensional
space of imaginary elements of D; since the imaginary elements form only a 3-
dimensional space, there must be nonzero intersection.) Hence, a3 and a4 act by
conjugation on F [α].
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Let:

• F ′ = F [α] ⊂ D;
• {e1, e2, e3, e4} be an orthogonal basis of D4 such that

f(e1, e1) = −f(e2, e2) = f(e3, e3) = a3 and f(e4, e4) = a4(
namely, e1 = 1

2 (a3,1, 0, 0), e2 = 1
2 (−a3,1, 0, 0), e3 = (0, 0,1, 0), and e4 =

(0, 0, 0,1)
);

• V ′ be the F ′ span of {e1, e2, e3, e4}; and
• f ′ be the restriction of a−1

3 f to V ′.
(Note that a−1

3 a4 centralizes α, so it must belong to F ′.) Then

• f ′(V ′ × V ′) ⊆ F ′,
• f ′ is a nondegenerate, symmetric F ′-bilinear form on V ′,
• f ′ is isometric to the form f ′′ = x1y1− x2y2 + x3y3 + (a−1

3 a4)x4y4 on (F ′)4,
and

• G = SUn(D, f , τ) ⊃ RF ′/F SO(f ′) ≈ RK/F SL2, where K = F ′
[√−a−1

3 a4
]
.

Since F-rank G = 1, we know that f ′ has no 2-dimensional totally isotropic
subspace, so −a−1

3 a4 is not a square in F ′. Hence, we have

|K : F | = |K : F ′| · |F ′ : F | = 2 · 2 > 2.

This contradicts the minimality of G.

5. Groups of Type F4

5.1. Proposition. Let G be an absolutely almost-simpleF-group of typeF4 such
that F-rank G = 1. Then G contains an isotropic, simply connected, absolutely
almost-simpleF-subgroup H of typeC3 such thatFv-rank H ≥ 2 for every v ∈ SG.

Proof. The Tits classification [Ti, p. 60] tells us that the Tits index of G is

(we number the simple roots as in [B, p. 223]). Let S be an F-split 1-dimensional
torus in G and let M be the corresponding semisimple F-anisotropic kernel.

For each v ∈ SG we have Fv-rank G > 1, so the Tits classification [Ti, p. 60] im-
plies G is split over Fv. Hence, by weak approximation and the Hasse principle,
there is a quadratic extension L of F such that L splits G and

L ⊂ Fv for every v ∈ SG. (5.2)

Since L splits G (and hence splits M), there is an L-split maximal F-torus T of
M such that the standard semisimple subgroup Gα1 generated by the roots ±α1

is defined over F (see Proposition 3.15). Let R = T ∩ Gα1 ⊂ M; then R is a
1-dimensional, L-split, anisotropic F-torus.
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Let H be the semisimple part of the identity component of CG(R). We know
that H is defined over F (since R is defined over F ). It is easy to see that H is the
standard semisimple subgroup generated by the roots

±α3,±α4,±(α1+ 2α2 + 2α3).

Thus, H is of type C3, so it is (absolutely) almost simple over F. Also, H is sim-
ply connected. (Note that G is simply connected because it is of type F4; see
Remark 3.16.) Furthermore, since H has absolute rank 3, we have CG(R) = HR.

• Since R ⊂ M, we know S ⊂ CG(R) = HR. Since S is isotropic over F and
R is anisotropic, this implies H is isotropic over F.

• By construction, L splits both G and R; therefore, CG(R) contains an L-split
maximal torus of G. Since CG(R) = HR , we conclude that H splits over L.
From (5.2), we conclude that H splits overFv for everyv ∈ SG, soFv-rank H > 1.

5.3. Corollary. If G is of type F4, then G is not minimal.

6. Groups of Type 3,6D4

The following theorem may be of independent interest. The proof makes no use
of our standing assumption that F is an algebraic number field—it suffices to as-
sume only that charF �= 2.

6.1. Theorem. Let G be an absolutely almost-simple F-group of type 3D4 or
6D4 such that F-rank G = 1. Then there exists an extension field K of F such that
RK/F SL2 is isogenous to an F-subgroup of G and |K : F | = 4.

Proof. We start with notation.

• Let S be a maximal F-split torus of G.
• Let M = [CG(S), CG(S)] be the semisimple F-anisotropic kernel of G.
• It is well known [KMRT, Thm. 43.8 and Prop. 43.9, p. 555] that there exist a

cubic extensionL of F and a quaternion algebraD = (a, b1)L overL such that:
M is isogenous to RL/F SL1(D); a ∈ F ; b1 ∈ L; and NL/F (b1) = 1. Because
RL/F SL1(D) is anisotropic, we know that D is a division algebra.

• Let P = L
[√
b1

]
, so P is isomorphic to a maximal subfield of D.

• Let P̃ be the Galois closure of P over F.
• There is a maximal F-torus T of M that is isogenous to RL/F (R

(1)
P/L Gm).

• Let
/+H = {α2,α2 + α1+ α3,α2 + α1+ α4,α2 + α3 + α4}

and
/H = {±α | α ∈/+H },

where {α1,α2,α3,α4} is a base of the roots of G with respect to the maximal
torus ST, numbered as in Figure 6A.
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Figure 6A The Tits index of the trialitarian group G

• Let H be the standard subgroup of G generated by the roots in /H. Since the
roots in /+H are pairwise orthogonal, it is obvious that H is a semisimple group
that is of type A1× A1× A1× A1 over the algebraic closure F̄.

Since M and T are defined over F, the Galois group Gal(P̃/F ) acts on the set

/M = {±α1,±α3,±α4}
of roots of M. Letting b3 and b4 be the Galois conjugates of b1 (over F ), it is clear
that Gal(P̃/F ) also acts on

B = {±√
b1,±

√
b3,±√

b4
}
.

It is easy to see that these two actions are isomorphic (because both are transi-
tive and have Gal(P̃/P ) as the stabilizer of a point). Therefore, after renumbering
and choosing the signs of the square roots appropriately, we know, for any ϕ ∈
Gal(P̃/F ), that there exist ε1, ε3, ε4 ∈ {0,1} and a permutation σ of {1, 3, 4} such
that, for i = 1, 3, 4,

ϕ(αi) = (−1)εiασ(i) and ϕ
(√
bi

) = (−1)εi
√
bσ(i).

Since √
b1

√
b3

√
b4 = ±

√
b1b3b4 = ±

√
NL/F (b1) = ±

√
1∈F,

we know that
√
b1

√
b3

√
b4 is fixed by ϕ; hence ε1+ ε3 + ε4 is even. Therefore,

#{i | εi �= 0} is either 0 or 2. (6.2)

Let µ = 2α2 + α1 + α3 + α4 be the maximal root of G. The restriction of µ to
S is different from the restriction of any other root, so µ must be fixed by every
element of Gal(P̃/F ). Therefore

2α2 +
∑

i∈{1,3,4}
αi = ϕ

(
2α2 +

∑
i∈{1,3,4}

αi

)

= 2ϕ(α2)+
∑

i∈{1,3,4}
(−1)εiασ(i),

so
ϕ(α2) = α2 +

∑
i∈{1,3,4}

εσ−1(i)αi . (6.3)

From (6.2), we conclude that ϕ(α2)∈/+H .
Since ϕ is an arbitrary element of Gal(P̃/F ), the conclusion of the preceding

paragraph implies that/+H contains the entire orbit of α2 under Gal(P̃/F ). In fact,
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it is easy to see that this orbit must be all of /+H . Since T, and hence G, is obvi-
ously split over P̃, this implies that H is defined over F and is almost F-simple.
Also, since S ⊂ H, it is obvious that H is isotropic over F. Because H is of type
A1× A1× A1× A1 over the algebraic closure, it is now clear that H is isogenous
to RK/F SL2, where K is an extension of degree 4 over F.

6.4. Remark. The specific choice of the maximal subfield P of D is crucial in
the proof; it is important that |P̃ : L̃| = 4, where P̃ and L̃ are the Galois closures
of P and L over F. If P is chosen differently, then the action of the Galois group
on the roots of G is different, and the standard subgroup generated by the roots in
/H is not defined over F.

6.5. Remark. Unfortunately, in the situation of Theorem 6.1, it follows easily
from Remark 3.16 that if H is a subgroup of G that is isogenous to RK/F SL2 with
|K : F | = 4, then H is not simply connected. Indeed, if G is simply connected,
then the fundamental group of H has order 2.

6.6. Corollary. If G is of type 3D4 or 6D4, then G is not minimal.

7. Groups of Type 1,2E6

We assume in this section that G is of typeE6. By Lemma 3.8, we may also assume
F-rank G = 1. Then there are only two possibilities for G in the Tits classification
[Ti, pp. 58–59]:

(we number the simple roots as in [B, p. 230]).
The two possible forms will be considered individually (in Theorems 7.1 and

7.5). The proofs assume somewhat more background than those in the previous
sections.

7.1. Theorem. If G is a simply connected, absolutely almost-simple F-group
of type 2E 29

6,1, then G contains an isotropic, simply connected, absolutely almost-
simple F-subgroup H of type 2A5 such that Fv-rank H ≥ 2 for every Archimedean
place v of F.

Before proving this theorem, we recall the following result (and, for complete-
ness, we provide a self-contained proof based on Galois cohomology). It does not
require our standing assumption that F is an algebraic number field.
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7.2. Lemma [GPe, Rem. 2.10]. If G is an absolutely almost-simple F-group of
type 2E 29

6,1, then the semisimple anisotropic kernel of G is isomorphic to Spin8(f )

for some quadratic form f on F 8 with nontrivial discriminant.

Proof. There is no harm in assuming G is adjoint. Let:

• K be the (unique) quadratic extension of F over which G becomes inner;
• Gq be a quasisplit, absolutely almost-simple, adjoint F-group of type 2E6 that

splits over K (so the Tits index of Gq is the diagram on the right in (7.3) to
follow);

• P be a minimal parabolic F-subgroup of G;
• Pq be a parabolic F-subgroup of Gq that is of the same type as P (so the semi-

simple part of Pq is the standard subgroup generated by the roots ±α2,±α3,
±α4,±α5);

• RqMq be the the Levi subgroup of Pq, where Rq is its central torus and Mq is
its semisimple part; and

• ξ ∈Z1(F, Gq) such that G is (isomorphic to) the twisted group ξGq.

Step 1: The class of ξ is in the image of the map H 1(F,Mq)→ H1(F, Gq). It
is well known that the image of the map H1(F, Pq) → H1(F, Gq) consists of
the classes of the 1-cocycles η with the property that the twisted group ηGq has
a parabolic F-subgroup of the same type as Pq. Thus, we may assume that ξ ∈
Z1(F, Pq). Then, since the unipotent radical of Pq has trivial cohomology in di-
mension 1, we may assume

ξ ∈Z1(F, RqMq).

Since the center of the universal cover of Mq has order 4 and since the center of
the universal cover of Gq has order 3, which is relatively prime, we know that Mq

is simply connected. It is easy to check that Rq is of the form RK/F (Gm) and that
Rq ∩Mq is the entire center of Mq, which is isomorphic to (Z/2Z) × (Z/2Z),
so Rq ∩Mq is precisely the 2-torsion part 2Rq of Rq. Hence

RqMq

Mq
∼= Rq

Rq ∩Mq
= Rq

2Rq
∼= Rq ∼= RK/F (Gm).

Therefore

H1

(
F,

RqMq

Mq

)
∼= H1(F, RK/F (Gm)) ∼= H1(K, Gm) = 0.

Since ξ ∈ Z1(F, RqMq), the desired conclusion now follows from the exact
sequence

H1(F, Mq)→ H1(F, RqMq)→ H1

(
F,

RqMq

Mq

)
.

Step 2: Completion of the proof. Recall that Mq is the standard subgroup of Gq

generated by the roots ±α2, . . . ,±α5. Thus, Mq is a simply connected, quasisplit
group of type 2D4 and so is F-isomorphic to Spin8(f0), where f0 is a quasisplit
quadratic form on F 8. From Step 1, we may assume that

ξ ∈Z1(F, Mq) = Z1(F, Spin8(f0)).
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Then the semisimple F-anisotropic kernel M of G is the twisted group
ξMq = ξSpin8(f0) ∼= Spin8(f )

for some quadratic form f on F 8.

Proof of Theorem 7.1. Let:

• S be a 1-dimensional F-split torus in G;
• M be the corresponding semisimple F-anisotropic kernel, so we may identify

M with Spin(f ) for some quadratic form f on F 8 with nontrivial discriminant
(see Lemma 7.2);

• K be the (unique) quadratic extension of F over which G becomes a group of
inner type;

• L be a totally imaginary quadratic extension of F (such that L �= K);
• a ∈F such that L = F

[√
a

]; and
• R be the central torus in the reductive group CG(S), so CG(S) = RM is an

almost-direct product and R is isogenous to RK/F Gm.

Since L �= K, we know that G remains outer over L. It is well known [PlRa,
p. 385] that there are only two possibilities for the Tits index of a group of type
2E6 over a totally imaginary number field, as follows.

(7.3)

Furthermore, since the roots α1 and α6 are circled in the Tits index over F, they
must also be circled in the Tits index over L. Therefore, G is quasisplit over L;
this means that M is quasisplit over L. Hence, after a change of basis to diagonal-
ize the form appropriately, we may write

f = 〈a1,−a1a, a2,−a2a, a3,−a3a, b1, b2〉.
Let f ′ = 〈a1,−a1a, a2,−a2a〉 be the restriction of f to the first four coordi-
nates. By normalizing, we may assume a1 = 1. Then f ′ is the norm form of the
quaternion algebra D = (a,−a2)F . (In other words, f ′ is the 2-fold Pfister form
〈1,−a〉 ⊗ 〈1, a2〉.) Hence,

Spin4(f
′) ∼= SL1(D)× SL1(D). (7.4)

Let M1 and M2 be the two simple factors of Spin4(f
′).

Writing f = f ′ ⊕ f ′′, we see that M1 is normalized by Spin4(f
′) · Spin4(f

′′),
which contains a maximal torus of M. So M1 is a standard subgroup. Since all
roots of M are conjugate under the Weyl group, we may assume M1 = Gα2 is the
standard subgroup generated by the roots ±α2.

Let H be the identity component of CG(M1). Because M1 is defined over F,
we know that H is defined over F. Furthermore, since M1 = Gα2 , it is easy to see
that H is the standard subgroup of G generated by the roots
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±α3,±α1,±(α2 + α3 + 2α4 + α5),±α6,±α5.

Thus, H is semisimple and simply connected (see Remark 3.16) and is of type 2A5.

Also, since H contains the F-split torus S, we know that H is F-isotropic.
All that remains is for us to show, for every Archimedean place v of F, that

Fv-rank H ≥ 2.

Case 1: Assume G is inner over Fv. This assumption impliesK ⊂ Fv. Since H
contains the 2-dimensional torus R , which splits over K (because it is isogenous
to RK/F Gm), we have Fv-rank H ≥ 2.

Case 2: Assume f ′ is isotropic overFv. Since SO4(f
′) is isotropic and since its

two simple factors M1 and M2 are isogenous by (7.4), we see that M2 is isotropic.
Since M2 centralizes M1 and is contained in M, we see that M2 is contained in the
F-anisotropic kernel of H. Thus, the F-anisotropic kernel of H is isotropic over
Fv , so Fv-rank H ≥ 2.

Case 3: The remaining case. Recall that f = f ′ ⊕ f ′′. Since f ′ is anisotropic
over Fv , we must have Fv ∼= R, and we may assume all of the coefficients of f ′ =
〈a1,−a1a, a2,−a2a〉 are positive in Fv.

Since G is isotropic overFv (indeed, it has been assumed to be isotropic overF ),
we see, from the Tits classification [Ti, pp. 58–59] of real forms of E6, that
Fv-rank G ≥ 2. Hence, M is isotropic over Fv , so f is isotropic over Fv. Thus,
some coefficient off ′′must be negative. On the other hand, because G is outer over
Fv , we know that the discriminant of f is not 1, so the coefficients of f ′′ cannot all
be negative. Thus f ′′ has both positive and negative coefficients, so Spin4(f

′′) is
isotropic over Fv. Since Spin4(f

′′) obviously centralizes Spin4(f
′) ⊃ M1 and is

contained in M, we see that Spin4(f
′′) is contained in the F-anisotropic kernel of

H. Thus, theF-anisotropic kernel of H is isotropic overFv , soFv-rank H ≥ 2.

7.5. Theorem. If G is an absolutely almost-simple F-group of type 2E35
6,1, then

G contains an isotropic, simply connected, absolutely almost-simple F-subgroup
H of type 3D4 or 6D4.

Proof. We fix

• a maximal F-split torus S of G,
• a maximal F-torus T that contains S, and
• an ordering of the roots of G (with respect to the maximal torus T).

Let
µ = −(α1+ 2α2 + 2α3 + 3α4 + 2α5 + α6)

be the minimal root of G, so that G has the following extended Tits index.

The standard subgroup Gµ of G generated by the roots ±µ is isomorphic to SL2

over F, so S ⊂ Gµ.
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We may assume G is simply connected (because the center of the universal
cover of G has order 3, which is relatively prime to the order of the center of any
group of type D4). Let

• K be the (unique) quadratic extension of F over which G becomes a group of
inner type, and

• M = [CG(S), CG(S)] be the semisimple F-anisotropic kernel of G, so M is
generated by the roots {±α1,±α3,±α4,±α5,±α6}.

Therefore M is of type 2A5 and becomes inner over K. Hence, as is well known
[PlRa, Prop. 2.18, p. 88], we have

M is F-isomorphic to SUm(D, f , τ),

where D is a central division algebra of index d = 6/m over K, with involution τ
of the second kind, such that F is the fixed field of the restriction of τ to K and f
is a nondegenerate Hermitian form on Dm.

Claim: D is a cubic division algebra overK (andm = 2). (This is known, but
we provide a proof for completeness.) We know that G is a twisted form G = ξGq

of a quasisplit, almost-simple, simply connected F-group Gq of type 2E6 splitting
over K, where ξ is a 1-cocycle with coefficients in the adjoint group Ḡq. In fact,
there is a 1-dimensional F-split torus Sq of Gq such that we may take ξ to have
its values in CḠq(S̄q) (cf. [PlRa, Prop. 6.19, p. 339]). Write CGq(Sq) = SqMq,
where Mq is semisimple. NowH1(F, CḠq(S̄q)/M̄q) = 0 (because the coefficient
group is an F-split torus), so we may take ξ to have its values in M̄q. Therefore
M = ξMq.

Let Z be the center of Gq (note that Z is contained in Mq), and let

∂ : H1(F, M̄q)→ H 2(F, Z)

be the connecting morphism. There is a cubic extension E of F such that the
image of ∂ξ in H 2(E, Z) is trivial [PlRa, Prop. 6.14, p. 334]. This means that the
image of ξ in H1(E, M̄q) lifts to an element of H1(E, Mq), so M is isomorphic
over E to SU6(K · E, f ′, τ ′), where τ ′ is the Galois automorphism of K · E over
E and f ′ is a Hermitian form on (K · E)6. Therefore, D ⊗K (K · E) is a matrix
algebra. So D is either K or a cubic division algebra over K.

To complete the proof of the claim, we need only show D �= K. Assume the
contrary. Then τ is the Galois automorphism of K over F, f is a Hermitian form
on K 6, and M ∼= SU6(K, f , τ). For any Archimedean place v of F, the Tits clas-
sification [Ti, pp. 58–59] implies

Fv-rank G > 1= F-rank G,

so Fv-rank M ≥ 1; thus, f is Fv-isotropic. Then, since any Hermitian form in≥ 3
variables is isotropic at every non-Archimedean place, the Hasse principle tells us
that f is F-isotropic. This contradicts the fact that M is the F-anisotropic kernel,
which completes the proof of the claim.

Choose a basis {e1, e2} of D2 that is orthogonal with respect to f. By making a
change of coordinates, we may assume e1 = (1, 0) and e2 = (0,1). Then, letting
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d1 = f(e1, e1) and d2 = f(e2, e2),

we have
f(x1, x2) = τ(x1)d1x1+ τ(x2)d2x2.

Let d = d−1
1 d2 ∈ D. Then Lemma 3.12 implies that we may assume d1 = 1 and

d2 = d (by replacing τ with int(d−1
1 ) � τ). That is,

f = 〈1, d〉.
For convenience, let us identify M with SU2(D, f , τ).

It is not difficult to see that there exists x ∈ D such that τ(x)x /∈ F. Thus,
for a generic choice of the orthogonal basis {e1, e2} (or merely multiplying e2 by
a generic element of D), we have d /∈ F. Since τ(d ) = d, this implies d /∈ K.
Therefore:

• E = K[d ] is a maximal subfield in D (so it is cubic over K);
• E is stable under τ ; and
• L = F [d ] is a subfield of D that is cubic over F.

Consider the subgroup M ′ = SU2(E, f , τ |E) of M. Writing K = F
[√
a

]
for

some a ∈F and letting T be the quaternion algebra T = (a,−d)F over F, we have

M ′ ∼= RL/F (SL1(T )).

Let K̄ be an algebraic closure of K. Then D ⊗K K̄ ∼= M3(K̄), and the iso-
morphism may be taken so that E ⊗K K̄ maps to the diagonal matrices. Then the
algebra M2(E), viewed as a subalgebra of M2(D) ⊗K K̄ ∼= M6(K̄), consists of
matrices of the form 



∗ 0 0 ∗ 0 0

0 ∗ 0 0 ∗ 0

0 0 ∗ 0 0 ∗
∗ 0 0 ∗ 0 0

0 ∗ 0 0 ∗ 0

0 0 ∗ 0 0 ∗



.

Hence, M ′ is the standard subgroup generated by the roots±β1,±β3,±β4, where

β1 = α1+ α3 + α4, β3 = α3 + α4 + α5, β4 = α4 + α5 + α6.

Let H be the subgroup of G generated by M ′ and Gα2 . One easily checks that H
has type D4, contains Gµ, and is simply connected (see Remark 3.16).

We now verify that H is defined over F. Let σ be a Galois automorphism of F̄
over F. Since M ′ is defined over F, we know that the set {±β1,±β3,±β4} of roots
of M ′ is invariant under σ. Then, since

−µ = 2α2 + β1+ β3 + β4

and µ is fixed by σ (because Gµ ' SL2), the argument leading up to (6.3) shows
that σ(α2) is a root of H. Thus, the set of roots of H is invariant under σ.

Since S ⊂ Gµ ⊂ H, we know H is F-isotropic. Also, since H contains M ′, it is
a trialitarian group.
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7.6. Corollary. If G is of type E6, then G is not minimal.

Proof. The conclusion is immediate from Theorem 7.1 if G is of type 2E 29
6,1.

When G is of type 2E35
6,1, it suffices to observe that the subgroup H provided by

Theorem 7.5 satisfies Fv-rank H ≥ 2 for every Archimedean place v of F. This
follows from Theorem 6.1, but it is also easy to give a short direct proof. Note
that, because H is a trialitarian group of rank 1, its Tits index is as shown in Fig-
ure 6A; thus, the root α2 is circled. So α2 is also circled in the Tits index of H
over Fv. From the Tits classification [Ti, pp. 56–58] of groups of typeD4 over R,
we see that this implies at least two roots are circled, so Fv-rank H ≥ 2.
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