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On the Inertia Group of Elliptic Curves
in the Cremona Group of the Plane

Jérémy Blanc

1. Introduction

We work on some algebraically closed field K. Let P
2 = P

2(K) be the projective
plane over K , let Bir(P2) be its group of birational transformations, and let C ⊂
P

2 be an irreducible curve. The decomposition group of C in Bir(P2), introduced
in [G], is the group

Dec(C) = Bir(P2)C = {g ∈ Bir(P2) | g(C) ⊂ C, g|C : C ��� C is birational}.
The inertia group of C in Bir(P2), also introduced in [G], is the group

Ine(C) = Bir(P2)0C = {g ∈ Bir(P2)C | g(p) = p for a general point p ∈C}.
(In our context, since the variety P

2 and the inherent group Bir(P2)will not change,
we will prefer the notation Dec(C) and Ine(C) to that of Gizatullin.)

If ϕ is a birational transformation of P
2 that does not collapse C (this latter

condition is always true if C is nonrational), then ϕ conjugates the group Dec(C)

(resp. Ine(C)) to the group Dec(ϕ(C)) (resp. Ine(ϕ(C))). The conjugacy classes
of the two groups are thus birational invariants.

On one hand, these groups are useful for describing the birational equivalence
of curves of the plane. On the other hand, given two groups, the curves fixed by
the elements are useful for deciding whether the groups are birationally conjugate
and, moreover, are often the unique invariant needed (see [BaB; BBl; Bl; F]).

In the case where K = C, the inertia groups of curves of geometric genus ≥ 2
have been classically studied (see [C]); a modern precise classification may be
found in [BlPV]. For the case of the decomposition groups, we refer to [P1; P2]
and the references therein.

In this article we will study the case of the inertia group of curves of geometric
genus 1 and, in particular, the case of plane smooth cubic curves, which consti-
tute the only case in which nontrivial elements are known. We state now the three
main results that we prove.

First is a Noether–Castelnuovo-like theorem for the generators of the inertia
group. (The same result holds for the decomposition group; see [P2, Thm. 1.4].)

Theorem 1. The inertia group of a smooth plane cubic curve is generated by its
elements of degree 3, which are—except the identity—its elements of lower degree.
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Next we describe the elements of finite order of the inertia group of any curve
of genus 1 (we announced a part of this result, without proof, in [Bl, Thms. 3.1
and 4.3]).

Theorem 2. Assume that char(K) �= 2, 3, 5. Let C ⊂ P
2 be a curve of geomet-

ric genus 1, and let g ∈ Ine(C) be an element of finite order n > 1. Then there
exists a birational map ϕ : P

2 ��� S that conjugates g to an automorphism α of a
Del Pezzo surface S, where (α, S) are given in the following table.

n Description of α Equation of the surface S In the variety

2 x0 	→ −x0
∑4

i=0 x 2
i = ∑4

i=0 λi x
2
i = 0 P

4

3 x0 	→ ζ3x0 x3
0 + L3(x1, x2, x3) P

3

4 x0 	→ ζ4 x0 x 2
3 = x4

0 + L4(x1, x2 ) P(1,1, 1, 2)

5 x0 	→ ζ5x0 x 2
3 = x3

2 + λ1x
4
1 x2 + x1(λ2 x

5
1 + x 5

0 ) P(1,1, 2, 3)

6 x0 	→ ζ6x0 x 2
3 = x3

2 + λ1x
4
1 x2 + λ2 x

6
1 + x6

0 P(1,1, 2, 3)

Here ζn ∈ K is a primitive nth root of unity, Li is a form of degree i, and λi are
parameters such that S is smooth.

Furthermore, any birational morphism S → P
2 sends the fixed curve on a

smooth plane cubic curve.

Corollary 3. Assume that char(K) �= 2, 3, 5, let C ⊂ P
2 be an irreducible

curve of geometric genus 1, and let g ∈ Ine(C) be a nontrivial element of finite
order. Then (a) there exists a birational transformation of P

2 that sends C on a
smooth cubic curve and (b) the order of g is 2, 3, 4, 5, or 6. Furthermore, each
case occurs for any elliptic curve C.

Corollary 4. Let m ≥ 2 be an integer, and let C ⊂ P
2 be an irreducible curve

of degree 3m that has nine points of multiplicity m and that is smooth at its other
points. Then the group Ine(C) contains no nontrivial element of finite order.

To state the third theorem, we need the following classical construction (which
has been generalized in [G] in any dimension).

Definition 5. Assume that char(K) �= 2. Let C ⊂ P
2 be a smooth cubic curve.

For any point p ∈C, we denote by σp the cubic involution centered at p defined as
follows: If D is a general line of P

2 passing through p then we have σp(D) = D

and the restriction of σp to D is the involution that fixes (D ∩ C)\{p}.
The last result is the structure of the group generated by cubic involutions of the
inertia group.

Theorem 6. Assume that char(K) �= 2 and let C ⊂ P
2 be a smooth cubic curve.

The subgroup of Ine(C) generated by all the cubic involutions centered at the
points of C is the free product

�
p∈C

〈σp〉.
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Corollary 7. Assume that char(K) �= 2. For any integer n > 0 and for any
elliptic curve �, the free product �n

i=1 Z/2Z acts biregularly on a smooth rational
surface, where it fixes a curve isomorphic to �.

Acknowledgments. The author would like to express his sincere gratitude to
Arnaud Beauville, Ivan Pan, and especially the referee for useful remarks and
corrections.

2. Reminders

We say that a point q is in the first neighborhood of p ∈ P
2 if it belongs to the

exceptional curve obtained by blowing upp; then we say that q is in the ith neigh-
borhood of p if it belongs to the exceptional curve obtained by blowing up a point
in the (i − 1)th neighborhood of p. A point is said to be infinitely near to p (and
to P

2) if it is in some neighborhood of p ∈ P
2, and the set of all such points is

called the infinitesimal neighborhood of p. The same notions apply when p is it-
self a point infinitely near to P

2. If a is infinitely near to b then we say that a is
higher than b and that b is smaller than a; this notion induces a partial order on
the set of points infinitely near to P

2.

We say that a point q belongs as an infinitely near point (or, more simply, be-
longs) to a curve C ⊂ P

2 if it lies in the strict transform of the curve obtained after
a sequence of blow-ups. In this case, we say that C passes through q.

Let ϕ ∈ Bir(P2) be defined by (x : y : z) ��� (P1(x, y, z) : P2(x, y, z) :
P3(x, y, z)) for some homogeneous polynomials P1, P2, P3 of the same degree
but with no common divisor. The degree of ϕ is the degree d of the Pi. If d =
2 (resp. d = 3), we say that ϕ is quadratic (resp. cubic). The linear system of
curves of degree d of the form

∑3
i=1 aiPi(x, y, z) = 0 for (a1 : a2 : a3)∈ P

2 is the
homoloidal linear system (or simply the linear system) associated to ϕ; we will
denote it by �ϕ. The base points of ϕ are the base points of its linear system (i.e.,
the points pi through which all the curves of �ϕ pass). These points may lie on
P

2 or be infinitely near to P
2, and if such a point is not a proper point of P

2 then
it is in the first neighborhood of another base point. To any base point pi is asso-
ciated its multiplicity ki, which is the multiplicity of the general curves of �ϕ at
pi. If pi is higher than pj , then ki ≤ kj . Note that the base points lying on P

2 are
exactly the points of P

2 that have no image by ϕ. We say that a birational trans-
formation is simple if all its base points are proper points of P

2.

Computing the free intersection of �ϕ and the genus of its curves, we obtain
the following classical relations (see e.g. [A]):∑

ki = 3d − 3,
∑

k2
i = d 2 − 1. (∗)

These numerical conditions imply the following lemma on birational transforma-
tions of small degree.

Lemma 8. Let ϕ ∈ Bir(P2) be of degree d and have r base points p1, . . . , pr with
multiplicities k1, . . . , kr . Then r ≤ 5 if and only if d ≤ 3.

If d = 1, then r = 0 (and ϕ ∈ PGL(3, K)). If d = 2, then {ki}ri=1 = {1,1,1}. If
d = 3, then {ki}ri=1 = {2,1,1,1,1}.
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Proof. Assume that r ≤ 5. Computing Cauchy–Schwartz inequality with (1, . . . ,1)
and (k1, . . . , kr) shows that

( ∑
ki

)2 ≤ r ·∑ k2
i . Replacing in equations (∗) shows

that (3(d − 1))2 ≤ r · (d 2 − 1), whence 9(d − 1) ≤ r(d + 1) ≤ 5(d + 1) and so
d ≤ 3.

Assume that d ≤ 3. Replacing in equations (∗) yields the three possibilities
given in the lemma and, in particular, that r ≤ 5.

Corollary 9. Let ϕ ∈ Bir(P2) be of degree d ≤ 3. Then ϕ is simple if and only
if ϕ−1 is simple.

Proof. This may be observed by the description of the decomposition of ϕ into
the blow-up of r ≤ 5 points and the blow-down of r curves.

We now recall two results of [P2] on the decomposition group of a smooth plane
cubic curve. Note that these results were stated for K = C, although the proofs
do not use this restriction.

Proposition 10 [P2, Thms. 1.3 and 1.4]. Let C ⊂ P
2 be a smooth cubic curve,

and let g ∈ Dec(C). Then:

• the base points of g belong to C as proper or infinitely near points; and
• the transformation g is generated by simple quadratic elements of Dec(C).

3. Examples

In this section, we give some fundamental examples of elements of Ine(C) for
some smooth cubic curve C ⊂ P

2.

Example 11. Let p ∈ P
2 be some point, let C ⊂ P

2 be a smooth cubic curve
passing through p, and let Cd ⊂ P

2 be an irreducible curve of degree d passing
through p with multiplicity d − 1.

We define a birational transformation ϕ ∈ Ine(C) of P
2 as follows: it is the

unique birational map that leaves invariant a general line L passing throughp, that
fixes the two points of (C − {p}) ∩ L, and that sends the point of (Cd − {p}) ∩ L

on p.

A particular case of this example is the cubic involution σp of Definition 5. We
next describe some properties of this transformation.

Proposition12. Assume that char(K) �= 2, let C ⊂ P
2 be a smooth cubic curve,

let p ∈ C, and let σp ∈ Ine(C) be the element defined in Definition 5. Then the
following statements hold.

1. The degree of σp is 3, and σ 2
p = 1 (i.e., σp is a cubic involution).

2. The base points of σp are the point p (which has multiplicity 2) and the four
points p1, p2, p3, p4 such that the line passing through p and pi is tangent at
pi to C.

3. If p is not an inflexion point of C, then all the points p1, . . . , p4 belong to P
2.

Otherwise, only three of them belong to P
2 and the fourth is the point in the

blow-up of p that corresponds to the tangent of C at p.
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Proof. Let η : F1 → P
2 be the blow-up of p, and let π : F1 → P

1 be the ruling on
the surface. The restriction of π to the strict transform C̃ of C by η gives a double
covering that (by the Hurwitz formula) is ramified over four points. On a general
fibre, the involution η−1σpη is a biregular automorphism; the base points of σp are
thus on the four special lines corresponding to the ramification points.

Let d be the degree of σp. Because σp leaves invariant the pencil of lines of P
2

passing through p, the intersection of �σp with this pencil is concentrated at p;
that is, the point p is a base point of multiplicity d − 1. It follows from (∗) that
there are 2d − 2 other base points p1, . . . , p2d−2, each of multiplicity 1. Further-
more, no two of them lie on the same line passing through p (for otherwise the
intersection of �σp with the line would be more than d). Hence 2d − 2 ≤ 4; that
is, d ≤ 3.

Lemma13 implies that d = 3. There are thus exactly four base pointsp1, . . . , p4,
corresponding to the intersection of C̃ with the special fibre of the ramification
points. Assertions 2 and 3 follow directly from this observation.

Lemma 13. If ϕ : P
2 ��� P

2 is a nonidentical birational map of degree d that
fixes a ( possibly reducible) curve Cn of degree n (i.e., if ϕ ∈ Ine(Cn)), then d ≥ n.

Proof. Let us write

ϕ : (x1 : x2 : x3) ��� (P1(x1, x2, x3) : P2(x1, x2, x3) : P3(x1, x2, x3))

for some homogeneous polynomials P1, P2, P3 of degree d (we forgo the standard
(x, y, z)-coordinates here in order to simplify notation). Let � be the linear sys-
tem generated by the three curves of equation xiPj(x1, x2, x3) = xjPi(x1, x2, x3),
i �= j.

Take any point p ∈ P
2, and take the two lines passing through p and graphing

the respective equations
∑3

i=1 ai xi = 0 and
∑3

i=1 bi xi = 0. The relation
( 3∑

i=1

ai xi

)( 3∑
i=1

biPi

)
−

( 3∑
i=1

bi xi

)( 3∑
i=1

aiPi

)
=

3∑
i,j=1,i �=j

aibj(xiPj − xjPi)

shows that one curve of the system � pass through p.

Because the curve Cn is a fixed component of the system �, it must have de-
gree strictly lower than the degree of the curves of �, which is d + 1.

4. The Cubic Elements Generate the Inertia Group

In this section, we prove Theorem 1 via the following lemma.

Lemma 14. Let C ⊂ P
2 be a smooth cubic curve. Let p1, p2, p3, p4 be four dis-

tinct points such that :

• each of the four points belongs—as a proper or infinitely near point—to C;
• no three of the four points belong—as proper or infinitely near points—to a

common line; and
• the points p1, p2 are proper points of the plane, and p3 (resp. p4) is either a

proper point of the plane or a point in the first neighborhood of p1 (resp. p2).
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Let p ′ be the smallest point in the infinitesimal neighborhood of p1 that belongs to
C and not to {p1, . . . , p4}. Then the following statements hold.

(i) There exists a unique ( possibly reducible) conic C2 ⊂ P
2 passing through

p1, . . . , p4, p ′.
(ii) There exists a birational transformation ϕ of degree 3 that belongs to the in-

ertia group of C and whose linear system is a system of codimension 1 of the
system of cubics passing through p1, . . . , p4, being singular at p1.

(iii) The six points that belong—as proper or infinitely near points—to C and C2

are base points of ϕ except for the higher such point in the neighborhood
of p1.

Remark 15. The linear system of a cubic birational map is always singular at
one point and always passes through four other points (Lemma 8).

Proof of Lemma 14. Up to a change of coordinates, we may assume that p1 =
(1 : 0 : 0) and that the tangent of C at p1 is the line y = 0.

We first prove that there exists a unique (and possibly reducible) conic C2 pass-
ing throughp1, . . . , p4, p ′. Suppose that three of the five points belong to a common
line. By our hypotheses on the points p1, . . . , p4, the three points are {p1, p ′, pi}
for some i ∈ {2, 3, 4} and so the line is that of equation y = 0. Since no one of the
two remaining points belongs to the line y = 0, the conic C2 is the union of the
line y = 0 with the line passing through the two remaining points and is unique.
If no three of the five points belong to a common line, then there exists a unique
irreducible conic C2 passing through the points.

Observe that C2 is tangent to C at p1 and that C2 is either a smooth conic or the
union of two distinct lines, one of which does not pass through p1; this implies
that the equations of C and C2 are (respectively)

F(x, y, z) = x 2y + xF2(y, z) + F3(y, z),

G(x, y, z) = xy + G2(y, z),

where the Fi, Gi are forms of degree i. We claim that the rational map ϕ : P
2 ���

P
2 defined by

ϕ : (x : y : z) ��� (x · G(x, y, z) − F(x, y, z) : y · G(x, y, z) : z · G(x, y, z))

is the cubic birational transformation of Lemma 14(ii).
1. Let us first show that ϕ is birational. In the affine plane z = 1, ϕ becomes

(x, y) ���
(

xG(x, y,1) − F(x, y,1)

G(x, y,1)
, y

)

=
(

x(G2(y,1) − F2(y,1)) − F3(y,1)

xy + G2(y,1)
, y

)
.

It is thus birational if and only if the matrix
(

G2(y,1)−F2(y,1) −F3(y,1)
y G2(y,1)

)
is invertible

(i.e., belongs to GL(2, K(y))). Note that
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G · (G2 − F2) − y · (xG − F )

= (yz + G2) · (G2 − F2) − y · (x(G2 − F2) − F3)

= (G2 − F2) · G2 + yF3

is the homogenization of the determinant of the matrix. Since F is irreducible,
it follows that the polynomials xG − F and G have no common divisor and so
G · (G2 − F2) �= y · (xG − F ), whence ϕ is birational.

2. We find directly that ϕ belongs to the inertia group of C by replacing F = 0
in its equations. (A point (x : y : z) such that G(x, y, z) �= 0 and F(x, y, z) = 0
is sent by ϕ on (xG : yG : zG) = (x : y : z).)

3. The degree of the linear system �ϕ of ϕ is 3 because xG − F, yG, and zG

have no common divisor (since this is the case for xG − F and G).

4. We describe the base points of �ϕ using the explicit form of ϕ. Observe that
the point p1 is a base point of multiplicity 2 and that the base points lying on P

2

are exactly the points of C ∩C2. Recall that all the base points belong—as proper
or infinitely near points—to C (Proposition 10). Above a point q ∈ C ∩ C2 ⊂ P

2

(q �= p1), the linear system �ϕ passes through a point l if and only l belongs to
both C and C2. The curves C and C2 intersect at six distinct points (belonging to
P

2 or infinitely near) and the system �ϕ has five base points; therefore, the point
of intersection of the strict transforms of C and C2 that is the higher above p1

is not a base point of �ϕ. However, all other points of the intersection are base
points. This shows in particular thatp2,p3, andp4 are base points, as stated in the
lemma.

We are now able to prove Theorem 1—in other words, that the inertia group of a
smooth plane cubic curve is generated by its elements of degree 3.

Proof of Theorem 1. Take some birational transformation η that fixes the smooth
plane cubic curve C (i.e., η ∈ Ine(C)). The Noether–Castelnuvo theorem shows
that η = σr �· · ·�σ2 �σ1 for some simple quadratic transformations σi, i = 1, . . . , r.
Furthermore, since η ∈ Dec(C), these transformations may be chosen to leave C

invariant (Proposition 10); in particular, the base points of σi and σ−1
i are proper

points of C for i = 1, . . . , r. We use induction on r to show that η is generated by
cubic birational transformations of the inertia group of C. If r ≤ 1, then n ≤ 2
and Lemma 13 shows that ϕ is the identity. Hence we assume that r ≥ 2 and that
the theorem is true for r − 1.

We will study precisely σ1, σ2 and the composition ψ = σ2 � σ1. Denote by
A = {a1, a2, a3} ⊂ P

2 the base points of σ1 and by B = {b1, b2, b3} ⊂ P
2 those

of σ−1
1 ; thus, the pencil of lines passing through Ai is sent by σ1 on the pencil of

lines passing through Bi. In a similar way, we denote by P = {p1, p2, p3} and
Q = {q1, q2, q3} the base points of σ2 and σ−1

2 . The degree of the birational trans-
formation ψ is 1, 2, 3, or 4 if the number of points of B ∩ P is (respectively) 3, 2,
1, or 0. We enumerate the possibilities as follows.

If ψ has degree 1, then η may be decomposed by fewer than r simple quadratic
transformations; we apply the induction hypothesis to conclude.
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If ψ has degree 2 then the set B ∩ P contains exactly two points; we may
assume that b1 = p1, b2 = p2, and b3 �= p3. The base points of ψ are then a1,
a2, and another point u, corresponding to p3; it is a proper point of P

2 if and
only if p3 does not belong to one of the lines collapsed by σ−1

1 . If u∈ P
2, then

η may be decomposed by fewer than r simple quadratic transformations and we
are done. Otherwise, we may assume that u is infinitely near to a1 and then write
u = a ′

1. Furthermore, u does not belong—as an infinitely near point—to one of
the lines collapsed by σ1, since p3 is a proper point of the plane. In particular, the
points a1, a2, and u do not belong to a common line. Denote by a ′′

1 the point in
the first neighborhood of a ′

1 that belongs to C. A general conic passing through
a1, a2, a ′

1, a ′′
1 (that is reducible if and only if a1 is an inflexion point of C) inter-

sects C at two other points a4, a5 that are proper points of P
2. We choose a conic

such that neither a4 nor a5 belongs to a curve collapsed by σ1 and such that nei-
ther σ1(a4) nor σ1(a5) belongs to a curve collapsed by σ2. Let ϕ ∈ Ine(C) be an
element of degree 3 whose linear system �ϕ consists of cubics that are singu-
lar at a1 and that pass through a2, a ′

1, a4, and a5 (the existence of ϕ is given by
Lemma 14). The image of �ϕ by σ1 consists of cubics that are singular at b1 =
p1 and pass through b2 = p2, p3, σ1(a4), and σ1(a5). Consequently, the image of
�ϕ by ψ consists of conics passing through q1, ψ(a4), and ψ(a5); the birational
map ψ � ϕ−1 is thus a simple quadratic transformation. After applying the induc-
tion hypothesis to η � ϕ−1 = (σr � · · · � σ3) � (ψ � ϕ−1), which is decomposed by
fewer than r simple quadratic transformations, we are done.

If the degree of ψ is 3 then P ∩B contains exactly one point, which we choose
to be p1 = b1. Then the linear system �ψ consists of cubics that are singular at
a1 and that pass through a2, a3, a4, a5, where a4 and a5 correspond (respectively)
to p2 and p3 and are proper points of P

2 if and only if the corresponding point
does not lie on a line collapsed by σ−1

1 . Since p2 is a proper point of the plane, it
follows that the point a4 does not belong to a line collapsed by σ1. In particular,
no three of the points a1, . . . , a4 belong—as proper or infinitely near points—to a
common line. This implies the existence (Lemma 14) of an element ϕ ∈ Ine(C)

of degree 3 whose linear system �ϕ consists of cubics that are singular at a1 and
that pass through a2, a3, a4. The image of �ϕ by σ1 is a system of conics passing
through b1 = p1 and p2. If p3 is not a base point of this system, then the image
of �ϕ by ψ is a system of conics passing through q1, q2; otherwise, it is the sys-
tem of the lines of the plane. Then ψ � ϕ−1 is a birational map of degree at most 2
and is the composition of at most two simple quadratic transformations (because
both q1 and q2 are proper points of P

2). Applying one of the preceding cases to
η � ϕ−1 = (σr � · · · � σ3) � (ψ � ϕ−1), we are done.

If the degree of ψ is 4 then P ∩ B = ∅, whence the linear system �ψ consists
of quartics singular at a1, a2, a3 and that pass through three other points a4, a5, a6

that correspond respectively to p1, p2, p3 and are proper points of P
2 if and only

if the corresponding point does not lie on a line collapsed by σ−1
1 . Once again, the

point p4 does not belong to a line collapsed by σ1 because p1 is a proper point of
the plane, and this yields the existence (using Lemma 14 once again) of an element
ϕ ∈ Ine(C) of degree 3 whose linear system �ϕ is composed by cubics that are
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singular at a1 and that pass through a2, a3, a4. The image of �ϕ by σ1 is a system
of conics passing through b1 and p1. If p2 (resp. p3) is a base point of this sys-
tem, then the image of �ϕ by ψ is a system of conics passing through q1 and q2

(resp. q3); otherwise, it is a system of cubics that are singular at q1 and that pass
through q2 and q3. In both cases, since the qi are proper points of P

2, the map
ψ � ϕ−1 is the composition of at most two simple quadratic transformations. Be-
cause the degree of ψ � ϕ−1 is 2 or 3, we may apply one of the cases just treated
to η � ϕ−1 = (σr � · · · � σ3) � (ψ � ϕ−1).

5. The Elements of Finite Order

Proof of Theorem 2. We first use the fact that g has finite order n to conjugate
g via a birational map to an automorphism of a smooth rational surface S (see
e.g. [FE, Thm. 1.4]). The curve fixed by g thus becomes a smooth elliptic curve
C ⊂ S, since the set of points of a smooth surface that are fixed by an automor-
phism is smooth. We may assume that the pair (g, S) is minimal (i.e., that every
g-equivariant birational morphism S → S ′ is an isomorphism). Then, one of the
following situations occurs (see [M]):

(i) rk Pic(S)g = 1 and S is a Del Pezzo surface; or
(ii) rk Pic(S)g = 2 and there exists a conic bundle structure π : S → P

1 that is
invariant by the action of g (i.e., g sends a fibre to another fibre).

In case (i), the surface S is the blow-up π : S → P
2 of 1 ≤ r ≤ 8 points of

the plane (it may not be P
1 × P

1 or P
2, because C has positive genus). Since g is

birationally conjugate by π to a birational transformation having at most r base
points, Lemmas 8 and 13 imply that r ≥ 5. Since rk Pic(S)g = 1, the divisor of
C is equivalent to a multiple of KS. Since C is a smooth elliptic curve, we find
that C = −KS and, in particular, that any birational morphism S → P

2 sends C

to a smooth cubic. Denote by d = 9 − r ≤ 4 the degree of the Del Pezzo surface
S. The anticanonical morphism induced by |−KS | is a g-equivariant morphism
ϕ : S → P

d, and the image of C is contained in a hyperplane of P
d that is fixed

by g.

If the order of g (denoted by n) were divisible by char(K), then the action of g

on P
d would have the form

(x0 : · · · : xd) 	→ (x0 : x1 + x0 : λ2x2 + µ2x1 : · · · : λd xd + µd xd−1)

for some λi, µi ∈ K. Given that char(K) �= 2, 3, 5, that our varieties are smooth,
and that the degree ≤ 6, this case is not possible. Hence the action of g on P

d will
be of the form x0 	→ ζnx0, where ζn ∈ K is a primitive nth root of unity.

We use the classical description of ϕ and S that depends on the degree d of S

(see [BaB; B; F; K]).
If d = 4, then ϕ is an isomorphism from S to a surface X2,2 ⊂ P

4 that is the
intersection of two quadrics. The equations of the quadrics may be chosen to be∑

x 2
i = ∑

λi x
2
i , and g is an involution of the form x0 	→ −x0 (these automor-

phisms have been studied in [B]). Note that every birational involution of P
2 that
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fixes a curve of geometric genus 1 is birationally conjugate to this case, since two
such involutions are conjugate if and only if they fix the same curve (see [BaB]).
In the sequel, we will therefore not study the case n = 2.

If d = 3, then ϕ is an isomorphism from S to a cubic surface of P
3. Thus, n ≤

3 and g is of the form x0 	→ ζnx0.

If d = 2, then ϕ is a double covering of P
2 ramified over a smooth quartic and

S has equation x 2
3 = L4(x0, x1, x2) in the weighted space P(1,1,1, 2), where ϕ

corresponds to the projection on the first three factors. Thus, n ≤ 4 and g acts on
P(1,1,1, 2) as x0 	→ ζnx0. If n = 3, then we may assume (since S is smooth) that
L4 = x3

0(x1+λ1x2)+x4
1 +x4

2 . But then the trace on S of the equation x1+λ1x2 =
0 is a curve, equivalent to −KS , that is decomposed into two curves (both invariant
by g), whence rk Pic(S)g > 1.

If d = 1, then ϕ is an elliptic fibration with one base point. The surface S has
equation x 2

3 = x3
2 + x2 · L4(x0, x1) + L6(x0, x1) in P(1,1, 2, 3) for some forms

Li of degree i, and ϕ is the projection on the first two factors. We see that n ≤ 6
and that the action of g on P(1,1, 2, 3) is of the form x0 	→ ζnx0. The cases n =
5, 6 are given in the proposition; it remains to take care of the cases n = 3, 4. If
n = 3, then the equation of S becomes

x 2
3 = x3

2 + x2x1 · (λ1x
3
0 + λ2x

3
1 ) + λ3x

6
0 + λ4 x

3
0 x

3
1 + λ5x

6
1

for some λi ∈ K. Replacing x2 = µx 2
1 into this equation yields

x 2
3 = (λ3)x

6
0 + (µλ1 + λ4)x

3
0 x

3
1 + (µ3 + µλ2 + λ5)x

6
1.

For the correct choice of µ ∈ K , the right side of the equality becomes a square
and thus the curve on S of equation x2 = µx 2

1 (which is equivalent to −2KS) de-
composes into two g-equivariant curves, whence rk Pic(S)g > 1. Assume now
that n = 4, which implies that the equation of S is

x 2
3 = x3

2 + x2 · (λ1x
4
0 + λ2x

4
1 ) + x 2

1 · (λ3x
4
0 + λ4 x

4
1 )

for some λi ∈ K. Once again, for the correct choice of µ ∈ K , the curve on
S of equation x2 = µx 2

1 decomposes into two g-equivariant curves; therefore,
rk Pic(S)g > 1.

It remains to study case (ii). Because g fixes a nonrational curve, its action on
the base P

1 is trivial. The automorphism g2 leaves invariant any component of
every singular fibre (which is the union of two exceptional curves). After blowing
down one exceptional curve in any fibre, this conjugates g2 to an automorphism
of some Hirzebruch surface. Since g2 fixes a nonrational curve it is the identity,
whence n = 2. As indicated previously, the element g is birationally conjugate to
an automorphism of a Del Pezzo surface of degree 4.

Remark 16. Let C ⊂ P
2 be a smooth cubic curve. Theorem 2 implies that, for

any p ∈ C, the involution σp is conjugate to an automorphism of a Del Pezzo sur-
face of degree 4. If the five base points of σp are proper points of P

2, then the
conjugation may be done by blowing up the five points.

Furthermore, by [BaB], for a given curve C all the elements σp are conjugate
in the Cremona group.
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6. The Group Generated by Cubic Involutions

Let us fix some notation for this section.
We shall assume that char(K) �= 2, and we denote by C ⊂ P

2 a smooth cubic
curve and by .0 ⊂ C a finite subset. Our aim is to study the group generated by
{σp}p∈.0 and then prove that it is a free product of the groups of order 2 generated
by the σp.

We denote by . the union of the base points of the σp for p ∈ .0 (⊂ .).

Because this set is finite, we may denote by π : S → P
2 the blow-up of each point

of .. For any pointp ∈.0, we denote by σ ′
p the birational transformation π−1σpπ

of S (which is biregular, since π blows up the base points of σp plus a finite set of
points fixed by σp). Since σ ′

p is an automorphism of S, it acts on Pic(S); we may
thus write σ ′

p(D) for any divisor D ∈ Pic(S).

Given two points a, b ∈ ., we say that b � a if a �= b and a is a base point of
σb. We remark that if b � a1, b � a2, and a1 �= a2, then a1 �� b, a2 �� b, a1 �� a2,
and a2 �� a1. (This follows from the geometric description of Proposition 12: if b

is not an inflexion point, then the line passing through ai and b is tangent to C at
ai and not at b, and the line passing through a1 and a2 is not tangent to C at either
a1 or a2; the case where b is an inflexion point is similar.) We associate to any
point p ∈ . its exceptional divisor Ep = π−1(p) ∈ Pic(S) and will denote by L

the pull-back by π of a general line of P
2. The set {{Ep}p∈., L} is a basis of the

free Z-module Pic(S). Any effective divisor D ∈ Pic(S) that is not collapsed by π

is equal to mL − ∑
p∈. mpEp for some nonnegative integers m, mp with m > 0.

Hence we define

0b(D) = 2m − 2mb −
∑
b�c

mc and

�b,a(D) = m − mb + ma −
∑
b�c
c �=a

mc

for any points a, b ∈. with b � a.

Lemma 17. Let p ∈.0. Then, for any a ∈.,

σ ′
p(L) = 3L − 2Ep −

∑
p�b

Eb;

σ ′
p(L − Ep) = L − Ep;

σ ′
p(Ea) =




2L − Ep −
∑
p�b

Eb if a = p,

L − Ep − Ea if p � a,

Ea otherwise.

Proof. Recall that σp is a cubic involution, that its base points are p with mul-
tiplicity 2, and that the points b ∈ . are such that p � b with multiplicity 1
(Proposition 12); as a consequence, we have σ ′

p(L) = 3L− 2Ep −∑
p�b Eb. The
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second equality follows because σp leaves invariant the pencil of lines of P
2 pass-

ing through p; the third equality follows directly.
Since the line passing through p and one other base point q is collapsed on q,

we see that σ ′
p(L−Ep −Eq) = Eq. The remaining part follows from the fact that

σp is an involution that fixes the curve C on which all the points of . lie (as proper
or infinitely near points).

Lemma 18. Let D ∈ Pic(S) be some divisor, and letp ∈.0 be some point. Writ-
ing δq = 0q(D) and λr,q = �r,q(D) for any points q, r ∈. with r � q, we have
the relations

0a(σ
′
p(D)) =




−δa if a = p,

δa + δp if a � p,

δa + 2λp,a if p � a,

δa + 2δp otherwise
and

�b,a(σ
′
p(D)) =




−λb,a if b = p,

λb,a + 2δp if a = p,

λb,a if b � p �= a,

λb,a + λp,b if p � b,

λb,a + 2δp otherwise

for any points a, b ∈. with b � a.

Proof. Write D = nL − ∑
q∈. nqEq for some integers n, nq. Lemma 17 implies

that σ ′
p(D) = mL − ∑

q∈. mqEq , where m = 2n − np − ∑
p�b nb and

mq =




2n − 2np −
∑
p�b

nb if a = p,

n − np − nq if p � q,

nq otherwise.

By substituting these values, we find the values of

0a(σ
′
p(D)) = 2m − 2ma −

∑
a�c

mc and

�b,a(σ
′
p(D)) = m − mb + ma −

∑
b�c
c �=a

mc

as linear combinations of

0a(D) = 2n − 2na −
∑
a�c

nc and

�b,a(D) = n − nb + na −
∑
b�c
c �=a

nc.

(We leave the details to the interested reader.)

We are now able to prove the following proposition, whose assertion (1) induces
Theorem 6 and Corollary 7. The proof of Proposition 19 is rather tricky even
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though it uses only simple relations of Lemma 18, so we have tried to make it as
readable as possible.

Proposition 19. Let D = σ ′
pm

� σ ′
pm−1

� · · · � σ ′
p1
(L), where m ≥ 0, p1, . . . , pm ∈

., and pi �= pi+1 for 1 ≤ i ≤ m − 1. Writing p = pm (if m = 0 there is no p) as
well as δq = 0q(D) and λr,q = �r,q(D) for any points q, r ∈ . with r � q, we
have the following relations.

(1) δp < 0.
(2) δa > 0 if a �= p.

(3) −δp < δa if a �= p and a �� p.

(4) iδa + jλb,a + kδb > 0 for b � a, i ≥ 1, j ≥ 2, and


i = j, k = −1, a �= p;
i = j + 1, k = 1, a �= p;
i = j, k = 1, b �= p;
i = j − 1, k = −1, b �= p.

(5) i(δa + 2λb,a) + jδa ′ + kδb > 0 for b � a, b � a ′, a �= a ′, i, j ≥ 1, and


i = j, k = 1, b �= p;
i = j + 1, k = −1, b �= p;
i = j, k = −1, a ′ �= p;
i = j − 1, k = 1, a ′ �= p.

(6) δa +2λp,a + δr > δp forp � a and r �= p, where a, b, a ′, r ∈. and i, j, k ∈ Z.

In particular, D �= L if m > 0.

Proof. We will use the relations of Lemma 18 to prove Proposition 19 by induc-
tion on m.

Suppose first that m = 0, and note the simple relations 0a(L) = 2 and
�b,a(L) = 1 for any points b � a ∈ .. Assertions (1), (3), and (6) do not
apply if m = 0 because then there is no p. Assertion (2) is self-evident and (4)
and (5) may be verified by replacing δ by 2 and λ by 1 and then using that i, j ≥ 1
and k = ±1.

Suppose now that m ≥ 1. We write D = σ ′
pm−1

� · · · � σ ′
p1
(L) (and so D =

σ ′
p(D)) as well as δa = 0a(D) and λb,a = �b,a(D) for any points a, b ∈ . with

b � a. We use assertions (1)–(6) for m − 1 (i.e., for the δs and λs) together with
Lemma 18 to prove the same assertions for m (i.e., for the δs and λs).

(1) Since p �= pm−1 we have δp > 0 by (2), whence δp = −δp < 0.
(2) and (3) Taking a �= p, Lemma 18 asserts that

δa =




δa + δp if a � p,

δa + 2λp,a if p � a,

δa + 2δp otherwise.

Ifp � a, we may use (4) for i = 1, j = 2, and k = −1to see that δa = δa+2λp,a >

δp = −δp. We therefore obtain δa > −δp > 0 and thus (2) and (3) together. If
p �� a, we prove first that δa + δp is positive. If a = pm−1 then this follows from
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(3), which shows that −δa = −δpm−1 < δp; if a �= pm−1 then the sum is positive
because both δa and δp are positive (assertion (2)). If a � p, then δa is equal to
δa + δp and thus is positive (we obtain (2)); otherwise, δa is equal to δa + 2δp and
is therefore larger than δp = −δp > 0 (we thus obtain (2) and (3) together).

(4) Take a, a ′, b ∈ . such that b � a, b � a ′, and a �= a ′. We list the changes
of (respectively) δa , λb,a , and δb after the action of σ ′

p in the following table.

δa − δa λb,a − λb,a δb − δb

p = a −2δp 2δp δp

p = b 2λp,a −2λp,a −2δp

b � p �= a 2δp 0 δp

a � p � b δp λp,b 2λp,b

a � p �� b δp δp 2δp

a �� p � b 2δp λp,b 2λp,b

otherwise 2δp δp 2δp

We first prove that δa +2λb,a − δb is positive if b �= p (assertion (4) with i = 2,
j = 1, and k = −1). Assume that p �= b. The table shows that δa + 2λb,a − δb =
δa + 2λb,a − δb + kδp for some integer k ≥ 1. If pm−1 �= b, then δa + 2λb,a − δb
is positive (the same assertion for m − 1); if pm−1 = b, then (6) shows that
δa + 2λb,a − δb + δp is positive. In both cases we see that δa + 2λb,a − δb is
positive.

Next we prove (4) in general (i.e., for all specified values of i, j, k ∈ Z and a, b ∈
.). If p /∈ {a, b} then δa , δb > 0, whence

iδa + jλb,a + kδb = j

2
· (δa + 2λb,a − δb) +

((
i − j

2

)
δa +

(
j

2
+ k

)
δb

)

is positive because i − j/2 and j/2 + k are nonnegative. Assume now that p = a

and either that i = j and k = 1 or that i = j − 1 and k = −1 (as in the statement
of (4)). We compute

iδa + jλb,a + kδb = i · (−δa) + j · (λb,a + 2δa) + k · (δb + δa)

= i ′ · δa + jλb,a + kδb,

where i ′ = (2j − i + k). We use (4) for m − 1 (since a = p and a �= pm−1). If
i = j and k = 1, then i ′ = j − 1. If i = j − 1 and k = −1, then i ′ = j. The case
of p = b is similar. We compute

iδa + jλb,a + kδb = i · (δa + 2λb,a) + j · (−λb,a) + k · (−δb)

= i · δa + j ′λb,a + k ′δb,

where j ′ = (2i − j) and k ′ = −k. If i = j and k = 1, then i = j ′ and k ′ = −1; if
i = j − 1 and k = −1, then i ′ = j ′ + 1 and k ′ = 1. Since b �= pm−1, assertion (4)
for m − 1 may be used to conclude.
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(5) Similarly, we now prove (5) for all the specified values of i, j, k ∈ Z and
a, a ′, b ∈ .. If p /∈ {a ′, b}, then δa + 2λb,a > δb (assertion (4), already proved)
and δa ′ > 0, whence i(δa + 2λb,a) + jδa ′ + kδb > (i + k)δb + jδa ′ > 0 because
i + k ≥ 0 and j > 0. Assume now that p = a ′ and either that i = j and k = 1 or
that i = j + 1 and k = −1 (as in the statement of (5)). We compute

i(δa + 2λb,a) + jδa ′ + kδb = i(δa + 2δa ′ + 2λb,a) + j · (−δa ′) + k(δb + δa ′)

= i(δa + 2λb,a) + j ′δa ′ + kδb,

where j ′ = 2i − j + k. We use (5) for m−1, since a ′ = p and a ′ �= pm−1. If i =
j and k = 1, then i = j ′ − 1. If i = j + 1 and k = −1, then i = j ′. The case of
p = b is similar. We compute

i(δa + 2λb,a) + jδa ′ + kδb

= i(δa + 2λb,a − 2λb,a) + j(δa ′ + 2λb,a ′) + k · (−δb)

= i ′(δa ′ + 2λb,a ′) + j ′(δa) + k ′ · (δb),
where i ′ = j, j ′ = i, and k ′ = −k. We use (5) for m − 1, exchanging the roles of
a and a ′ and using that pm−1 �= p = q.

(6) It remains only to prove (6). Take a, r ∈. with p � a and r �= p, as in the
statement. We first compute δa + 2λp,a − δp = δa + 2λp,a − 2λp,a + δp = δa + δp

and recall that δp is positive. If δa + δp is nonnegative then δa + 2λp,a + δr − δp

is positive, as stated in assertion (6). If r = a, then δa = δa + 2λp,a and so
δa + 2λp,a + δr − δp is equal to 2δa + 2λp,a + δp, which is positive by (4) for
m − 1 with i = j = 2, k = 1, and p �= pm−1. If p � r and r �= a, then δr =
δr + 2λp,r . Hence δa + 2λp,a + δr − δp is equal to δa + δp + δr + 2λp,r , which
is positive by (5) for m − 1 with i = j = 1, k = 1, and p �= pm−1. The remain-
ing case is when r �= a, p �� r, and δa + δp < 0. The condition on r implies that
δr > δr , and the latter implies that a = pm−1. Since r �= p it follows that r �� a,
whence δr > −δa. This shows that δa + 2λp,a + δr − δp > δa + δp + δr > 0, and
we are done.
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