
Michigan Math. J. 56 (2008)

Axiomatic Regularity on Metric Spaces

Sergey A. Timoshin

Introduction

The problem of the regularity of solutions to partial differential equations with pre-
scribed boundary values and of regular variational problems constitutes one of the
most interesting chapters in analysis, which has its origins mostly starting from the
year 1900, when Hilbert formulated his famous 23 problems in an address deliv-
ered before the International Congress of Mathematicians at Paris. The essential
parts of the 20th problem on existence of solutions and its related 19th problem
about the regularity itself read as follows.

19th problem: “Are the solutions of regular problems in the calculus of varia-
tions always necessarily analytic?”

20th problem: “Has not every regular variational problem a solution, provided
certain assumptions regarding the given boundary conditions are satisfied, and pro-
vided also if need be that the notion of a solution shall be suitably extended?”

It is known that in the Euclidean space the problem of minimizing a variational
integral in a set of functions with prescribed boundary values is closely related to
solving the corresponding Dirichlet problem for its Euler–Lagrange equation. In
particular, for the Dirichlet p-energy integral∫

�⊂Rn

|∇u(x)|p dx,

the corresponding Euler–Lagrange equation, for 1 < p < ∞, is

div(|∇u(x)|p−2∇u(x)) = 0.

Starting with the remarkable result of Bernstein in 1904 that any C 3 solution
of an elliptic nonlinear analytic equation in two variables is necessarily analytic,
and through the works of many authors, in particular in the works of Leray and
Schauder in 1934, it was proved that every sufficiently smooth, say C 0,α (Hölder
continuous), stationary point of a regular variational problem with analytic inte-
grand is analytic. On the other hand, by direct methods of the calculus of variations
one can prove in general the existence of solutions that have derivatives only in a
generalized sense and satisfy the equation only in a correspondingly weak form.
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Thus arose the problem of proving that such “generalized solutions” are “reg-
ular”—namely, that they possess enough smoothness to satisfy the differential
equation in a classical sense. In this respect, Hilbert’s 20th problem of existence
of classical solutions becomes precisely the problem of regularity of generalized
solutions.

This problem of regularity, by which we now mean the problem to show that
solutions, or extremals, that belong to a Sobolev space are in fact Hölder contin-
uous, resisted many attempts, but finally in 1957 De Giorgi [10] and Nash [39],
independently of each other, provided a proof of it. Later, in 1960, Moser [31],
by entirely different methods, gave another proof of their result. Moser’s argu-
ment was later extended by J. Serrin, N. S. Trudinger, and others. Although this
approach (known as Moser’s iteration technique), which is based on a differen-
tial equation, has proved to be very useful for investigating various problems in
the Euclidean spaces, it is not readily generalized to the case when one wants to
deal with regularity questions on a general metric space (see, however, [8]), since
the concept of a partial derivative is (generally) meaningless on a metric space,
and thus there is no differential (Euler–Lagrange) equation. However, since it is
possible to define a substitute for the modulus of the usual gradient to the case
of general metric spaces, the approach of De Giorgi, which is essentially a varia-
tional one, can be used. This approach was developed and generalized to certain
cases of nonlinear equations by O. Ladyzhenskaya, N. Ural’tseva, G. Stampac-
chia, and others. Later, in the 1980s, Giaquinta [12] (see also [13]), and then, in
the 1990s, Malý and Ziemer [29] tried to give the method of De Giorgi a more
transparent form.

The regularity of extremal functions for the Dirichlet energy on an abstract met-
ric space has been studied in the 2001 paper of Kinnunen and Shanmugalingam
[25]. One should stress that there are several definitions of the notion of Dirichlet
energy (or equivalently of Sobolev space) on a general metric measure space. The
first one is probably the notion introduced by Hajłasz in [16], but the most popular
way of defining the energy of a function is via the concept of upper gradients first
introduced by Heinonen and Koskela in [19]. Shanmugalingam has defined and
studied a structured notion of Sobolev space based on upper gradients; she called
this space the Newtonian space on the metric measure space. Other approaches are
the Gol’dshtein–Troyanov axiomatic theory of Sobolev spaces on metric spaces
[14; 15], where the pseudo-gradients are described by a set of rules they must
satisfy, and the notion of Sobolev functions based on a Poincaré inequality first
considered in [26] and extensively studied in [17]. The last two approaches are
quite different from the Newtonian space in their methods and spirit.

In their article, Kinnunen and Shanmugalingam studied the regularity problem
in the context of the Newtonian space. The goal of this paper is to show that
De Giorgi’s method can also be applied within the Poincaré inequality framework
and even to more general situations.

Our strategy is to reduce the De Giorgi argument to a system of three axioms,
which we will call Hypotheses H1–H3, that a function u defined on a measure
metric space may satisfy. These hypotheses are very general; they can be formu-
lated for any function u in Lp, and in particular we do not assume that a notion of
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Sobolev space has been defined. The essence of the De Giorgi argument is first to
show that a function satisfying the three hypotheses is Hölder continuous and then
to show that a function minimizing an appropriate energy must satisfy the three
hypotheses. The technique leaves us a lot of freedom to choose various kinds of
energies. We show in the second part of the paper how this technique can be ap-
plied to prove the Hölder regularity of extremal functions in the class of functions
satisfying a Poincaré inequality. This result is formulated in Theorem 2.5.

The paper is organized as follows. In the first section we formulate the hypothe-
ses H1–H3 we are going to work with. Then we show that a function u satisfying
Hypotheses H1 and H2 in the pair with some function g is locally bounded, and if,
in addition, Hypothesis H3 is satisfied for the functions u and g, then the function u
is locally Hölder continuous. In Section 2 we recall the approach to Sobolev spaces
on a metric space via Poincaré inequalities from [17] and verify that functions from
the Poincaré–Sobolev space, which have an additional property (De Giorgi condi-
tion), satisfy Hypotheses H1–H3 and, thus, are Hölder continuous. The last section
addresses some questions on further potential applicability of our main result.
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1. De Giorgi Argument in an Abstract Setting

Throughout the paper (X, d) will be a metric space equipped with a Borel regular
outer measure µ such that 0 < µ(B) < ∞ for any ball B = B(R) = B(z,R) =
{x ∈ X : d(x, z) < R} in X of positive radius. If σ > 0 and B = B(z,R) is a
ball, we denote by σB the ball B(z, σR).

For convenience we will suppose that the space X is locally compact and sep-
arable. For 1 ≤ p < ∞, Lp

loc(X) = L
p

loc(X, d,µ) is the space of measurable
functions on X that are p-integrable on every relatively compact subset of X.

We will also assume that the measure µ is doubling—in other words, that there
exists a constant Cd ≥ 1 such that for all balls B ⊂ X we have
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µ(2B) ≤ Cdµ(B).

Cd is called the doubling constant.
At the beginning of this section we want to emphasize that in the sequel the nota-

tion g(u) for a function from Lp(X) means no a priori dependence of this function
on the given function u∈L

p

loc(X).

Let � be an open subset of X and let u be a function in Lp(�). In this section
we prove that if the functions u and −u satisfy Hypotheses H1 and H2 in the pairs
with some functions g(u), g(−u) ∈Lp(�), respectively, and if, in addition, the pair
(u, g(u)) satisfies Hypothesis H3, then u (and, of course, −u) is Hölder continuous
inside the set �.

Unless otherwise stated, C denotes a positive constant whose exact value is
unimportant, can change even within a line, and depends only on fixed parame-
ters, such as X, d, µ, p, and others.

1.1. List of Hypotheses

The hypotheses for two functions u, g(u) ∈ Lp(�) that we shall need are the
following.

Hypothesis H1 (De Giorgi condition). There exist constants C > 0 and k∗ ∈ R

such that for all k ≥ k∗, z ∈�, and 0 < ρ < R ≤ diam(X)/3 so that B(z,R) ⊂
�, the following Caccioppoli-type inequality on the “upper-level” sets of the func-
tion u holds: ∫

A(k,ρ)

g
p

(u) dµ ≤ C

(R − ρ)p

∫
A(k,R)

(u − k)p dµ, (1)

where A(k, r) = Az(k, r) = {x ∈ B(z, r) = B(r) : u(x) > k} with z ∈ � being
fixed.

Let η be a C
R−ρ

-Lipschitz (cutoff ) function for some C > 0 such that 0 ≤ η ≤ 1,

the support of η is contained in B
(R+ρ

2

)
, and η = 1 on B(ρ).

Hypothesis H2. There exists a constant C > 0 such that for functions v =
η(u − k)+ and g(v) = g(u)χA(k,(R+ρ)/2) + C

R−ρ
(u − k)+ and for some t and q,

t > p > q, we have(∫
B((R+ρ)/2)

v t dµ

)1/t

≤ CR

(∫
B((R+ρ)/2)

g
q

(v) dµ

)1/q

, (2)

where k,ρ, andR are as in Hypothesis H1. Here, as usual, (u−k)+ = max{u−k, 0},
and χA(k,(R+ρ)/2) is the characteristic function of the set A

(
k, R+ρ

2

)
. The bar in the

sign of integral means that the corresponding integral is divided by the measure of
the set over which the integral is taken.

Hypothesis H3. There exist constants C > 0 and σ ≥ 1 such that for all h, k ∈
R, h > k ≥ k∗, for the functions

w = uh
k := min{u,h} − min{u, k} =




h − k if u ≥ h,

u − k if k < u < h,

0 if u ≤ k,
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and g(w) = g(u)χ{k<u≤h} we have(∫
B(R)

wq dµ

)1/q

≤ CR

(∫
B(σR)

g
q

(w) dµ

)1/q

, (3)

where q is as in Hypothesis H2.
Note that Hypotheses H2 and H3 are the characteristics of the whole Sobolev

space of functions for which our abstract results apply (cf. the section on Poincaré–
Sobolev spaces), whereas Hypothesis H1 is the property of some particular func-
tions, the functions whose regularity we want to establish. Hypotheses H2 and
H3 are Sobolev-type inequalities that are typically true for pairs (u, g(u)) in a
sufficiently nice metric measure space; they essentially assert that the associated
Poincaré inequality remains stable under cutoffs and truncations.

1.2. Boundedness and Hölder Continuity

In this section we show that a function u∈L
p

loc(�) satisfying Hypotheses H1 and
H2 with some function g(u) ∈Lp(�) is locally bounded in �. If, in addition, Hy-
pothesis H3 is valid for the pair (u, g(u)), then u is locally Hölder continuous in �.

Theorem 1.1. Suppose that a pair of functions (u, g(u)) satisfies Hypotheses H1
and H2. If k ′ ≥ k∗, then there exist constants C > 0 and θ > 1 such that

ess sup
B(R/2)

u ≤ k ′ + C

(∫
B(R)

(u − k ′)p+ dµ

)1/p(
µ(A(k ′,R))
µ(B(R/2))

)θ/p

for all z∈� and 0 < R ≤ diam(X)/3.

Corollary 1.2. If the functions u and −u satisfy Hypotheses H1 and H2 with
some functions g(u) and g(−u), respectively, u, g(u), g(−u) ∈Lp(�), then

ess sup
B(R/2)

|u| ≤ k + C

(∫
B(R)

|u|p dµ
)1/p

(4)

for all z∈�, k ≥ k∗, 0 < R ≤ diam(X)/3, and some C > 0.

Theorem 1.3. Assume that u and −u ∈ Lp(�) satisfy in the pairs with some
g(u), g(−u) ∈Lp(�) Hypotheses H1 and H2. If Hypothesis H3 is also satisfied for
the pair (u, g(u)), then u is locally Hölder continuous.

The proofs of Theorems1.1and1.3 closely follow the classical De Giorgi argument
[10] mentioned in the Introduction (see also [13; 29] for details in Euclidean spaces
and [25] for corresponding proofs in case of upper gradients on metric spaces).
For detailed proofs in our abstract setting we refer to [45, Thms. 4.1 and 4.3].

2. Regularity in the Class of Poincaré–Sobolev Functions

In this section we briefly recall the approach to Sobolev spaces on a metric space
using Poincaré inequalities (see [17] for the definitions we give) and prove the
Hölder continuity of certain extremal functions in these spaces.
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2.1. Poincaré–Sobolev Functions

Definition 2.1 (Poincaré inequality). Let u ∈L1
loc(X) and g : X → [0, ∞] be

Borel measurable functions. We say that the pair (u, g) satisfies a (s, q)-Poincaré
inequality in � ⊂ X, s, q ≥ 1, if there exist two constants σ ≥ 1 and CP > 0 such
that the inequality (∫

B

|u − uB |s dµ
)1/s

≤ CP r

(∫
σB

gq dµ

)1/q

(5)

holds on every ball B with σB ⊂ �, where r is the radius of B.

Recall that
uB =

∫
B

u dµ = 1

µ(B)

∫
B

u dµ.

By the Hölder inequality, a weak (s, q)-Poincaré inequality implies weak (s ′, q ′)-
Poincaré inequalities with the same σ for all s ′ ≤ s and q ′ ≥ q. On the other hand,
by [17,Thm. 5.1], a weak (1, q)-Poincaré inequality implies a weak (s, q)-Poincaré
inequality for some s > q and possibly a new σ.

Definition 2.2 (Poincaré–Sobolev functions). A functionu∈L1
loc(X) for which

there exists 0 ≤ g ∈Lq(X) such that the pair (u, g) satisfies a (1, q)-Poincaré in-
equality in X is called a Poincaré–Sobolev function. We denote by PW 1,q(X) the
set of all Poincaré–Sobolev functions.

The Poincaré inequality (5) is the only relationship between the functions u and g.

Working in this setting, Hajłasz and Koskela developed in [17] quite a rich theory
of these Sobolev-type functions on metric spaces.

Given a function v and ∞ > t2 > t1 > 0, we set

vt2
t1

= min{max{0, v − t1}, t2 − t1}.
In the sequel we will need also the following definitions.

Definition 2.3 (Truncation property). Let the pair (u, g) satisfy a (1, q)-Poincaré
inequality in �. Assume that for every b ∈ R, 0 < t1 < t2 ≤ ∞, and ε ∈ {−1,1},
the pair (v t2

t1 , gχ{t1<v≤t2}), where v = ε(u − b), satisfies the (1, q)-Poincaré in-
equality in � (with fixed constants CP , σ). Then we say that the pair (u, g) has the
truncation property.

The truncation property for Poincaré–Sobolev functions is the notion that reflects
some localization properties of the Sobolev space under consideration. Note that
in the Euclidean space R

n this condition means that the gradient of a function,
which is constant on some set, equals zero a.e. on that set.

The quasi-minimizers of the p-Dirichlet energy both in the Newtonian spaces
(see [25]) and in the axiomatic Sobolev spaces (see [45]) satisfy the De Giorgi con-
dition (Hypothesis H1). For the class of Poincaré–Sobolev functions, the possible
notion of energy is not consistent; in particular, it is not clear how it would be pos-
sible to prove the existence of corresponding minimizers, since in this case the cor-
responding Sobolev space is not a Banach space (it is, in fact, only a quasi-Banach
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space). But the De Giorgi condition is still legitimate for the Poincaré–Sobolev
functions. Thus, as it seems that there exists an intimate connection between ex-
tremal functions and the functions satisfying the De Giorgi condition, in the case
of Poincaré–Sobolev functions, the functions whose regularity we are going to es-
tablish will be those that satisfy the following property.

Definition 2.4 (p-De Giorgi condition). We say that a Poincaré–Sobolev func-
tion u (satisfying a (1, q)-Poincaré inequality with some function g) enjoys thep-
De Giorgi condition on the set � if for all k ∈ R, z ∈ X, and 0 < ρ < R ≤
diam(X)/3, the inequality∫

A(k,ρ)

gp dµ ≤ C

(R − ρ)p

∫
A(k,R)

(u − k)p dµ (6)

holds, provided µ(� \ A(k,R)) = 0, where A(k, r) = B(z, r) ∩ {x : u(x) > k},
p ∈ R, and p > q.

2.2. Regularity of Extremal Functions

In this section we impose the following condition on the measure µ. For every
z∈X and 0 < R ≤ diam(X)/3 we assume that there exists γ, 0 < γ < 1,
such that

µ(B(z,R/2))

B(z,R)
≤ γ.

Note that in the case of Newtonian spaces this condition follows from a Poincaré
inequality on the space X; in the axiomatic Sobolev spaces it follows from a
Poincaré inequality and the strong locality of D-structure.

We will also assume that any pair (u, g), u ∈ L1
loc(X), g ∈ Lq(X), satisfying a

(1, q)-Poincaré inequality in X has the truncation property. We have the following
theorem.

Theorem 2.5. Let u ∈ PW 1,q(X) (satisfying a (1, q)-Poincaré inequality with
some function g ∈ Lq(X)). Suppose that the pairs (u, g) and (−u, g) enjoy the
p-De Giorgi condition on the set �. Then both (u, g) and (−u, g) satisfy Hypothe-
ses H1 and H2. In addition, one of these pairs satisfies Hypothesis H3 and, thus,
the function u is locally Hölder continuous in �.

Proof. Hypothesis H1 is the definition of the p-De Giorgi condition.
Hypothesis H2: Let η be the Lipschitz function as in Hypothesis H2 and v =

η(u − k)+ (k, ρ, and R are fixed). Since the pair (u, g) satisfies a (1, q)-Poincaré
inequality, by the truncation property, for every h∈ R, k < h < ∞, the functions

uh
k = min{max{0, u − k},h − k} =




h − k if u ≥ h,

u − k if k < u < h,

0 if u ≤ k,

and the gχ{k<v≤h} satisfy this (1, q)-Poincaré inequality as well. Hence they satisfy
a (t, q)-Poincaré inequality for some t, t > q, and thus a (q, q)-Poincaré inequal-
ity (see the remark after Definition 2.1).
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Let {hi}i∈N be a sequence of real numbers such that hi > k, i ∈ N, and hi → ∞
as i → ∞. Denote ui := u

hi
k . Then, the sequence of functions {ui}i∈N converges

in L
q

loc topology to the function (u − k)+. Indeed, for any i ∈ N,

0 ≤ ui ≤ (u − k)+ ,

and the fact follows from the dominated convergence theorem.
Similarly, the functions gi := gχ{k<v≤hi} converge in L

q

loc topology to the func-
tion gχ{u>k}. Since for every i ∈ N the pair (ui, gi) satisfies a (q, q)-Poincaré in-
equality, it follows that the pair ((u − k)+ , gχ{u>k}) also satisfies it.

Denote ϕ := (u − k)+. For all x, y ∈� and some ball B ⊂ � we have

|η(x)ϕ(x) − (ηϕ)B | ≤ |η(x)ϕ(x) − η(x)ϕB | + |η(x)ϕB − (ηϕ)B |
≤ sup|η||ϕ(x) − ϕB | + |η(x)ϕB − (ηϕ)B |
≤ |ϕ(x) − ϕB | + |η(x)ϕB − (ηϕ)B | =: -(x).

Integrating the last expression -(x) to the power q and using classical inequalities
and the definition of Lipschitz functions we get∫
B

-(x)q dµ(x)

=
∫
B

{|ϕ(x) − ϕB | + |η(x)ϕB − (ηϕ)B |}q dµ(x)

=
∫
B

{
|ϕ(x) − ϕB | +

∣∣∣∣η(x)
∫
B

ϕ(y) dµ(y) −
∫
B

η(y)ϕ(y) dµ(y)

∣∣∣∣
}q

dµ(x)

=
∫
B

{
|ϕ(x) − ϕB | +

∣∣∣∣
∫
B

(η(x)ϕ(y)) − η(y)ϕ(y)) dµ(y)

∣∣∣∣
}q

dµ(x)

≤
∫
B

{
|ϕ(x) − ϕB | +

∫
B

|ϕ(y)||η(x) − η(y)| dµ(y)
}q

dµ(x)

≤
∫
B

{
|ϕ(x) − ϕB | + Lip(η) diam(B)

∫
B

|ϕ(y)| dµ(y)
}q

dµ(x)

≤ 2q−1
∫
B

{
|ϕ(x) − ϕB |q + (Lip(η) diam(B))q

(∫
B

|ϕ(y)| dµ(y)
)q}

dµ(x)

= 2q−1
∫
B

|ϕ(x) − ϕB |q dµ(x) + 2q−1(Lip(η) diam(B))q
(∫

B

|ϕ(y)| dµ(y)
)q

.

Now, the pair (ϕ = (u − k)+ , gχ{u>k}) satisfies the following (q, q)-Poincaré
inequality:

∫
B

|ϕ − ϕB |q dµ ≤
(
CP

diam(B)

2

)q ∫
τB

(gχ{u>k})q dµ,

where τ ≥ 1. Hence∫
B

-(x)q dµ(x) ≤ C(diam(B))q
∫
τB

{(gχ{u>k})q + (Lip(η)|ϕ|)q} dµ,
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where the constant C depends only on τ, q, CP , and on the doubling constant Cd.

We thus have proved that
(∫

B

|η(x)(u(x) − k)+ − (η(u − k)+)B |q dµ(x)
)1/q

≤
(∫

B

-(x)q dµ(x)

)1/q

≤ C diam(B)

(∫
τB

(gχ{u>k} + Lip(η)(u − k)+)q dµ
)1/q

.

In particular, recalling that v = η(u − k)+ , for the ball B(R + ρ) we have
(∫

B(R+ρ)

|v − vB(R+ρ)|q dµ
)1/q

≤ C(R + ρ)

(∫
B(τ(R+ρ))

(
gχ{u>k} + C

R − ρ
(u − k)+

)q

dµ

)1/q

for some C > 0.
Obviously, v = vχ{v>0}. Repeating the argument in the very beginning of

the proof of Hypothesis H2, it is easy to show that the truncation property im-
plies that a (q, q)-Poincaré inequality holds for the pair of v and

(
gχ{u>k} +

C
R−ρ

(u − k)+
)
χ{v>0}. A (t, q)-Poincaré inequality also holds for these functions.

Therefore, we have
(∫

B(R+ρ)

v t dµ

)1/t

≤
(∫

B(R+ρ)

|v − vB(R+ρ)|t dµ
)1/t

+ |vB(R+ρ)|

≤ C(R + ρ)

(∫
B(λ(R+ρ))

(
gχ{u>k} + C

(R − ρ)
(u − k)+

)q

χ{v>0} dµ
)1/q

+ |vB(R+ρ)|

≤ C(R + ρ)

(∫
B(λ(R+ρ))

(
gχA(k,(R+ρ)/2) + C

(R − ρ)
(u − k)+

)q

χ{v>0} dµ
)1/q

+ |vB(R+ρ)|

≤ CR

(∫
B((R+ρ)/2)

g
q

(v) dµ

)1/q

+ |vB(R+ρ)| (7)

for some λ > 0. In the last inequality we denoted

g(v) = gχA(k,(R+ρ)/2) + C

(R − ρ)
(u − k)+

and used the doubling property of µ and the fact that {v > 0} ⊂ B
(R+ρ

2

)
.
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By the Hölder inequality we obtain

|vB(R+ρ)| = 1

µ(B(R + ρ))

∫
B(R+ρ)

v dµ = 1

µ(B(R + ρ)

∫
B(R+ρ)

vχ{v>0} dµ

≤
(∫

B(R+ρ)

v t dµ

)1/t(
µ({x ∈B(R + ρ) : v(x) > 0})

µ(B(R + ρ))

)1−1/t

.

Then, the condition for the measure µ stated at the beginning of this section im-
plies that

µ({v > 0})
µ(B(R + ρ))

≤ µ
(
B

(R+ρ

2

))
µ(B(R + ρ))

≤ γ

for some γ, 0 < γ < 1. Hence from the previous inequality and the inequality (7)
we obtain

(1 − γ 1−1/t )

(∫
B(R+ρ)

v t dµ

)1/t

≤ CR

(∫
B((R+ρ)/2)

g
q

(v) dµ

)1/q

.

From the doubling property of µ finally we have(∫
B((R+ρ)/2)

v t dµ

)1/t

≤ CR

(∫
B((R+ρ)/2)

g
q

(v) dµ

)1/q

for some C > 0. Hypothesis H2 is thus verified.
Hypothesis H3 follows from the truncation property, the doubling condition,

and the fact that a (1, q)-Poincaré inequality on the doubling metric measure space
implies a (t, q)-Poincaré inequality with some t > q and, thus, a (q, q)-Poincaré
inequality. Indeed, in Definition 2.3 of the truncation property take ε = 1, b = 0,
t1 = k, and t2 = h and note that, in this case,

vt2
t1

= uh
k = min{max{0, u − k},h − k} = min{u,h} − min{u, k} = w.

Then we repeat the proof of Hypothesis H3 in [45, Prop. 6.3] with the functions
u∗ replaced by u and gu∗ replaced by g.

3. Final Remarks

Let us conclude this paper with some remarks on the potential applicability of our
methods.

3.1. The Theory of Dirichlet Forms

Another possible way of doing analysis on a metric space is to use the theory of
Dirichlet forms, which is well adapted to construct some equivalents of the Laplac-
ian and the Dirichlet energy for p = 2. In [5], Biroli and Mosco prove a Harnack
inequality, à la De Giorgi–Nash–Moser, for minimizers of canonical variational
problems in the framework of the abstract theory of Dirichlet forms on general
metric spaces. This result implies the Hölder continuity of extremal functions. In
their work, Biroli and Mosco assume a Poincaré inequality for the Dirichlet form
and a doubling property for the measure. Another important assumption is the
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existence of a density for the local energies of the Dirichlet form with respect to
the underlying volume measure on the space. The corresponding results for non-
linear case ofp > 1 are obtained in [7], using the approach of the measure-valued
homogeneous p-Lagrangians introduced in [28].

3.2. Analysis on Fractals

There exist several approaches in the literature to do analysis on fractal spaces. In
particular, Umberto Mosco and his co-authors have studied certain analytic no-
tions on fractal media with the help of Dirichlet forms and the theory of associated
metric variational fractals (see e.g. [32; 33; 34; 35; 36; 37; 38] and also [1; 2; 3;
4; 21] for a related probabilistic approach). In this respect one has a number of
possible strategies to investigate the continuity of extremal functions on a fractal.

1. Often, the continuity holds for free. This is the case for spaces of homogeneous
dimension less than 2, such as the Sierpinski gasket and other self-similar frac-
tals. On such spaces the functions of finite Dirichlet energy are always Hölder
continuous. This easily follows from the Morrey-type inequalities established
in [6] (see also [9] for the general nonlinear case).

2. One may hope to apply the Biroli–Mosco result [5], but unfortunately, the den-
sity for the local energies of the Dirichlet form does not exist in general, even
for some standard fractals (see e.g. [27]).

3. One may also try to apply the technique of this paper—that is, associate to
any extremal function u for the Dirichlet energy a function g such that the pair
(u, g) satisfies Hypotheses H1–H3. This function g need neither be a pseudo-
gradient of a D structure nor the density for the energy associated to the Dirich-
let form, and any construction of such a function would imply the regularity of
u. (Another delicate point is that in the theory of Dirichlet forms, the distance
is constructed after the definition of the energy and not before, and for fractals
it is often not a metric but only a quasi-metric; but this issue should not be a
fatal problem).

One should also mention the works of Kigami, Strichartz and their co-authors.
They have studied a notion of Laplacian on the Sierpinski gasket and other post-
critically finite fractals through iterative procedures and renormalizations from a
somewhat different perspective; see [22; 23; 24; 30; 42; 43]. Their approach also
leads to a notion of p-energy and p-harmonic function [20; 44]. It is, however,
not clear how to apply a De Giorgi argument in this context. The main obstacles
are the same as before: nonexistence of densities associated to the Dirichlet energy
and “automatic” continuity of the functions of finite energy.
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