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1. Introduction

Throughout the paper, k will denote a fixed algebraically closed field of character-
istic 0 and, unless otherwise specified, all rings will be k-algebras. Our aim is to
show that the center of a homologically homogeneous, finitely generated k-algebra
has rational singularities; in particular, if a finitely generated normal commutative
k-algebra has a noncommutative crepant resolution (as introduced by the second
author), then it has rational singularities.

We begin by setting this result in context and defining the relevant terms. Sup-
pose that X = SpecR for an affine (i.e., finitely generated) normal Gorenstein
k-algebra R. The nicest form of resolution of singularities f : Y → X occurs
when f is crepant in the sense that f ∗ωX = ωY . Even when they exist, crepant
resolutions need not be unique, but they are related—indeed, Bondal and Orlov
conjectured in [BoO2] (see also [BoO1]) that two such resolutions should be de-
rived equivalent.

Bridgeland [Bri] proved the Bondal–Orlov conjecture in dimension 3. The sec-
ond author observed in [V3] that Bridgeland’s proof could be explained in terms
of a third crepant resolution of X that is now noncommutative (the definition will
be given in what follows). This and similar observations by others have led to a
number of different approaches to the Bondal–Orlov conjecture and related topics
(see e.g. [Be; BeKa; Ch; IR; Ka2; Kaw]).

It is therefore natural to ask how the existence of a noncommutative crepant res-
olution affects the original commutative singularity. It is well known, and follows
easily from [KoMo, Thm. 5.10], that if a Gorenstein singularity has a crepant res-
olution then it has rational singularities. So it is logical to ask, as raised in [V2,
Ques. 3.2], is this true for a noncommutative crepant resolution? Here we answer
this question affirmatively.

Let � be a prime affine k-algebra that is finitely generated as a module over its
center Z(�). Mimicking [BH], we say that � is homologically homogeneous of
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dimension d if all simple �-modules have the same projective dimension d. By
[Ra] and [BH], such a ring � has global and Krull dimensions equal to d and,
as has been shown in [BH], the properties of homologically homogeneous rings
closely resemble those of commutative regular rings. So the idea is to use such a
ring� as a noncommutative analogue of a crepant resolution. Formally, following
[V2] we define a noncommutative crepant resolution ofR to be any homologically
homogeneous ring of the form � = EndR(M), where M is a reflexive and finitely
generated R-module. We refer the reader to [V2, Sec. 4] for the logic behind this
definition.

Our main result is as follows.

Theorem1.1 (Theorem 4.3). Let�be a homologically homogeneous k-algebra.
Then the center Z(�) has rational singularities.

In particular, if a normal affine k-domainR has a noncommutative crepant res-
olution then it has rational singularities.

In Section 5 we give two examples related to the theorem. The first example shows
that if � = EndR(M) has finite global dimension then it need not be homologi-
cally homogeneous even under reasonable hypotheses on M and R. The second
shows that Theorem 1.1 can fail in positive characteristic.

Notation. Throughout the paper, R will be a normal commutative Noetherian
k-domain and � will be a k-algebra, with center Z = Z(�) containing R, such
that � is a finitely generated R-module. We say that R is essentially affine if it is
a localization of an affine k-algebra. The dimension function used in this paper
will be the Gelfand–Kirillov dimension of� as a k-algebra, written GKdim�. By
[McRo, Prop. 8.2.9(ii) and Thm. 8.2.14(ii)], GKdim� = GKdimR and GKdimR

is just the transcendence degree of R over k.

2. Homologically Homogeneous Rings

In this section we introduce homologically homogeneous rings and prove some
basic facts about their structure and their dualizing complexes. Many of these re-
sults use the machinery of tame orders, so we start by discussing this concept.

Tame Orders. Assume that � is a prime R-order in A, by which we mean that
� is a prime ring with simple Artinian ring of fractions A. We write P1(R) for the
set of height-1 prime ideals of R and say that a property P holds for � in codi-
mension 1 if it holds for all �p = � ⊗R Rp : p ∈ P1(R). Following [Si], the
prime R-order � is called a tame R-order if � is a finitely generated and reflexive
R-module that is hereditary in codimension 1.

In [Si] it is implicitly assumed that R = Z(�), but we prefer not to make this
assumption. However, by the following standard result, the question of whether
� is a tame R-order is independent of the choice of normal central subring R.

Lemma 2.1. Let � be a tame R-order. Then a finitely generated �-module is
reflexive as an R-module if and only if it is reflexive as a �-module.
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Proof. By [Si, Cor.1.6] (which does not requireR = Z(�)), a�-reflexive module
is R-reflexive. Conversely, suppose that M is a finitely generated �-module that
is R-reflexive. Since M is therefore torsion-free as a �-module, Mp = M ⊗R Rp

is torsion-free and hence projective over the hereditary prime ring �p for all p ∈
P1(R). Thus, by [Si, Lemma 1.1],

M =
⋂

p∈P1(R)

Mp =
⋂

p∈P1(R)

Hom�p
(Hom�p

(Mp,�p),�p)

⊇ Hom�(Hom�(M,�),�).

Thus, M = Hom�(Hom�(M,�),�), as required.

Let � be a tame R-order in A. A divisorial fractional �-ideal is any reflexive
fractional �-ideal in A that is invertible in codimension 1. By [Si, Thm. 2.3], di-
visorial fractional ideals form a free abelian group Div(�) with product I · J =
(IJ )∗∗, where K∗ = HomR(K,R) denotes the R-dual of a fractional ideal K. The
nth power (I n)∗∗ of I under this dot operation is called the nth symbolic power
of I, written I (n). In particular, I (−n) = (I n)∗ for all n > 0. Write rad S for the
Jacobson radical of a ring S.

Homologically Homogeneous Rings. Homologically homogeneous rings,
as defined in the Introduction, have a particularly pleasant structure. The next
theorem provides some of the properties we will need. We start with a observation
that will be used several times.

Lemma 2.2. Let � be an R-order in a simple Artinian ring A.

(1) Let Z have field of fractions F and write τ : A → F for the reduced trace
map. If Z is normal then τ(�) = Z and � = Z ⊕ ker τ as Z-modules.

(2) If � is a tame R-order then Z = Z(�) is a tame R-order and is normal.
Moreover, � is a tame Z-order.

Proof. (1) By construction and the fact that char k = 0, τ |Z is a nonzero scalar
multiple of the identity map. By [McRo, (13.9.3) and Prop. 13.9.8], τ(�) is inte-
gral over Z and so, because Z is normal, τ(�) = Z. Since τ is a Z-module map,
it therefore splits.

(2) The identity � = ⋂
p∈P1(R)

�p restricts to give Z = ⋂
p∈R1(R)

Zp. Since
each �p is hereditary, it follows from [McRo, Thm. 13.9.16] that each Zp is a
Dedekind domain and hence that Z is normal. That ZR is reflexive and hence
tame now follows from part (1). The final assertion follows from Lemma 2.1.

Theorem 2.3. Assume that � is homologically homogeneous of dimension d.

(1) � is CM (Cohen–Macaulay) as a module over its center Z.
(2) Both GKdim� and the global homological dimension gl dim� of� equal d.
(3) Z is an affine CM normal domain.
(4) � is a tame Z-order.

Proof. By [Ra, Thm. 8], gl dim� = d. The rest of parts (1) and (2) follow from
[BH, Thm. 2.5].
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(3) By hypothesis, � is finitely generated as both a Z-module and a k-algebra.
Thus the Artin–Tate lemma [McRo, Lemma 13.9.10] implies that Z is an affine
k-algebra. Since � is prime it follows that Z is a domain, while Z is normal by
[BH, Thm. 6.1]. Thus Lemma 2.2(1) implies that Z is a Z-module summand of
�, and so it is CM by part (1).

(4) Because � is CM as a Z-module, it is certainly reflexive. By [BH, Cor. 2.2
and Thm. 2.5], � is hereditary in codimension 1.

The standing assumption that k has characteristic 0 is crucial for the proof of
part (3) of the theorem. Indeed, [BHMa, Ex. 7.3] shows that the center Z(�) of
a homologically homogeneous ring � need not be CM in bad characteristic.

The following criterion for a ring to be homologically homogeneous will be
useful.

Lemma 2.4. Suppose that R is an affine k-algebra and that � is a prime ring.
If � is a CM R-module with GKdim� = gl dim�, then � is homologically
homogeneous.

Proof. This is, in essence, [BH, Prop. 7.2], but here is a direct proof. Suppose
that S is a simple �-module with projective dimension u < d = gl dim�, and
consider a projective �-resolution of S:

0 −→ Pu −→ · · · −→ P1 −→ P0 −→ S −→ 0.

Viewed as a complex over R, this is a resolution of length < d of a finite-length
R-module by CM modules of dimension d. An easy depth argument shows that
this is impossible.

Dualizing Modules and Complexes. In order to relate properties of a homo-
logically homogeneous ring to those of its center we use the machinery of dualiz-
ing complexes, whose structure we discuss next. Most of the background material
comes from [V1; Y2; YZ1; YZ2], and the reader is referred to those papers for
more details. Throughout this discussion, in addition to our standing assumptions
we also assume that R is essentially affine.

Write �e = � ⊗k �
op and denote the derived category of left �e-modules by

D(�e). Following [Y1], a dualizing complex for � is a complex of �-bimodules
D, with finite injective dimension on both sides, such that

(1) the cohomology of D is given by �-bimodules that are finitely generated on
both sides, and

(2) in D(�e) the pair of natural morphisms � : � → RHom�(D,D) and �o:
� → RHom�op(D,D) are isomorphisms.

Following [V1, Def. 8.1], the dualizing complexD� is called rigid if there is an iso-
morphism χ : D�

∼= RHom�e(�,D�⊗D�) inD(�e). The significance of rigidity
is that, although dualizing complexes are not unique, rigid dualizing complexes
are—in the sense that the pair (D�,χ) is unique up to a unique isomorphism [V1,
Prop. 8.2; YZ1, Thm. 3.2].
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Although dualizing complexes (rigid or otherwise) do not exist for all finitely
generated noncommutative Noetherian rings [KRS, p. 529], by [Y2, Prop. 5.7]
and [YZ2, Thm. 3.8] they do exist for our rings R and �.

Write d = GKdim� = GKdimR. The cohomology of DR and D� lies in de-
grees ≥ −d, and we define ωR = H −d(DR) and ω� = H −d(D�). An important
fact [YZ1, Cor. 3.6] is that the cohomology of D� is Z-central in the sense that
the left and right actions of Z agree. In particular, ω� is Z-central.

The following results give some basic properties that we will need about these
objects. If M is �-bimodule, then Z(M) = {w ∈M : δw = wδ for all δ ∈�} is
called the center of M.

Lemma 2.5. Assume that R is an essentially affine k-algebra. Then:

(1) D�
∼= RHomR(�,DR) in D(�e);

(2) ω� ∼= HomR(�,ωR) as �e-modules;
(3) if C ⊂ Z is multiplicatively closed, then ω�C

∼= (ω�)C as �-bimodules.

Assume in addition that � is a tame R-order. Then:

(4) ω� is reflexive as a left or right �-module and is invertible in codimension 1;
(5) there is a canonical isomorphism Z(ω�) = ωZ.

Proof. (1) The proof of [Y2, Prop. 5.7] shows that RHomR(�,DR) is a rigid dual-
izing complex for � and so the result follows by the uniqueness of D�.

(2) Take cohomology of (1).
(3) By [YZ2, Thm. 3.8], D�C

∼= �C
L⊗� D�

L⊗�C as �-bimodules. Now take
cohomology, using that, as already mentioned, each Hq(D�) is Z-central.

(4) By part (2) and [Si, Lemma 1.5], it suffices to prove the result for ωR. This
case is well known, but here is an easy proof. By part (3) we may assume thatR is a
normal affine k-algebra. By Noether normalization,R is a finitely generated mod-
ule over some polynomial subring R0 and is a tame R0-order because it is normal.
It is standard [YZ2, Ex. 3.13] thatωR0

∼= R0 as bimodules, so [Si, Lemma 1.5] and
Lemma 2.1 imply that ωR ∼= HomR0(R,ωR0) is a reflexive R-module. That ω� is
invertible in codimension 1 follows, for example, from [CuR, Cor. 37.9] combined
with part (2).

(5) By part (2), ω� ∼= HomR(�,ωR) and so

Z(ω�) = {θ ∈ω� : θ(δ1δ2 − δ2δ1) = 0 for all δj ∈�}. (2.6)

Let τ : � → Z be the reduced trace map; thus � = Z ⊕ ker τ by Lemma 2.2.
We have maps α : Z(ω�) → Z(ωZ) = ωZ given by restriction of functions and
β : ωZ → Z(ω�) defined by β(φ)(a⊕b) = φ(a) for a ∈Z, b ∈ ker τ, and φ ∈ωZ.

Clearly αβ(φ) = φ for all φ ∈ ωZ and so it suffices to prove that α is injec-
tive. Let Z have field of fractions F with algebraic closure F̄, and write F̄� as
a full matrix ring Mm(F̄ ) for some m. Since slm(F̄ ) is a simple Lie algebra, it
is spanned by commutators and hence is also spanned by {[ai, aj ]} for any given
F̄ -basis {a/} of slm(F̄ ). Now let θ ∈ ker τ ; thus, by (2.6), θ kills all commutators
in �. Because we can pick the a/ ∈�, this implies that θ kills slm(F̄ ). Since τ is
a scalar multiple of the trace map in F̄�, it follows that θ(ker τ) = 0. Since θ |Z =
0, this implies that θ = 0.
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In our setting there is the following very precise description of ω�. This is the
analogue of the Hurwitz formula in algebraic geometry.

Proposition 2.7. Assume that R is an essentially affine k-algebra and that � is
a tame R-order. Then

ω� ∼=
(
ωZ ⊗Z

∏
p∈P1(Z)

(� ∩ rad(�p)) · p(−1)

)∗∗
.

This result is well known, but we had difficulty locating a reference that was valid
in the generality we need. We therefore give the proof here.

Proof of Proposition 2.7. By Lemma 2.2, we can replace R by Z. By Lemma
2.5(2) and (4), we obtain

ω� ∼= HomZ(�,ωR) ∼= (ωZ ⊗ HomZ(�,Z))∗∗

and so it suffices to prove that

HomZ(�,Z) ∼=
∏

p∈P1(Z)

(� ∩ rad(�p)) · p(−1).

As usual, letF denote the field of fractions ofZ, setA = F�, and write τ : A → F

for the reduced trace map. By the nondegeneracy of τ, HomZ(�,Z) is isomor-
phic as a �-bimodule to the inverse different I(�) = {x ∈A : τ(x�) ⊆ Z} (see
e.g. [F, Prop. 1]). Hence we need to show that

I(�) =
∏

p∈P1(Z)

(� ∩ rad(�p)) · p(−1).

It suffices to prove this result after localizing at a height-1prime ideal p ∈ P1(Z).

In other words, we may assume that R = Z = Z(�) = (Z,pZ) is a discrete val-
uation ring and that � is an hereditary order with Jacobson radical J = rad�. In
this case J is invertible and, by [Si, Thm. 2.3], it generates the group Div(�) ∼=
Z. Thus we write p� = J e for some e ≥ 1 and need to prove that I(�) = J 1−e

(in this situation J (a) = J a for all integers a, so we can omit the parentheses).
By Lemma 2.5(4) it follows that I(�) = J a for some a ∈ Z , so we need to show
a = 1 − e.

If a < 1 − e then p−1 ∈ J a and so Lemma 2.2 implies that Z ⊇ τ(p−1 · �) =
p−1Z, which is absurd. Hence a ≥ 1−e. To prove equality it is sufficient to prove
that τ(J 1−e) ⊂ Z or, equivalently, that τ(J ) ⊂ pZ.

Pick a finite field extension F̂/F such that F̂ ⊗F A ∼= Mn(F̂ ). Let Ẑ ⊂ F̂

be a discrete valuation ring lying over Z, write �̂ = �Ẑ, and choose a free Ẑ-
submodule G = ⊕n

i=1 Ẑgi ⊂ F̂ n such that �̂G ⊂ G. We may use the basis
{gi} to compute reduced traces. Since J e = p� ⊂ rad Ẑ, elements of J act nilpo-
tently on G/rad ẐG. Hence, if x ∈ J then τ(x) ∈ rad Ẑ ∩ F = pZ. This finishes
the proof.

Remark 2.8. We emphasize that our definition ofωR does coincide with the usual
commutative notion

∧d
(4R/k)

∗∗ when R is essentially affine with GKdimR = d.
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Indeed, if ω ′
R = ∧d

(4R/k)
∗∗, then [Y2, Lemma 5.4] shows that ωS = ω ′

S holds
for any regular and essentially finite domain S. Because R is normal, it is reg-
ular in codimension 1 and so Lemma 2.5(3) implies that (ωR)p = (ω ′

R)p for all
height-1 prime ideals p ∈ P1(R). By Lemma 2.5(4), ωR and ω ′

R are reflexive and
so ωR = ω ′

R.

Proposition 2.9. Assume that � is a prime affine k-algebra. Then � is homo-
logically homogeneous of dimension d if and only if gl dim� < ∞ and D� =
4[d ] for some invertible �-bimodule 4. If this holds, then 4 = ω�.

Remark 2.10. In the notation of [V1, Sec. 8], the proposition states that � is ho-
mologically homogeneous of dimension d if and only if gl dim� < ∞ and � is
AS-Gorenstein. See [SZ, Thms. 1.3 and 1.4] for a closely related result.

Proof of Proposition 2.9. Assume first that � is homologically homogeneous of
dimension d. The statement of the proposition is independent of the choice ofR, so
by Noether normalization we may assume thatR is a polynomial ring. By Theorem
2.3(1) and (3), � is CM and hence free as an R-module. But now DR = ωR[d ] ∼=
R[d ] and so D� = RHomR(�,DR) lives purely in dimension −d, whence D� =
ω�[d ]. Lemma 2.5(2) implies that ω� is free and hence is CM as an R-module,
so [BH, Cor. 3.1] implies that ω� is a projective �-module on either side. On the
other hand, since � is a free R-module, it follows that � is a tame R-order and so
Lemma 2.5(4) implies that ω� is invertible in codimension 1. Together with [Si,
Prop. 3.1], these observations imply that ω� is invertible, finishing the proof in this
direction.

Conversely, assume that gl dim� < ∞ and thatD� = 4[d ] for some invertible
bimodule 4. We must show that every simple �-module S has projective dimen-
sion pd S = d. As before, we may assume that R is a polynomial ring in (say)
d ′ indeterminates, whence ωR ∼= R[d ′ ]. Since HomR(�,R) �= 0 and since D� is
concentrated in dimension −d, this implies that d = d ′ = GKdim�. By [YZ1,
Cor. 6.9], D� is Auslander and GKdim-Macaulay in the sense of [YZ1, Defs. 2.1
and 2.24]. Because S is finite dimensional, this implies that Extd�(S,4) �= 0 and
so pd S ≥ d. If gl dim� = e > d then, by [Ra, Thm. 8], there exists a sim-
ple �-module S with Exte�(S,�) �= 0. Since 4 is invertible, this implies that
E = Exte�(S

′,4) �= 0 for S ′ = 4 ⊗� S. By the Auslander property, it follows
that j(E) ≥ e − d and hence that CdimD�(E) ≤ d − e in the sense of [YZ1,
Def. 2.9]. By the GKdim-Macaulay property, this implies that GKdim S < 0,
which is absurd.

The following formulas will be useful.

Corollary 2.11. Assume that R is essentially affine with GKdimR = d, and
let � be a tame R-order. Then

ω
(−1)
� = Extd�e (�,�e)∗∗. (2.12)

If � is homologically homogeneous, then

ω
(−1)
� = RHom�e(�,�e)[d ]. (2.13)
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Proof. If � is homologically homogeneous then it has dimension d by Theo-
rem 2.3. Thus [V1, Prop. 8.4] and Remark 2.10 combine to prove (2.13).

Now suppose that � is a tame R-order and set � = �p for some p ∈ P1(Z).

Then � is an hereditary order and, by [McRo, Thm. 13.10.1], Z(�) is a local PID.
By Lemma 2.5(4),ω� is invertible and hence, just as in the proof of Proposition 2.9,
D� = ω�[d ]. Thus, [V1, Prop. 8.4] can again be applied to show that ω(−1)

� =
Extd�e (�,�e)∗∗. In other words, (2.12) holds in codimension 1. Since both sides of
that equation are reflexive, it holds everywhere.

3. Reduction to the Calabi–Yau Case

Let� be a homologically homogeneous ring. In Section 4 we will use the structure
of ω� to show that Z has rational singularities, but this is awkward to prove when
ω� is not cyclic. In this section we show how to use a trick from [NV, Thm. 3.1]
to (locally) replace � by an order for which ω� is generated by a single central
element. This is a noncommutative generalization of a well-known technique in
algebraic geometry where one constructs a Gorenstein cover of a Q-Gorenstein
singularity.

Given a tameR-order � inA and I ∈ Div(�), the Rees ring �[I ] of � is defined
to be the subring

∑∞
n=−∞ I (n)xn of the Laurent polynomial ring A[x, x−1].

Proposition 3.1. Assume that � is homologically homogeneous. For some n ≥
1, suppose that ω⊗n

�
∼= � as bimodules and choose n minimal with this property.

Write
6 = �⊕ ω� ⊕ ω⊗2

� ⊕ · · · ⊕ ω⊗n−1
� ,

where the multiplication is defined using the isomorphism ω⊗n
�

∼= �. Then:

(1) 6 is a prime homologically homogeneous ring;
(2) ω6 ∼= 6 as 6-bimodules.

Proof. (1) By Theorem 2.3(3) and (4), Z is an affine normal domain and � is a
tame Z-order in its simple Artinian ring of fractions A. By [YZ1, Cor. 3.6], ω�
is Z-central and so Lemma 2.5(4) implies that ω� is isomorphic to a divisorial
fractional ideal I. As a result, I (n) = �a for some a ∈ L = Z(A) and so 6 ∼=
�[I ]/(1 − axn). The field of fractions of 6 is therefore

B = A⊗L L[x]/(1 − axn).

By [Si, Thm. 2.3], Div(�) is a free abelian group. Therefore, if a = bm for some
m > 1 and b ∈ L then we would have m | n and I (n/m) = �b, contradicting the
minimality of n. It follows that L[x]/(1 − axn) is a field and thus B is a central
simple algebra. Consequently, 6 is prime.

The ring 6 is strongly graded and hence gl dim6 = gl dim� follows from
[McRo, Cor. 7.6.18] together with the equivalence of the categories of �-modules
and graded 6-modules. Thus gl dim6 = gl dim� = GKdim� = GKdim6 by
Theorem 2.3(2) and [McRo, Prop. 8.2.9(ii)]. By Theorem 2.3(1), � is CM as a
Z-module and hence so is each ω

⊗j
� and 6. Thus 6 is homologically homoge-

neous by Lemma 2.4.
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(2) Using the formula ω6 = HomR(6,ωR), we compute that

ω6 = ω� ⊕ ω⊗2
� ⊕ · · · ⊕ ω⊕n−1

� ⊕�

as Z/nZ-graded 6-bimodules. Forgetting the grading gives the result.

Remarks 3.2. (1) Assume that Z is an essentially affine k-algebra. Following
[Br] or [G],� is called Calabi–Yau of dimension d ifD�

∼= �[d ] inD(�e). (Some
authors also require Calabi–Yau algebras to have finite global dimension; see e.g.
[IR, Thm. 3.2(iii)].) For a survey on the Calabi–Yau property in an algebraic con-
text, see [G].

By Proposition 2.9, an affine Calabi–Yau algebra of finite global dimension is
automatically homologically homogeneous. Conversely, Proposition 3.1 can be
regarded as a reduction to the Calabi–Yau case.

(2) Proposition 3.1 can also be regarded as a reduction to the case of orders un-
ramified in codimension 1. In order to explain this, recall that a tame order � is
unramified in codimension 1 if p�p = rad�p for all p ∈ P1(Z). Given a tame
Calabi–Yau order �, it follows from Lemma 2.5(5) that Z ∼= Z(ω�) = ωZ and so
Proposition 2.7 implies that p�p = rad�p for all p ∈ P1(Z).

Even when � is homologically homogeneous, there is no reason for ω� to have
finite order and so Proposition 3.1 cannot be applied directly. However, ω� has fi-
nite order locally, which will be sufficient for our applications. Before stating the
result, we prove some elementary facts.

Lemma 3.3. If S is a ring with Jacobson radical rad(S) and if P is an invertible
S-bimodule, then rad(S)P = P rad(S).

Proof. We claim that the image of composition

χ : P−1 ⊗S rad(S)⊗S P −→ P−1 ⊗S S ⊗S P ∼= S (3.4)

lies in rad(S). This proves the inclusion rad(S)P ⊆ P rad(S). To prove the op-
posite inclusion, interchange P and P−1.

In order to prove the claim, we will show that the image of χ annihilates all
simple S-modules. Let M be a simple S-module. We must show that the map

P−1 ⊗S rad(S)⊗S P ⊗S M −→ M (3.5)

is zero. Tensoring (3.5) on the left by P yields the map

rad(S)⊗S P ⊗S M −→ P ⊗S M. (3.6)

Since P ⊗S − is an autoequivalence of Mod(S), it follows that P ⊗S M is a sim-
ple module and hence (3.6) is indeed the zero map.

Lemma 3.7. Assume that R is local and that � is a tame R-order in A, with R =
Z(�). If P is anR-central invertible �-bimodule, then there exists an integer n >
0 such that P⊗n ∼= � as �-bimodules.

Proof. Because P is invertible, tensor powers, symbolic powers, and ordinary
powers all coincide. Hence we drop the tensor product sign.
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We first prove that P n ∼= � as left �-modules. By Lemma 3.3, P/rad(�)P is
an invertible bimodule over �/rad(�). Since �/rad(�) is semisimple, it is easy to
see that there exists an n > 0 such that

P n/rad(�)P n = (P/rad(�)P )n ∼= �/rad(�)

as left �/rad(�)-modules. By Nakayama’s lemma it follows that P n ∼= �, again
as left �-modules.

Let K denote the fraction field of R. Since P is R-central, K⊗R P is an invert-
ible A-bimodule. After choosing an isomorphism K ⊗R P ∼= A, we may assume
that P is a divisorial fractional R-ideal. By [LeVV, Prop. II.4.20], some power
P (e) of P lies in the image of Div(Z(�)) in Div(�); that is, P (e) ∼= (�I )∗∗ for
some reflexive ideal I ofR. By the preceding paragraph, we may also assume that
P e ∼= � as left �-modules.

Now let u = rkR � and write
∧u

(M) = ∧u
R(M) for the uth exterior power of

an R-module M. Then
(∧u

(�I )
)∗∗ ∼= ∧u

P e ∼= (∧u
(�)

)∗∗
as R-modules. On

the other hand, ( u∧
(�I )

)∗∗
=

(( u∧
�

)
Iu

)∗∗
=

( u∧
�

)∗∗
(I u)∗∗

and so
(∧u

�
)∗∗
(I u)∗∗ = (∧u

(�)
)∗∗
. Canceling

(∧u
�

)∗∗
gives (I u)∗∗ ∼= R

as R-modules. Since P e ∼= (�I )∗∗ as �-bimodules, we obtain P eu ∼= � as
�-bimodules.

Corollary 3.8. Suppose that� is homologically homogeneous k-algebra. Then
for every maximal ideal m of Z there exist f ∈Z \ m and n > 0 with the property
that ω⊗n

�f
∼= �f as �f -bimodules.

Proof. By Proposition 2.9, ω� is invertible and (as we have already seen) is Z-
central. By Lemma 2.5(3) and Theorem 2.3(4), we can therefore apply Lemma 3.7
to P = ω�m and conclude that ω⊗n

�m
∼= �m as �m-bimodules. As usual, this iso-

morphism may be “spread out” on a neighborhood of m in SpecZ.

4. The Center of Homologically Homogeneous Rings

In this section we prove Theorem 1.1 from the Introduction. We start with two
preparatory lemmas, the first of which gives a useful algebraic criterion for a ring
to have rational singularities.

Lemma 4.1. Let Z be an affine normal CM k-domain with field of fractions K.
Then Z has rational singularities if and only if, for all regular affine k-algebras S
satisfying Z ⊆ S ⊂ K, we have ωZ ⊆ ωS inside ωK.

Proof. Let X = SpecZ. By Remark 2.8, ωX in the sense of [KKMS, KoMo] is
equal to ωZ in the sense of this paper and so, by Lemma 2.5(4), ωX is reflexive.
According to [KKMS, p. 50] or [KoMo, Thm. 5.10], X has rational singularities
if and only if for one (or for all) resolution(s) of singularities f : Y → X we have
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f∗ωY = ωX inside ωK. Since ωX and ωY are reflexive this is equivalent to ωX ⊆
f∗ωY , which in turn is equivalent to (f ∗ωX)∗∗ ⊆ ωY . This can be checked locally
on Y.

So assume that ωZ ⊆ ωS for all affine regular k-algebras S satisfying Z ⊆ S ⊂
K. Pick Y by the previous paragraph as well as an open affine subset U ⊂ Y.

Then ωZ ⊆ ωS for S = O(U) and hence (S ⊗Z ωZ)
∗∗ ⊆ ωS. Globalizing gives

(f ∗ωX)∗∗ ⊆ ωY , so Z has rational singularities.
Conversely, assume that Z has rational singularities and let Z ⊆ S be as in the

statement of the lemma. Put U = Spec S. We may compactify the map g : U →
X to a projective map ḡ : Y ′ → X. A priori Y ′ will not be smooth, but we can
resolve it further without touching U (see [KoMo, Thm. 0.2]) to arrive at a reso-
lution of singularities f : Y → X. The fact that (f ∗ωX)∗∗ ⊆ ωY then implies that
(S ⊗Z ωZ)

∗∗ ⊆ ωS after restricting to U. Therefore, ωZ ⊆ ωS.

Lemma 4.2. Let 61 and 62 be affine k-algebras of finite global dimension that
satisfy a polynomial identity. Then 61 ⊗k 62 has finite global dimension.

Proof. By the Nullstellensatz [McRo, Thm. 13.10.3], every primitive factor ring
of 6i is isomorphic to a full matrix ring over k. Hence every primitive factor ring
� of 6 = 61 ⊗k 62 decomposes as � = �1 ⊗k �2 for primitive factor rings �i
of 6i. Thus, any simple 6-module M can be written as M = M1 ⊗k M2, where
each Mi is a simple 6i-module. Now use [CE, Prop. IX.2.6].

Theorem 4.3. If � is a homologically homogeneous k-algebra, then Z = Z(�)

has rational singularities.

Proof. It is enough to prove the result locally, so by Corollary 3.8 we can replace
� by some �f and assume that ω⊗n

�
∼= � as �-bimodules. By Proposition 3.1,

the algebra 6 = �⊕ω� ⊕ω⊗2
� ⊕· · ·⊕ω⊗n−1

� satisfies ω6 ∼= 6 as 6-bimodules.
Then 6 and hence Z(6) are Z/nZ-graded. Moreover, since ω� is Z-central,
clearly Z commutes with each ω

⊗j
� and so Z ⊆ Z(6)0. The other inclusion is

trivial, so Z = Z(6)0 and Z is a module-theoretic summand of Z(6). Because
a direct summand of a ring with rational singularities has rational singularities
[Bou], we may replace� by6 and assume that ω� ∼= � as bimodules. By Propo-
sition 3.1(1), � remains homologically homogeneous.

We will use Lemma 4.1, so fix a ring Z ⊆ S ⊂ K as in the lemma and let � be
a maximal (and therefore tame) S-order containing S� inside the simple Artinian
ring of fractions A of �. Our discussion in Section 2 on dualizing complexes also
applies with (R,�) replaced by (S,�), so ω� = HomS(�,ωS) and ωS = Z(ω�)

in the notation developed there. We will show that ω� ⊆ ω� inside ωA. Since S ⊂
K, this will yield Z(ω�) ⊆ Z(ω�) as subgroups of Z(ωA) and so Lemma 2.5(5)
will imply that ωZ ⊆ ωS , as required.

In order to prove that ω� ⊆ ω� we may as well prove that ω�� ⊆ ω�. The bi-
module isomorphism ω� ∼= � means that ω� = c� for some central element c ∈
ωA. From this we deduce that ω�� = �ω� is an invertible �-bimodule with in-
verse ω(−1)

� � = c−1�. By Lemma 2.5(4), ω� is reflexive and so it suffices to prove
that ω(−1)

� ⊆ ω
(−1)
� � inside ω(−1)

A .
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We claim that

�
L⊗� RHom�e(M,�e)

L⊗� � = RHom�e

(
�

L⊗� M
L⊗� �,�e

)
(4.4)

for any object M in Db(�e) with finitely generated cohomology. To prove this,
recall that gl dim�e < ∞ by Lemma 4.2. Thus we can replace M by a finite pro-
jective resolution of �e-modules, whereafter it suffices prove the claim for M =
�e. This case is obvious.

Applying (4.4) withM = � and using the formula ω(−1)
� = RHom�e(�,�e)[d ]

from (2.13), we obtain

�
L⊗� ω

(−1)
�

L⊗� � = RHom�e

(
�

L⊗� �,�e
)
[d ].

Because the derived tensor product maps to the ordinary tensor, we can now in-
duce a composed map

RHom�e (�,�e)[d ] −→ RHom�e

(
�

L⊗� �,�e
)
[d ]

= �
L⊗� ω

(−1)
�

L⊗� � −→ ω
(−1)
� �.

Taking cohomology in degree 0 and then biduals gives a map

Extd�e (�,�e)∗∗ −→ (ω
(−1)
� �)∗∗ = ω

(−1)
� �.

We can then use (2.12) to induce the map

ω
(−1)
� −→ ω

(−1)
� �. (4.5)

We could have performed these computations after tensoring with the field of
fractions K of Z. Since K = KZ = KS and K� = K� = A, all morphisms
would then have been (canonically) the identity. From this we deduce that (4.5) is
an inclusion that takes place inside ω(−1)

A , so we are done.

Remarks 4.6. (1) Suppose that � is an affine Calabi–Yau k-algebra of finite
global dimension. Then Theorem 4.3 and Remark 3.2(1) combine to prove that Z
has rational singularities.

(2) Homologically homogeneous rings were defined in [BH] for orders in
semisimple rather than simple Artinian rings. However, by [BH, Thm. 5.3], these
more general algebras are direct sums of prime homologically homogeneous rings;
the more general case also follows from this theorem. Similarly, one can weaken
the hypothesis that � be finitely generated as a module over its center to the as-
sumption that it be an affine algebra satisfying a polynomial identity—since, by
[SZ, Thm. 5.6(iv)], this already forces � to be a finitely generated Z-module.

5. Examples

Here we give two examples to illustrate the preceding results. The first shows that
[V2, Lemma 4.2] cannot be improved, and the second shows that Theorem 1.1 can
fail in finite characteristic.

In addition to our standing hypotheses, suppose that R is an affine Gorenstein
k-algebra and that � = EndR(M) for some finitely generated reflexive R-module
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M. Then it follows from [V2, Lemma 4.2] that � is homologically homogeneous
if and only if gl dim� < ∞ and � is a CM R-module. This is useful for the
theory of noncommutative crepant resolutions, so it would be useful if one could
weaken the hypotheses in this result.

In our first example, we show that the Gorenstein condition is necessary. Let T
be a one-dimensional torus acting on the generators of the polynomial ring S =
k[x1, x2, x3, x4, x5] with respective weights 1,1,1,−1,−1, and letR = ST. We may
also view R as the coordinate ring of the variety of 2 × 3 matrices of rank ≤ 1.

The T -weights give a grading S = ⊕∞
/=−∞ S/ with S0 = R. According to the

proof of [V2, Lemma 8.8], the Si are isomorphic to reflexive ideals of R with
Sa+b = (SaSb)

∗∗ for all a, b ∈ Z. Furthermore, it is easy to see that Si is not a
projective R-module when i �= 0.

It follows from [V2, Lemma 8.1] that S−2, S−1, R, and S1 are CM R-modules,
while R is certainly normal. Therefore, by [V2, Lemma 8.2 and Thm. 8.6],

� = EndR(R ⊕ S1) =
(

R S1

S−1 R

)

has finite global dimension and hence is a tame order over its center R. By [Kn,
Kor. 2], the dualizing module ωR is isomorphic to S−1 (where −1 represents the
negative of the sum of the weights of the generators of S), from which we de-
duce that

ω� = HomR(�,ωR) ∼=
(
S−1 R

S−2 S−1

)
.

Both � and ω� are graded for the standard grading on R. For this choice of grad-
ing, � is graded semilocal and ω� is (as left or right module) not a direct sum of
indecomposable graded �-projectives. Consequently, ω� is not projective.

By Proposition 2.9, � is therefore not homologically homogeneous.

Remarks 5.1. (1) By the proof of [DV, Prop. 1.2], it follows that ω� defines an
element of the derived Picard group of �.

(2) The methods of [BuLV] allow one to treat this first example in the context
of determinantal varieties. It follows from the results given there that one of the
simple graded �-modules has projective dimension 4 and the other has projective
dimension 5.

The example leads naturally to the following question.

Question 5.2. Assume that Z = Z(�) is an affine normal k-domain and that �
is a finitely generated CM Z-module with finite global dimension. Then, does Z
have rational singularities?

We now turn to an example in finite characteristic of a homologically homoge-
neous ring with CM center but without rational singularities in any reasonable
sense.

Assume that F is a field of characteristic 2 and let C = F [u, v, x, y]/(p, q),
where

p = x + u2 + x 2u and q = y + v2 + y2v.
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Because the Jacobian matrix of p, q with respect to x, y is invertible, C/F [x, y] is
étale and hence C is regular. Consider the action of G = Z/(2) = {1, σ} on C by
σ(u) = u+ x 2, σ(v) = v + y2, σ(x) = x, and σ(y) = y. Clearly B = CG is an
affine normal domain of Krull dimension 2 and hence is CM.

Resolutions of singularities are known to exist for surfaces in all characteristics,
and there is a corresponding satisfactory theory of rational singularities. We will
show that B does not have rational singularities. Let m = (u, v) ⊂ C and observe
that m = (u, v, x, y) is maximal; thus Ĉm = F [[u, v]]. It suffices to prove that
B̂n (n = B ∩ m) does not have rational singularities. Since uuσ = u2 + ux 2 =
x ∈ ĈG

m = B̂n and vvσ = y ∈ B̂n, our notation conforms with that of [A, Thm.].
Now u2 + x 2u + x = 0 = v2 + y2v + y implies that B̂n does not have rational
singularities, by the observation from [A, p. 64].

Finally, let 6 = C [z; σ] be the twisted polynomial ring; thus zc = cσz for all
c ∈ C. By the Nullstellensatz, every simple 6-module is finite dimensional and
so, by [McRo, Thm. 7.9.16], 6 is homologically homogeneous of dimension 3.
Since σ 2 = 1, the element z2 is central. It follows routinely that Z(6) = B[z2].
Therefore, Z(6) also does not have rational singularities.

The basic reason why such counterexamples exist in bad characteristic is that
a fixed ring SG need not be a summand of the ring S. The example of a homo-
logically homogeneous ring with a non-CM center [BHMa, Ex. 7.3] occurs for a
similar reason. So it is natural to pose the following question.

Question 5.3. Suppose that6 is a homologically homogeneous ring whose cen-
ter Z(6) is an affine F -algebra for field F of characteristic p > 0. If Z(6) is a
Z(6)-module summand of 6, then does Z(6) have rational singularities?

It was conjectured in [V3] and proved in [V2, Thm. 6.6.3] that a three-dimensional
k-variety with terminal singularities has a noncommutative crepant resolution if
and only if it has a commutative one (see also [IR, Cor. 8.8]). We end by remark-
ing that this is not true in higher dimensions. One way to produce counterexamples
is with the fixed ring R = C[V ]G of a finite group G ⊂ SL(V ), where V = Cn.

In this case, the twisted group ring C[V ] ∗ G ∼= EndR(C[V ]) is a noncommuta-
tive crepant resolution of R [V2, Ex. 1.1], but it is well known that such a ring R
need not have a commutative crepant resolution (see e.g. [Ka1, Thm. 1.7]).
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