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Introduction

In recent years the progress and applications of valuation theory have brought to
light the importance of understanding the semigroups of values that a Krull valu-
ation ν of some field takes on a Noetherian local ring (R, m) contained in the ring
(Rν , mν) of the valuation.

Two general facts about valuations dominating a Noetherian local domain are
proven by Zariski and Samuel in their book on commutative algebra [17]. The
first is that these semigroups are well-ordered subsets of the positive part of the
value group and of ordinal type at most ωh, where ω is the ordinal type of the
well-ordered set N and h is the rank of the valuation (see [17, Apx. 3, Prop. 2]).
Being well-ordered, each value semigroup of a Noetherian ring has a unique min-
imal system of generators that is indexed by an ordinal no greater than ωh.

The second general fact is that, if mν ∩ R = m and if R and Rν have the same
field of fractions, then the Abhyankar inequality

rr(ν) + trk kν ≤ dim R

holds for the rational rank of the group of the valuation, the transcendence degree
of the residue field of Rν as an extension of the residue field of R, and the dimen-
sion of R. If equality holds then the group of the valuation is isomorphic to Zrr(ν)

(see [17, Apx. 2]). If, in addition, the rank of h is 1, then the ν-adic and m-adic
topologies of R coincide (see [14, Prop. 5-1]).

These two conditions on ordinal type and rational rank do not characterize value
semigroups of Noetherian rings. In [5], a third condition is given that concerns the
rate of growth of the number of generators of the semigroup of a valuation domi-
nating an equicharacteristic Noetherian local domain. This condition implies that
there exist subsemigroups of Q+ that are well-ordered of ordinal type ω—and so
satisfy the first two conditions—but are not semigroups of valuations dominating
an equicharacteristic Noetherian local domain.

Examples, starting with plane branches (see [15; 16]) and continuing with quasi-
ordinary hypersurfaces (see [8]) suggest that the structure of the semigroup con-
tains important information on the process of local uniformization.
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In this paper we shall consider mostly valued Noetherian local rings (R, m) ⊂
(Rν , mν) such that R and Rν have the same field of fractions, the equality mν ∩R =
m holds, and the residual extension R/m → Rν/mν is trivial. We call such valua-
tions rational valuations of R. In this case, the finite generation of the semigroup
is equivalent to the finite generation over kν = Rν/mν of the graded algebra asso-
ciated to the valuation

grν R =
⊕
γ∈�

Pγ/P+
γ ,

where

Pγ = {f ∈ R | ν(f ) ≥ γ }, P+
γ = {f ∈ R | ν(f ) > γ },

and � is the value group of the valuation. This equivalence is true because each
homogeneous component Pγ/P+

γ is nonzero exactly when γ is in the value semi-
group S = ν(R \ {0}), and then it is a one-dimensional vector space over R/m =
Rν/mν (see [15, Sec. 4]).

If the semigroup is finitely generated, then it is not difficult to find a valuation of
a local Noetherian domain that includes it as a semigroup: the semigroup algebra
with coefficients in a field K is then a finitely generated algebra. We can define
a weight on its monomials by giving to each generator as weight the generator of
the semigroup to which it corresponds. Then we define a valuation by deciding
that the valuation of a polynomial is the smallest weight of its monomials.

The simplest example is that of a subsemigroup of N. It is necessarily finitely
generated (see [13, Thm. 83, p. 203]) and, after dividing by the greatest common
divisor, we may assume that its generators γ1, . . . , γg are coprime, so that it gener-
ates the group Z. It is the semigroup of values of the t-adic valuation on the ring
K[tγ1, . . . , tγg ] ⊂ K[t] of the monomial curve corresponding to the semigroup.

In Section 2 we give an example of a semigroup of values of a valuation on a
polynomial ring L[x, y, z] over a field that generates the group Z2 but is not finitely
generated as a semigroup. Moreover, the smallest closed cone in R2 with vertex 0
containing the semigroup is rational.

If the semigroup is not finitely generated, very little is known about its structure.
We know that all totally ordered abelian groups of finite rational rank appear as
value groups of valuations of rational function fields centered in a polynomial ring,
but we do not know any general condition implying that a well-ordered subsemi-
group of the positive part of a totally ordered group of finite rational rank appears
as a semigroup of values of a Noetherian ring. We present in Section 4 a charac-
terization of those well-ordered subsemigroups of Q+ that are the semigroups of
values of a K-valuation on K[X, Y ](X,Y ); however, no general result is known for
subsemigroups contained in the positive part Q2

�0 of Q2 for some total ordering �.

We show in Section 3 that a subsemigroup S of the positive part of a totally or-
dered abelian group of finite rational rank, where S is of ordinal type < ωω, has
no accumulation points; we also show that S has ordinal type ≤ ωh, where h is
the rank of the group generated by S. These are properties that are held by the
semigroup of a valuation on a Noetherian ring.
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Even if one could solve the problem of determining which semigroups of a to-
tally ordered group of (real) rank 1 come from Noetherian rings, an induction on
the rank would meet serious difficulties. A naturally occurring question concerns
the position of elements of R whose values are the generators of the semigroup in
regard to the valuation ideals of the valuations with which the given valuation is
composed.

More precisely, let ν be a valuation taking nonnegative values on the Noether-
ian local domain R, let � be the convex subgroup of real rank 1 in the group �

of the valuation, and let P be the center in R of the valuation ν1 with values in
�/� with which ν is composed. The valuation ν induces a residual valuation ν̄ on
the quotient R/P. If the image q(γ ) of γ in �/� by the canonical quotient map
q : � → �/� is γ1, then we have inclusions of the valuation ideals corresponding
to ν and ν1:

P+
γ1

⊂ Pγ ⊂ Pγ1 .

Because R is Noetherian, the quotients Pγ1/P+
γ1

are finitely generated
(R/P )-modules for all γ1 ∈ �/�. Each is endowed by the sequence
(Fγ = Pγ/P+

γ1
)γ∈q−1(γ1), which we denote by F(γ1), with the structure of a

filtered (R/P )-module with respect to the filtration F(0) of R/P by its valuation
ideals (Pδ)δ∈� , where Pδ = PδR/P = Pδ/P.

One could hope (see [15]) that the associated graded module

grF(γ1) Pγ1/P+
γ1

=
⊕

γ∈q−1(γ1)

Pγ/P+
γ

is finitely generated over the associated graded ring

grν̄ R/P =
⊕
δ∈�+

Pδ/P+
δ .

For rational valuations, this would be equivalent to the fact that, for each γ1 >

0, only finitely many new generators of the semigroup appear in Pγ1 \ P+
γ1

. This
would also place a drastic restriction on the ordinal type of the minimal set of gen-
erators of the semigroup ν(R \ {0}).

In Sections 7 and 8 we give examples showing that this is not at all the case
and that, in fact, the cardinality of the set of new generators may vary quite a lot
with the value of γ1. One might hope that this lack of finiteness is due to some
transcendence in the residual extension from R/P to Rν/mν1 and disappears after
some birational extension of R to another Noetherian local ring contained in Rν

that absorbs the transcendence. Section 8 presents an example with no residue
field extensions.

1. A Criterion for Finite Generation

Given a commutative semigroup S, a set M is endowed with a structure of an
S-module by an operation S × M → M written (s, m) �→ s + m such that



176 Steven Dale Cutkosky & Bernard Teiss ier

(s + s ′) + m = s + (s ′ + m). Recall that M is then said to be a finitely gen-
erated S-module if there exist finitely many elements m1, . . . , mk in M such that
M = ⋃k

i=1(S + mi).

Proposition 1.1. With notation as before, suppose that K is a field and that R is
a local domain with residue field K dominated by a valuation ring Rν of the field
of fractions of R. Assume that the residual extension R/m → Rν/mν is trivial.
Then, for γ1 ∈ �/�, the associated graded module

grF(γ1) Pγ1/P+
γ1

is a finitely generated (grν̄ R/P )-module if and only if

Fγ1 = {ν(f ) | f ∈ R and ν1(f ) = γ1}
is a finitely generated module over the semigroup F̄ = ν̄(R/P \ {0}).
Proof. Let us first remark that, because Pγ1/P+

γ1
is an (R/P )-module, the set Fγ1

is an F̄ -module.
We know from [15, 3.3–3.5, 4.1] that (a) the nonzero homogeneous compo-

nents of the graded algebra grν R = ⊕
γ∈� Pγ/P+

γ are one-dimensional K-vector
spaces whose degrees are in bijection with F = ν(R \ {0}) and (b) F̄ = F ∩ �.

The (grν̄ R/P )-module grF(γ1) Pγ1/P+
γ1

is nothing but the sum of the compo-
nents of grν R whose degree is in q−1(γ1). Since we are dealing with graded
modules whose homogeneous components are one-dimensional K-vector spaces,
this module is finitely generated if and only if there exist finitely many homoge-
neous elements e1, . . . , er ∈ grF(γ1) Pγ1/P+

γ1
such that each homogeneous element

of grF(γ1) Pγ1/P+
γ1

can be written as x̄ei with x̄ ∈ R/P ; this is equivalent to an as-
sertion on degrees, which is exactly that the F̄ -module Fγ1 is finitely generated.

2. An Example with Value Group Z2 and
Non–Finitely Generated Semigroup

Let K be a field. Let r be a positive natural number such that the characteristic
of K does not divide r, and let aij for 0 ≤ i ≤ 2 and 1 ≤ j ≤ r be algebraically
independent over K. Let M be the field

M = K({aij | 0 ≤ i ≤ 2 and 1 ≤ j ≤ r}).
Let G ∼= Zr be the subgroup of the permutation group Sr generated by the cycle
(1, 2, . . . , r). For σ ∈ G, define a K automorphism of M by σ(aij ) = ai,σ(j). Let
L = MG be the fixed field of G. We have an étale Galois morphism

( : P2
M → P2

L
∼= P2

M/G.

Let x0, x1, x2 be homogeneous coordinates on P2
K. Define pi = (a0i, a1i, a2i ) ∈

P2
M for 1 ≤ i ≤ r, and let q = ((p1). Since {p1, . . . , pr} is an orbit of ( under the

action of G, it follows that q = ((pi) for1 ≤ i ≤ r and that IqOP2
M

= Ip1 · · · Ipr
.
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Let ν̄ be the m-adic valuation of OP2
L
,q . Then

�(P2
L, OP2(d ) ⊗ I n

q )

= {
F(x0, x1, x2) ∈ �(P2

L, OP2(d ))
∣∣ ν̄

(
F

(
1, x1

x0
, x2

x0

)) ≥ n
}
. (1)

Since M is flat over L, we have

�(P2
L, OP2(d ) ⊗ I n

q ) ⊗L M = �(P2
M , OP2(d ) ⊗ ((Ip1 · · · Ipr

)n)). (2)

Let ν1 be the m-adic valuation on R = L[x0, x1, x2 ](x0,x1,x2 ). The valuation ring
Rν1 of ν1 is L

[
x0, x1

x0
, x2

x0

]
(x0)

with residue field Rν1/mν1
∼= L

( x1
x0

, x2
x0

)
. The inclu-

sion of the valuation ring Rν̄ of ν̄ into its quotient field L
( x1

x0
, x2

x0

)
determines a

composite valuation ν = ν1� ν̄ on the field L(x0, x1, x2), which dominates R. The
valuation ν is rational, and its value group of ν is Z × Z with the lex order.

For f ∈ L[x0, x1, x2 ], let Lf (x0, x1, x2) be the leading form of f. Then Lf is
a homogeneous form whose degree is the order ord(f ) of f at the homogeneous
maximal ideal of k[x0, x1, x2 ]. The value of f is

ν(f ) = (
ord(f ), ν̄

(
Lf

(
1, x1

x0
, x2

x0

))) ∈ N × N.

For (d, n) ∈ N × N, we have L-module isomorphisms

P(d,n) ∩ L[x0, x1, x2 ] ∼= �(P2
L, OP2(d ) ⊗ I n

q ) ⊕
( ⊕

m>d

�(P2
L, OP2(m))

)
,

and
P(d,n)/P+

(d,n)
∼= �(P2

L, OP2(d ) ⊗ I n
q )/�(P2

L, OP2(d ) ⊗ I n+1
q ). (3)

Proposition 2.1. Suppose that r = s2, where s ≥ 4 is a natural number. Then,
for n �= 0,

P(d,n)/P+
(d,n) = 0 if d ≤ ns (4)

and, if s ′ is a real number such that s ′ > s, then there exist natural numbers d, n
such that d < ns ′ and

P(d,n)/P+
(d,n) �= 0. (5)

Proof. We have that �(P2
M , OP2(d ) ⊗ ((Ip1 · · · Ipr

)n)) = 0 if d ≤ ns by [11,
Prop. 1(1)]. Thus, (4) follows from (2) and (3).

Suppose that s ′ is a real number greater than s. Using the Riemann–Roch the-
orem and Serre duality on the blow-up of P2

L at q, we compute (as in the proof of
[11, Prop. 1(2)]) that

dimL(�(P2
L, OP2(d ) ⊗ I n

q ) ≥ d(d + 3)

2
− r

n(n + 1)

2
+ 1 > 0

if
d(d + 3)

2
≥ r

n(n + 1)

2
.

Fixing a rational number λ with s ′ > λ > s, we see that we can find natural
numbers d and m with d/m = λ and
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dimL(�(P2
L, OP2(d ) ⊗ I m

q ) �= 0.

Let n ≥ m be the largest natural number such that

dimL(�(P2
L, OP2(d ) ⊗ I n

q )) �= 0.

Then d < ns ′ and P(d,n)/P+
(d,n) �= 0 by (3). Thus, (5) holds.

The following result follows from Proposition 2.1.

Proposition 2.2. Suppose that s ≥ 4 is a natural number. Then there exist a
field M and a rank 2 valuation ν, with value group Z2 order lexicographically, of
the rational function field M(x0, x1, x2) in three variables, which dominates the
regular local ring

R = M [x0, x1, x2 ](x0,x1,x2 ),

and is such that ⊕
(d,n)∈N×N

P(d,n)/P+
(d,n)

is not a finitely generated R/mR
∼= M algebra.

The semigroup � = ν(R \ {0}) is not finitely generated as a semigroup. Fur-
thermore, the closed rational cone generated by � in R2 is the rational polyhedron

{(d, n) ∈ R2 | n ≥ 0 and d ≥ ns}.

3. Semigroups of Ordinal Type ωh

Suppose that G is an ordered abelian group of finite rank n. Then G is order iso-
morphic to a subgroup of Rn, where Rn has the lex order (see [1, Prop. 2.10]). If
G is the value group of a valuation ν dominating a Noetherian local ring R and if
S is the semigroup of values attained by ν on R, then it can be shown that S has
no accumulation points in Rn.

In this section we prove that this property is held by any well-ordered semi-
group S of ordinal type ≤ ωh that is contained in the nonnegative part of Rn. The
proof relies on the following lemma. The heuristic idea of the proof of this lemma
is that the semigroup generated by a set with an accumulation point has many ac-
cumulation points, accumulations of accumulation points, and so on.

Lemma 3.1. Let A be a well-ordered set that is contained in the nonnegative part
of R. Suppose that A has an accumulation point in R for the Euclidean topology.
For m a positive integer, let

mA = {x1 + x2 + · · · + xm | x1, . . . , xm ∈ A}.
Then mA contains a well-ordered subset of ordinal type ωm.

Proof. Let λ̄ be an accumulation point of A. Since A is well-ordered, there exist
λi ∈ A for i ∈ N such that λi < λj for i < j and limi �→∞ λi = λ̄. Let T1 =
{λi}i∈N; then T1 ⊂ A is well-ordered of ordinal type ω.
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For m ≥ 2 we will construct a well-ordered subset Tm of mA that has ordinal
type ωm. For a1 ∈ N, choose σ m

1 (a1) ∈ N such that

λa1 + λ̄ < λa1+1 + λσ m
1 (a1).

Now for a2 ∈ N, choose σ m
2 (a1, a2) ∈ N such that

λσ m
1 (a1)+a2 + λ̄ < λσ m

1 (a1)+a2+1 + λσ m
2 (a1,a2 ).

We iterate for 2 ≤ i ≤ m to choose, for each ai ∈ N, σ m
i (a1, a2, . . . , ai) ∈ N

such that

λm
σi−1(a1,...,ai−1)+ai

+ λ̄ < λσ m
i−1(a1,...,ai−1)+ai+1 + λσ m

i
(a1,...,ai ).

Let Tm be the well-ordered subset of mA that is the image of the order-preserving
inclusion Nm → mA, where Nm has the reverse lex order defined by

(am, . . . , a1) �→ λa1+1 +
( m∑

i=2

λσ m
i−1(a1,...,ai−1)+ai+1

)
.

By virtue of its construction, Tm has ordinal type ωm.

Theorem 3.2. Let S be a well-ordered subsemigroup of the nonnegative part of
Rn (with the lex order) for some n ∈ N. Suppose that S has ordinal type ≤ ωh for
some h ∈ N. Then S does not have an accumulation point in Rn for the Euclidean
topology.

Proof. We prove the theorem by induction on n. For n = 1, the theorem follows
from Lemma 3.1. Suppose that the theorem is true for subsemigroups of Rn−1, and
suppose that S ⊂ Rn has an accumulation point α.

Let π : Rn → Rn−1 be projection onto the first n − 1 factors. For x, y ∈ Rn, we
have that x ≤ y implies π(x) ≤ π(y). Hence the set π(S) is a well-ordered semi-
group that has ordinal type ≤ ωh and is contained in the nonnegative part of Rn−1.

Let ᾱ = π(α). By the induction assumption, π(S) has no accumulation points.
Thus ᾱ ∈ π(S), and there exists an open neighborhood U of ᾱ in Rn−1 such that
U ∩ π(S) = {ᾱ}. Therefore, π−1(U) ∩ S = π−1({ᾱ}) ∩ S, and α is an accumula-
tion point of π−1({ᾱ}) ∩ S.

Projection on the last factor is a natural homeomorphism of π−1({ᾱ}) to R that
is order preserving. Let A ⊂ R be the image of π−1({ᾱ}) ∩ S. Since A is a well-
ordered set with an accumulation point, by Lemma 3.1 it follows that mA has a
subset with ordinal type ωm for all m ≥ 1. Now, projection onto the last factor
identifies a subset of π−1({mᾱ}) ∩ S with mA for all m ≥ 1. Thus the ordinal type
of S is no less than ωm for all m ∈ N, a contradiction.

A variation on the proof of Theorem 3.2 proves the following corollary.

Corollary 3.3. Let S be a well-ordered subsemigroup of the nonnegative part
of Rn (with the lex order) for some n ∈ N. Suppose that S has ordinal type ≤ ωh

for some h ∈ N. Then S has ordinal type ≤ ωn.
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Proof. We prove the theorem by induction on n.

We first establish the theorem for n = 1. Suppose that S ⊂ R has ordinal type
> ω. To the ordinal number ω there corresponds an element a of S. Hence there
are infinitely many elements of S in the closed interval [0, a], so S has an accu-
mulation point. By Theorem 3.2, this is impossible.

Now suppose that S ⊂ Rn and that the theorem is true for subsemigroups of
Rn−1. By Theorem 3.2, S has no accumulation points.

Let π : Rn → Rn−1 be projection onto the first n − 1 factors. The set π(S) is
a well-ordered semigroup with ordinal type ≤ ωh and contained in the nonneg-
ative part of Rn−1. By the induction assumption, π(S) has ordinal type ≤ ωn−1.

For x̄ ∈ π(X), π−1({x̄}) ∩ S is a well-ordered subset of R with no accumulation
points and thus has ordinal type ≤ ω. Since this is true for all x̄ ∈ π(S), the ordi-
nal type of S cannot exceed ωn−1ω = ωn.

4. Subsemigroups of Q+

Let S be a well-ordered subsemigroup of Q+ , and let (γi)i∈I be its minimal sys-
tem of generators. The set of the γi may or may not be of ordinal type ω.

For example, choose two prime numbers p, q and consider the positive rational
numbers γi = 1 − 1/pi for 1 ≤ i < ω and γi = 2 − 1/q i−ω+1 for ω ≤ i < ω2 =
ω + ω. These numbers form a well-ordered subset of Q+ of ordinal type ω2 and
generate a certain semigroup Sp,q , which in turn is well-ordered by a result of
Neumann (see [12; 14, Thm. 3.4]). Because of the way their denominators grow
with i, the γi are a minimal system of generators of Sp,q . Using k different prime
numbers, one can in the same way build well-ordered semigroups in Q+ with min-
imal systems of generators of ordinal type ωk for any k < ω.

Remark. We assume that S ⊂ Q+ , so if S is a semigroup of values for some
valuation then that valuation is of rank 1. And, by the result quoted in the Intro-
duction, if the semigroup S comes from a Noetherian ring then it is of ordinal type
≤ ω. The semigroup Sp,q is therefore an example of a well-ordered subsemigroup
of a totally ordered group of finite rank that cannot be realized as the semigroup
of values of a Noetherian ring. Using Theorem 3.2, we see that the semigroup Sp

generated by γi = 1 − 1/pi (0 < i < ω) cannot be realized either, since it has an
accumulation point.

Note that, by Corollary 3.3, the ordinal type of Sp or Sp,q is no less than ωω.

One can ask what is the relationship between the ordinal type of the minimal set
of generators of a well-ordered subsemigroup S of Q+ and the ordinal type of S.

For the balance of this section we consider only semigroups S ⊂ Q+ whose
minimal system of generators (γ1, . . . , γi, . . . ) is of ordinal type ≤ ω. If the γi

have a common denominator, then S is isomorphic to a subsemigroup of N and is
finitely generated (for a short proof, see [13, Thm. 83, p. 203]).

Hence we shall assume that there is no common denominator. Let us denote by
Si the semigroup generated by γ1, . . . , γi and by Gi the subgroup of Q that it gen-
erates. We have S = ⋃∞

i=1 Si. Set also ni = [Gi : Gi−1] for i ≥ 2. It is convenient
to set n1 = 1. The products

∏k
i=1 ni tend to infinity with k.
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By definition we have niγi ∈ Gi−1, and the image of γi is an element of order
ni in Gi/Gi−1. For each i ≥ 1, let ri be the positive rational number such that
riγ1, riγ2, . . . , riγi generate the group Z. Because the semigroup ri−1Si−1 gener-
ates Z as a group, it has a finite complement (see [13, Thm. 82]) and some positive
multiple of ri−1niγi is contained in it. Thus, we know that there exists a smallest
integer si such that siγi ∈ Si−1 and that si is an integral multiple of ni.

Definition 4.1. Let S be a well-ordered subsemigroup of the semigroup of pos-
itive elements of a totally ordered abelian group of finite rank. Let (γ1, . . . , γi, . . . )
be a minimal system of generators of S indexed by some ordinal α, and for each
ordinal β ≤ α define Sβ to be the semigroup generated by the (γi)i≤β. Given an
integer d, we say that S has stable asymptotic embedding dimension ≤ d if, for
each β < α, the semigroup Sβ is isomorphic to the semigroup of values taken
by a valuation on an equicharacteristic Noetherian local domain of embedding di-
mension ≤ d whose residue field is algebraically closed. We say that S has stable
embedding dimension ≤ d if S is isomorphic to the semigroup of values of a val-
uation on an equicharacteristic Noetherian local domain of embedding dimension
≤ d whose residue field is algebraically closed.

Proposition 4.2. Let S be a well-ordered subsemigroup of Q+ that is not iso-
morphic to N and whose minimal system of generators (γ1, . . . , γi, . . . ) is of ordinal
type ≤ ω. Then the following statements are equivalent.

(i) For each i ≥ 2, we have si = ni and γi > si−1γi−1.

(ii) The stable asymptotic embedding dimension of S is 2.

(iii) The stable embedding dimension of S is 2.

Proof. The conditions of (i) are known to be equivalent to the fact that each semi-
group Si is the semigroup of values of the natural valuation of a plane branch, which
is of embedding dimension 2 since S �= N (see [16, Apx.] for the characteristic-0
case; see [2] on the extension to positive characteristic). This shows that (i) is
equivalent to (ii).

Given a sequence of γi satisfying (i), we can associate to it a sequence of key
polynomials (SKP) as in [7, Chap. 2, Def. 2.1] over any algebraically closed field
K—that is, a sequence P0 = x, P1 = y, . . . , Pi, . . . of polynomials in K[x, y] such
that the conditions ν(Pi) = γi for all i determine a unique valuation ν of the reg-
ular local ring K[x, y](x,y) or, if the sequence of γi is finite, of a one-dimensional
quotient K[x, y](x,y)/(Q(x, y)), which is of embedding dimension 2 since S �=
N. The semigroup of values of ν is the semigroup generated by the γi (see [7,
Thm. 2.28]). This shows that (i) implies (iii). Finally, if the semigroup S comes
from a Noetherian local ring of embedding dimension 2, then we may assume—
since, by [15, Sec. 5], the semigroup does not change under m-adic completion
for valuations of rank 1—that this ring corresponds either to a branch or to a two-
dimensional complete equicharacteristic regular local ring. If S is the semigroup
of values of a plane branch then condition (i) is satisfied (as we have already seen);
if it comes from a valuation ν of K[[x, y]], then by [7, Thm. 2.29] there exists a
SKP associated to ν and so again condition (i) is satisfied. We remark that [7] is
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written over the complex numbers, but the results of its Chapter 2 are valid in any
characteristic.

Remark. One may ask whether a subsemigroup of Q+ of ordinal type ω is al-
ways of bounded stable asymptotic embedding dimension or of bounded stable
embedding dimension.

5. The Semigroups of Noetherian Rings Are Not Always
Rationally Finitely Generated

Using the results of [7, Chap. 2], one can check that for the semigroup S =
〈γ1, . . . , γi, . . . 〉 of a valuation of the ring K[x, y](x,y) there always exists a finite
set of generators γ1, . . . , γ5 that rationally generate the semigroup S in the sense
that, for any generator γj , there is a positive integer sj such that sjγj ∈ 〈γ1, . . . , γ5〉.
This does not hold for polynomial rings of dimension ≥ 3, as is shown by the fol-
lowing example (taken from [15]).

Let us give Z2 the lexicographic order and consider the field K((t Z2
lex)) en-

dowed with the t-adic valuation with values in Z2
lex. We denote by K[[t Z2+ ]] the

corresponding valuation ring. Choose a sequence of pairs of positive integers
(ai, bi)i≥3 and a sequence of elements (λi ∈ K∗)i≥3 such that bi+1 > bi, the series∑

i≥3 λiu
bi
2 is not algebraic over K[u2 ], and the ratios (ai+1−ai)/bi+1 are positive

and increase strictly with i. Let R0 be the K-subalgebra of K[[t Z2+ ]] generated by

u1 = t (0,1), u2 = t (1,0), u3 =
∑
i≥3

λiu
−ai

1 u
bi

2 .

There cannot be an algebraic relation between u1, u2, and u3, so the ring R0 =
K[u1, u2, u3] is the polynomial ring in three variables and inherits the t-adic val-
uation of K[[t Z2+ ]]. One may check that this valuation extends to the localiza-
tion R = K[u1, u2, u3](u1,u2,u3); it is a rational valuation of rank 2 and of rational
rank 2. Let us compute the semigroup S of the values that ν takes on R. We have
γ1 = (0,1), γ2 = (1, 0), and γ3 = (b3, −a3) ∈ S. Set S3 = 〈γ1, γ2, γ3〉. Then
u

a3
1 u3 − λ3u

b3
2 = ∑

i≥4 λiu
a3−ai

1 u
bi

2 ∈ R and so γ4 = (b4, a3 − a4) is in S. It is
easy to deduce from our assumptions that no multiple of γ4 is in S3 and that γ4

is the smallest element of S that is not in S3. We set u4 = u
a3
1 u3 − λ3u

b3
2 and

continue in the same manner: u
a4−a3
1 u4 − λ4u

b4
2 = u5, . . . , u

ai−ai−1
1 ui − λiu

bi

2 =
ui+1, . . . with the generators γi = ν(ui) = (bi, ai−1 − ai) for i ≥ 4. Finally, we
obtain

S = 〈γ1, γ2, . . . , γi, . . . 〉;
the initial forms of the ui constitute a minimal system of generators of the graded
K-algebra grν R, and the equations (setting a2 = 0)

u
ai−ai−1
1 ui − λiu

bi

2 = ui+1, i ≥ 3,

describe R0 as a quotient of K[(ui)i≥1]. It is clear that from these equations we
can reconstruct the value of u3 as a function of u1 and u2 by (infinite) elimination.
The binomial equations defining grν R = grν R0 as a quotient of K[(Ui)i≥1] are
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U
ai−ai−1

1 Ui − λiU
bi

2 = 0, i ≥ 3,

which shows that all the Ui for i ≥ 3 are rationally dependent on U1, U2. From
our assumption on the growth of the ratios we see, moreover, that no multiple of
γi is in Si−1 = 〈γ1, . . . , γi−1〉. In fact, γi is outside of the cone with vertex 0 that
is generated by Si−1 in R2.

6. A Criterion for a Series z to Be Transcendental

In this section we will use the following notation. Let K be a field and � a to-
tally ordered abelian group. Let K((t�)) be the field of formal power series with a
well-ordered set of exponents in � and coefficients in K. Let ν be the t-adic valu-
ation of K((t�)). Suppose R ⊂ K((t�)) is a local ring that is essentially of finite
type over K (a localization of a finitely generated K-algebra) and suppose ν dom-
inates R. Let d = dim(R). Write R = AP , where A ⊂ Rν is of finite type over
K and where P is the center of ν on A.

By Noether’s normalization theorem (see [17, Chap. VIII, Sec. 7, Thm. 24])
there exist x1, . . . , xd ∈ A, algebraically independent over K, such that A is a finite
module over the polynomial ring B = K[x1, . . . , xd ]. Hence there exist b1, . . . , br ∈
A for some finite r such that A = Bb1 + · · · + Bbr .

Let A[z] be a polynomial ring over A. For n ∈ N, define a finite-dimensional
K-vector space Dn by

Dn = {f ∈ A[z] | f = f1b1 + · · · + fr br ,

where f1, . . . , fr ∈ K[x1, . . . , xd , z] have total degree ≤ n}.
Lemma 6.1. Suppose that w ∈ K((t�)) has positive value and n ∈ N. Then the
set of values

En = {ν(f(w)) | f ∈ Dn and f(w) �= 0}
is finite.

Proof. For τ ∈ �+ , let

Cτ = {f ∈ Dn | ν(f(w)) ≥ τ };
Cτ is a K-subspace of Dn. Since Cτ1 ⊂ Cτ2 if τ2 ≤ τ1, it follows that En must be
a finite set.

Lemma 6.2. Suppose that w ∈ K((t�)) has positive value. Let

τ = max{ν(f(w)) | f ∈ Dn and f(w) �= 0}.
Choose λ ∈ � such that λ > τ and choose h ∈ K((t�)) such that ν(h) = λ.

Suppose that 0 �= f ∈ Dn. Then f(w + h) �= 0.

Proof. Suppose that 0 �= f ∈ Dn. Let m = degz(f ). We have 0 < m ≤ n (the
case m = 0 is trivial). Write

f = amzm + am−1z
m−1 + · · · + a0,
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where am �= 0 and each ai has the expression

ai = ci1b1 + · · · + cir br;
here cij ∈ K[x1, . . . , xd ] is a polynomial of degree ≤ n for all i, j. Subsituting
w + h for z yields

f(w + h) = hmdm(w) + hm−1dm−1(w) + · · · + d0(w),

where di(z) ∈ Dn for all i and dm(z) = am, so that hmdm(w) �= 0.

Suppose that i < j, hidi(w) �= 0, hjdj(w) �= 0, and ν(hidi(w)) = ν(hjdj(w)).

Then
iλ + ν(di(w)) = jλ + ν(dj(w)),

which yields
(j − i)λ = ν(di(w)) − ν(dj(w)).

But
ν(di(w)) − ν(dj(w)) ≤ τ < λ ≤ (j − i)λ,

a contradiction. Thus all nonzero terms hidi(w) of f(w + h) have distinct values.
Since at least one of these terms was shown to be nonzero, it follows that f(w+h)

has finite value and so f(w + h) �= 0.

Theorem 6.3. Suppose that K is a field, � is a totally ordered abelian group,
and R ⊂ K((t�)) is a local ring that is essentially of finite type over K and is
dominated by the t-adic valuation ν of K((t�)).

Suppose that the zi ∈ K((t�)) are defined as follows. Let

τ1 = max{ν(f ) | f ∈ D1 and f(0) �= 0}. (6)

Choose α1 ∈ �+ with α1 > τ1 and h1 ∈ K((t�)) such that ν(h1) = α1. Set z1 = h1.

Inductively define αi ∈ �+ , hi ∈ K((t�)), and zi = zi−1 + hi with ν(hi) = αi

for 2 ≤ i so that, if

τi = max{ν(f(zi−1)) | f ∈ Di and f(zi−1) �= 0}, (7)

then
αi > τi.

Then z = limi �→∞ zi ∈ K((t�)) is transcendental over the quotient field L of R.

Proof. Because {αi} is an increasing sequence in � with ν(hj − hi) = αi+1 for
j > i, the limit z = limi �→∞ zi exists in K((t�)).

Assume that z is not transcendental over L. Then there exists a nonzero poly-
nomial g(z) ∈ A[z] such that g(z) = 0. Let m = degz(g) ≥ 1. Expand

g(z) = amzm + am−1z
m−1 + · · · + a0

with ai ∈ A for all i. Each ai has an expansion

ai = ci1b1 + · · · + cir br ,

where cij ∈ K[x1, . . . , xd ] for all i, j. Let n ∈ N be such that n ≥ m and n ≥
deg(cij ) for 1 ≤ i ≤ m and 1 ≤ j ≤ r.
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By our construction, we have

zn = zn−1 + hn with ν(hn) = αn > τn.

By Lemma 6.2, g(zn) �= 0. In K((t�)) we compute

g(z) = g(zn + z − zn) = g(zn) + (z − zn)e

with ν(e) ≥ 0. Then

ν(z − zn) = ν(hn+1) = αn+1 > τn+1 ≥ ν(g(zn)).

Hence ν(g(z)) ≤ τn+1 < ∞ and so g(z) �= 0, a contradiction.

Corollary 6.4. Suppose that K is a field, � is a totally ordered abelian group,
and R ⊂ K((t�)) is a local ring that is essentially of finite type over K and is
dominated by the t-adic valuation ν of K((t�)). Then there exists a z ∈ K((t�))

such that z is transcendental over the quotient field of R.

Remark 6.5. The conclusions of the theorem may fail if R is Noetherian yet not
essentially of finite type over K. A simple example is � = Z and R = K[[t]],
since K((t�)) is the quotient field of R.

7. An Example Where All grF(γ1) Pγ1/P+
γ1

Are Not
Finitely Generated (grν R/P )-Modules

Let K be an algebraically closed field, and let K(x, y) be a two-dimensional ra-
tional function field over K. Let A = K[x, y](x,y). In [17, Chap. VI, Ex. 3], a
construction is given of a valuation ν̄ of K(x, y) that dominates A and such that
the value group of ν̄ is Q. By [9, Thm. 6], since K is algebraically closed and
Q is divisible, there is an embedding K(x, y) ⊂ K((t Q)) of K algebras, where
K((t Q)) is the formal power series field with well-ordered set of exponents in Q
and coefficients in K.

Let Q+ denote the positive rational numbers. Let

F0 = {ν̄(f ) | f ∈ A and f �= 0} (8)

be the semigroup of the valuation ν̄ on A. We will use the criterion of Theorem 6.3
to construct a limit z = limi→∞ zi in K((t Q)) that is transcendental over the quo-
tient field of A.

Let z be a transcendental element over K[x, y], and let

Di = {f ∈ K[x, y, z] | the total degree of f is ≤ i}.
In our construction, we inductively define zi ∈ K((t Q)). Then, for n ∈ N and F0 =
ν̄(A\ {0}), we may define F0-modules Mn

i by

Mn
i = {ν(a0 + a1zi + · · · + anzn

i ) | a0, . . . , an ∈ K[x, y]}.
Let

Ai = A[zi](x,y,zi ).
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The local ring Ai is dominated by ν̄, so the semigroup �i of ν̄ on Ai is topologi-
cally discrete. It follows that there exist arbitrarily large elements of Q+ that are
not in �i.

We first choose λ1 ∈ Q+ such that λ1 /∈ F0 and λ1 > τ1, where τ1 is defined by
(6). Set α1 = λ1, and choose f1, g1 ∈ K[x, y] such that

ν̄

(
f1

g1

)
= α1.

We then inductively construct λi ∈ Q+ , αi ∈ Q+ , fi, gi ∈ K[x, y], and τi ∈ Q+
such that λi /∈ �i−1, τi is defined by (7), and

λi > max{λi−1 + ν̄(g1 · · · gi−1), τi + ν̄(g1 · · · gi−1)}.
Define

αi = λi − ν̄(g1 · · · gi−1)

and choose fi, gi ∈ K[x, y] so that

ν̄

(
fi

gi

)
= αi.

Let
zi = zi−1 + fi

gi

.

The resulting series z = limi→∞ zi is transcendental over K(x, y) by Theorem 6.3,
since αi > τi for all i > 1.

Let B = A[z](x,y,z). Since z ∈ K((t Q)) is transcendental over K(x, y), the em-
bedding A ⊂ K((t Q)) that appears at the beginning of the section extends to an
embedding B ⊂ K((t Q)); hence the three-dimensional local ring B is dominated
by the t-adic valuation ν̄ of K((t Q)).

Lemma 7.1. (a) With the preceding notation, for n ∈ N define an F0-module

T n = {ν̄(a0 + a1z + · · · + anz
n) | a0, a1, . . . , an ∈ K[x, y]}.

Then, for all n > 0, T n is not finitely generated as an F0-module.
(b) With the notation just introduced, let T ∞ = ν̄(B \ {0}) be the semigroup of

the valuation ν̄ on B. Then T ∞ is not a finitely generated F0-module.

Proof. Suppose that n ≥ 1. We will show that T n is not finitely generated as an
F0-module.

We compute

ν̄(z) = ν̄

(
f1

g1

)
= λ1

and, for i ≥ 2,

ν̄(g1 · · · gi−1z − (f1g2 · · · gi−1 + f2g1g3 · · · gi−1 + · · · + fi−1g1 · · · gi−2))

= ν̄

(
g1 · · · gi−1

fi

gi

)

= ν̄

(
fi

gi

)
+ ν̄(g1 · · · gi−1)

= λi.

Thus λi ∈ T n for all i.
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The F0-modules Mn
i introduced before are subsets of Q for all i. We compare

the intersections of the Mn
i with various intervals [0, σ) in Q. Since ν̄(z1) = α1,

it follows that
Mn

1 ∩ [0, α1) = F0 ∩ [0, α1);
since

zi = zi−1 + fi

gi

with ν̄

(
fi

gi

)
= αi,

we also have
Mn

i ∩ [0, αi) = Mn
i−1 ∩ [0, αi)

for all i ≥ 2. Moreover,

T n ∩ [0, αi) = Mn
i ∩ [0, αi) (9)

for i ≥ 1.
Suppose that n ≥ 1 and that T n is a finitely generated F0-module. We will de-

rive a contradiction. With these assumptions, there exist x1, . . . , xm ∈ T n such that
every element v ∈ T n has an expression v = y + xj for some y ∈ F0 and some xj

with 1 ≤ j ≤ m.

There exists a positive integer l such that xj < αl for 1 ≤ j ≤ m. Thus
x1, . . . , xm ∈ Mn

l by (9). It follows that T n ⊂ Mn
l , since Mn

l is an F0-module. But
λn+1 /∈ Mn

l by our construction, since Mn
l ⊂ �l. This gives a contradiction, be-

cause we have already shown that λl+1 ∈ T n.

The proof that T ∞ = ⋃∞
n=0 T n is not a finitely generated F0-module is similar.

Proposition 7.2. Suppose K is an algebraically closed field and K(x, y, u, v)

is a rational function field in four variables. Then there exists a rank-2 valuation
ν = ν1 � ν̄ of K[x, y, u, v], with value group Z × Q with the lex order, that domi-
nates the regular local ring

R = K[x, y, u, v](x,y,u,v)

with R/P ∼= K[x, y](x,y), where P is the center of ν1 on R, such that the associ-
ated graded module

grF(n) Pn/P+
n

is not a finitely generated (grν̄ R/P )-module for all positive integers n.

Proof. Since the z we have just constructed is transcendental over K(x, y), the as-
sociation z → z defines an embedding of K algebras K(x, y, z) → K((t Q)) that
extends our embedding K(x, y) → K((t Q)). We identify ν̄ with the induced val-
uation on K(x, y, z), which by our construction has value group Q and residue
field K.

Let R be the localization

R = K[x, y, u, v](x,y,u,v)

of a polynomial ring in four variables. Let ν1 be the (u, v)-adic valuation of R.

The valuation ring of the discrete rank-1 valuation ν1 is

Rν1 = K[x, y, u, v/u](u).
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The residue field of Rν1 is the following rational function field in three variables:

Rν1/mν1 = K(x, y, z),

where z = v/u. Let ν be the composite valuation ν1 � ν̄ on K(x, y, u, v).

For i ∈ N, we have

Fi = {ν(f ) | f ∈ R and ν1(f ) = i}.
Here F0 is the semigroup F0 = ν̄(R/P \ {0}) and the Fi are F0-modules for all i.

We have that mν1 ∩ R = (u, v) and so F0 = �0, the semigroup of (8). From our
construction of ν̄, it follows that Fn is isomorphic to T n as a �0-module. Thus, for
all n ≥ 1, Fn is not finitely generated as an F0-module.

By Proposition 1.1,
grF(n) Pn/P+

n

is not a finitely generated (grν̄ R/P )-module for all positive integers n.

Remark 7.3. In the example of Proposition 7.2, the residue field Rν1/mν1 is tran-
scendental over the quotient field of R/P, a fact that is used in the construction.
In Proposition 8.4 (to follow), an example is given where Rν1/mν1 is equal to the
quotient field of R/P.

Remark 7.4. We can easily construct a series z ∈ K((t Q)) such that the modules
T n and T ∞ of the conclusions of Lemma 7.1 are all finitely generated �0-modules,
and thus the modules

grF(n) Pn/P+
n

are finitely generated (grν̄ R/P )-modules for all positive integers n. To make the
construction, just take z ∈ K[[x, y]] to be any transcendental series.

8. An Example with No Residue Field Extension

Suppose that K is an algebraically closed field and A = K[x, y](x,y). We will
define a valuation ν̄ on L = K(x, y) that dominates A and has value group⋃∞

i=0(1/2i )Z.

Define β̄0 = 1 and β̄i+1 = 2β̄i + 1/2i+1 for i ≥ 0. We have

β̄i = 1

3

(
2i+2 − 1

2i

)

for i ≥ 0 and
2β̄i = β̄i−1 + 2i+1β̄0

for i ≥ 1.
Define groups

�i =
i∑

j=0

Zβ̄j = 1

2i
Z

for i ≥ 0. For i ≥ 1, let
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xi = 2i+1β̄i−1 + 1

2i−1

and let mi = 2. Because 2i+1β̄i−1 is an even integer for all i, it follows that xi has
order mi = 2 in �i−1/mi�i−1 and that β̄i = xi/mi.

By our construction, for i ≥ 1 we have β̄i+1 > miβ̄i . By the irreducibility
criterion of [3], [6, Rem. 7.17], or [7, Thm. 2.22], there exists a valuation ν̄ of
L dominating A and a (minimal) generating sequence P0, P1, . . . , Pi, . . . for ν̄ in
K[x, y] of the form

P0 = x,

P1 = y,

P2 = y2 − x 5,

P3 = P 2
2 − x8y,

...

Pi+1 = P 2
i − P 2i+1

0 Pi−1,
...

with β̄i = ν(Pi) for all i. The semigroup M0 of ν̄ on A is

M0 =
∞∑

i=0

Nβ̄i .

Let z = y/x ∈ L, and for n ∈ N define

Wn = {a0 + a1z + · · · + anzn | a0, . . . , an ∈ K[x, y]}.
Define M0-modules Mn by

Mn = {ν̄(f ) | 0 �= f ∈ Wn}.
Lemma 8.1. For all i ≥ 0 we have the expression Pi = xihi, where hi ∈ Wi.

Proof. The statement is clear for i = 0 and i = 1. Suppose, by induction, that the
statement is true for j ≤ i, so that Pj = xjhj with hj ∈Wj for j ≤ i. Write

Pi+1 = P 2
i − P 2i+1

0 Pi−1.

We have that

P 2
i = xi+1

[(
Pi

xi

)(
Pi

xi

)
xi−1

]

with (
Pi

xi

)(
Pi

xi

)
xi−1 ∈W2i−(i−1) = Wi+1.

Furthermore,

P 2i+1

0 Pi−1 = x 2i+1
xi−1hi−1 ∈ xi+1Wi−1 ⊂ xi+1Wi+1.

Thus Pi+1 = xi+1hi+1 with hi+1 ∈Wi+1.
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For n ∈ N, let

Un =
{

λ ∈ Mn

∣∣ λ =
n−1∑
j=0

lj β̄j for some li ∈ Z
}

.

Lemma 8.2. For n ≥ 1,

Mn = Un ∪
( ⋃

j≥n

((β̄j − n) + M0)

)
.

Proof. That Pj/xj ∈Wj for all j ≥ 0 implies

Pj

xn
=

(
Pj

xj

)
xj−n ∈Wn for j ≥ n.

Thus β̄j − n ∈ Mn for j ≥ n.

Now suppose that λ ∈ Mn, where λ = ν̄(a0 + a1z + · · · + anzn) for some
a0, . . . , an ∈ K[x, y]. Set τ = ν̄(a0 xn + a1x

n−1y + · · · + any
n) ∈ M0. We have

λ = τ − n, where τ = ∑
lj β̄j = ν̄

(∏
P

lj
j

)
for some lj ∈ N. Suppose lk �= 0 for

some k ≥ n. Then

λ = ν̄

(( ∏
j �=k

P
lj

j

)
P

lk−1
k

Pk

xn

)
= (β̄k − n) + ν̄

(( ∏
j �=k

P
lj

j

)
P

lk−1
k

)
.

Now suppose that lk = 0 for k < n. Then

λ =
n−1∑
j=1

lj β̄j + (l0 − n)β̄0 ∈ Un.

Lemma 8.3. Suppose that n ≥ 1. Then Mn is not a finitely generated M0-module.
Let B = K[x, y/x](x,y/x); then B is a regular local ring that birationally domi-

nates A = K[x, y](x,y). Let M∞ = ν̄(B \{0}). Then M∞ is not a finitely generated
module over �0 = ν̄(A\ {0}).
Proof. For i ≥ 0, define �i to be the M0-module generated by Un and {β̄j − n |
i ≥ j ≥ n}. For i ≥ n, we have

�i = Un ∪
( ⋃

i≥j≥n

((β̄j − n) + M0)

)
⊂ 1

2i
N.

Hence β̄i+1 − 1 /∈ �i for i ≥ n.

We will now show that Mn is not a finitely generated M0-module. Suppose
that Mn is finitely generated as an M0-module. Then Mn is generated by a set
a1, . . . , ar , b1, . . . , bs , where

ai = (β̄σ(i) − n) + λi

with σ(i) ≥ n and with λi ∈ M0 for 1 ≤ i ≤ r and bi ∈ Un for 1 ≤ i ≤ s.

Let m = max{σ(i)}. Then M1 ⊂ �m, which is impossible because β̄m+1 − n /∈
�m. The proof that M∞ is not a finitely generated �0-module is similar.
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Proposition 8.4. Suppose K is an algebraically closed field and K(x, y, u, v) is
a rational function field in four variables. Suppose � is a totally ordered Abelian
group and suppose α ∈ � is such that 1 and α are rationally independent and
1 < α.

Then there exists a rank 2 valuation ν = ν1� ν̄ of K(x, y, u, v), with value group

(Z + αZ) ×
( ∞⋃

i=0

1

2i
Z

)

in the lex order, that dominates the regular local ring R = K[x, y, u, v](x,y,u,v) as
follows.

(i) Rν1/mν1
∼= (R/P )P ∼= K(x, y), where P is the center of ν1 on R.

(ii) The associated graded module

grF(n) Pn/P+
n

is not a finitely generated (grν̄ R/P )-module for n ∈ N.

(iii) The associated graded module

grF(nα) Pnα/P+
nα

is a finitely generated (grν̄ R/P )-module for n ∈ N.

Proof. We use the notation developed earlier in this section. Define a valuation
ν1 on the rational function field L(u, v) in two variables by the embedding of L

algebras
L(u, v) → L((t�))

induced by

u �→ t, v �→ v(t) = y

x
t + t α.

If ν = ν1 � ν̄ is the composite valuation on K(x, y, u, v), then ν dominates R =
K[x, y, u, v](x,y,u,v). The center of ν1 on R is the prime ideal P = (u, v). We have
L = (R/P )P = Rν1/mν1 and K = Rν/mν , proving part (i) of the proposition.

For i ∈ N,
Fi = {ν(f ) | f ∈ R and ν1(f ) = i}.

Suppose that f ∈ K[x, y, u, v]. Expand

f =
∑

aiju
ivj

with aij ∈ K[x, y]. Then

f(t, v(t)) = a00 +
(

a10 + a01
y

x

)
t + (higher-order terms in t).

We see that ν1(f ) = 0 if and only if a00 �= 0. Thus F0
∼= M0 as semigroups. We

also have ν1(f ) = 1 if and only if a00 = 0 and a10 + a01(y/x) �= 0. Thus F1
∼=

M1 as F0-modules, so F1 is not finitely generated as an F0-module.
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To show that Fn
∼= Mn as an F0-module for all n ≥ 0, we expand

f(t, v(t)) =
∞∑

k=0

∑
i+j=k

aij t
iv(t)j

=
∞∑

k=0

k∑
j=0

ϕjk t (k−j)+jα,

where

ϕjk =
k∑

i=j

ak−i,i

(
i

j

)(
y

x

)i−j

.

Now (k1 − j1) + j1α = (k2 − j2) + j2α implies that j1 = j2 and k1 = k2. Hence

ν1(f ) = min{(k − j) + jα | ϕjk �= 0}.
We know, for fixed k, that j1 < j2 implies

(k − j1) + j1α < (k − j2) + j2α. (10)

Suppose that ν1(f ) = n ∈ N. Then

f(t, v(t)) = ϕ0nt n + (higher-order terms in t)

with

ϕ0n = a0n + an−1,1
y

x
+ · · · + a0n

(
y

x

)n

�= 0.

Moreover, by (10) we see that, for n ∈ N and an0, an−1,1, . . . , a0n ∈ K[x, y],

ν1(an0un + an−1,1u
n−1v + · · · + a0nv

n) = n

if and only if

an0 + an−1,1
y

x
+ · · · + a0n

(
y

x

)n

�= 0.

Thus, for n ∈ N,
Fn

∼= {ν̄(h) | h ∈ Wn and h �= 0},
which is isomorphic to Mn as an M0-module. Because Mn is not finitely generated
as an M0-module, Proposition 1.1 implies part (ii).

Let us now consider the polynomials

Cjk(W ) =
k∑

i=j

ak−i,i

(
i

j

)
W i−j

and remark that
∂ jC0k(W )

∂Wj
= j! Cjk(W ).

For the series f(t, v(t)) to be of order nα, all the ϕjk must be zero for (k−j)+jα <

nα while ϕnn = a0n must be nonzero. In particular, ϕjn must be zero for j < n.

In view of the equalities we have just seen, the n conditions ϕjn = 0 (0 ≤ j ≤
n − 1) are equivalent to the fact that y/x is a root of order n of the polynomial
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C0n(W ), so that C0n(W ) = a0n(W − y/x)n. From this it follows that the an−j,j

for j < n are determined and the only condition on a0n is that it be divisible by
xn. The elements of Fnα coincide with the values of ν on K[x, y] translated by n,
so for each n ∈ N we have Fnα = n + F0

∼= F0. Thus part (iii) also follows from
Proposition 1.1.
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