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Monads and Regularity of Vector Bundles
on Projective Varieties

L. Costa & R. M. Miró-Roig

1. Introduction

In the seventies, Horrocks showed that every vector bundle E on P
2 and P

3 ad-
mits a certain “double-ended resolution” by line bundles that he called monads.
Monads appear in a wide variety of contexts within algebraic geometry, and they
are now one of the most important tools that permit us to construct vector bundles
with prescribed invariants (e.g., rank, determinant, Chern classes) and to study
them with the methods of linear algebra. A large number of vector bundles on P

n

are the cohomology of monads, and most of them can be constructed as cohomolo-
gies of quasi-linear monads (see Definition 2.9). Indeed, any vector bundle on P

3

is the cohomology of a quasi-linear monad, and any instanton bundle on P
2 l+1

is also the cohomology of a quasi-linear monad. On the other hand, in the mid-
sixties Mumford introduced the concept of regularity for a coherent sheaf F on
a projective space P

n. Since then, Castelnuovo–Mumford regularity has become
a fundamental invariant—in both commutative algebra and algebraic geometry—
for measuring the complexity of a sheaf. In [4; 5] we generalized the notion of
Castelnuovo–Mumford regularity for coherent sheaves on projective spaces and
also introduced a notion of regularity for coherent sheaves on other projective va-
rieties (as multiprojective spaces, Grassmanians, and hyperquadrics Qn ⊂ P

n+1)

that is equivalent to the Castelnuovo–Mumford regularity when the variety is a
projective space P

n.

The main goal of this paper is to bound the regularity of vector bundles E on
P

n and Qn defined as the cohomology of quasi-linear monads. As a by-product,
we obtain a bound for the regularity of any vector bundle on P

3, the regularity
of any instanton bundle on P

2 l+1, and the regularity of any instanton bundle on a
hyperquadric Q2 l+1 ⊂ P

2 l+2.

The paper is organized as follows. In Section 2, we briefly recall the notion of
regularity for coherent sheaves on projective varieties and summarize its main for-
mal properties. We also recall the use of monads for constructing vector bundles
and introduce the notion of a quasi-linear monad. Sections 3 and 4 are the heart of
the paper. In Section 3, we give effective bounds for the regularity of any coher-
ent sheaf on P

n that is the cohomology of a quasi-linear monad (see Theorem 3.2).
In particular, we bound the regularity of any vector bundle on P

3 as well as the
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regularity of any instanton bundle on P
2n+1; at the end of the section, we prove

that the bounds obtained so far are sharp. In Section 4, we bound the regularity
of any coherent sheaf on a hyperquadric Qn ⊂ P

n+1 that is the cohomology of a
quasi-linear monad. We also give a bound for the regularity of any instanton bun-
dle on Qn, and by means of an example we will see that the bound is sharp (for
the definition and existence of such bundles see [6]).

Notation. Throughout this paper, X will be a smooth projective variety defined
over the complex numbers C, and we denote by D = D b(OX-mod) the derived
category of bounded complexes of coherent sheaves of OX-modules. Notice that
D is an abelian linear triangulated category. We identify, as usual, any coherent
sheaf F on X to the object (0 → F → 0) ∈ D concentrated in degree 0, and we
will not distinguish between a vector bundle and its locally free sheaf of sections.

2. Regularity of Coherent Sheaves on Projective Varieties

Here we recall, for coherent sheaves on projective varieties, the definition of regu-
larity with respect to an n-block collection; we then gather the main formal prop-
erties that it verifies. More information on the subject can be found in [4; 5].

Let X be a smooth projective variety of dimension n. Let σ = (E0, . . . , En),
Ei = (Ei

1, . . . ,Ei
βi
), be an n-block collection of coherent sheaves on X that gener-

ates D, and let Hσ := {Ei}i∈Z be the helix associated to σ. For any j ∈ Z , denote by

σ∨
j := (H0, H1, . . . , Hn), Hi = (H i

1 , . . . ,H i
αi
),

the right dual n-block collection of σj = (Ej , . . . , Ej+n) (see [5] for the precise defi-
nitions). That is, σ∨

j is the n-block collection that is uniquely determined by H0 =
Ej+n and the orthogonality conditions

Homp(H i
j ,Ek

l ) = 0 for any p ≥ 0 (2.1)

except for
Ext k(H k

i ,Em−k
i ) = C. (2.2)

In [5], the goal was to extend the notion of Castelnuovo–Mumford regularity for
coherent sheaves on a projective space to coherent sheaves on an n-dimensional
smooth projective variety with an n-block collection of coherent sheaves on X that
generates D. With notation as before, let us now recall the precise definition.

Definition 2.1. Let X be a smooth projective variety of dimension n with an
n-block collection σ = (E0, E1, . . . , En), Ei = (Ei

1, . . . ,Ei
αi
), of coherent sheaves

on X that generates D. Let Hσ = {Ei}i∈Z be the helix of blocks associated to σ,
and let F be a coherent OX-module. We say that F is m-regular with respect to σ

if, for q > 0, we have{ ⊕α−m+p

s=1 Extq(H −p
s ,F ) = 0 for −n ≤ p ≤ −1,⊕α−m

s=1 Extq(E−m
s ,F ) = 0 for p = 0,

where (H0, H1, . . . , Hn), Hi = (H i
1 , . . . ,H i

αi
), is the right dual n-block collection

of σ−m−n = (E−m−n, . . . , E−m). We define the regularity of F with respect to σ,
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Regσ(F ), as the least integer m such that F is m-regular with respect to σ. We set
Regσ(F ) = −∞ if there is no such integer.

Remark 2.2. Roughly speaking, F is m-regular with respect to σ if the spectral
sequence −n−mE

pq

1 = 0 given in [5, Thm. 3.10], situated in the square −n ≤ p ≤
0 and 0 ≤ q ≤ n, collapses at E2. This fact motivates our definition of regularity
and justifies the use of that notation.

Example 2.3. Consider the n-block collection σ = (OP n, OP n(1), . . . , OP n(n))

on P
n and the associated helix Hσ = {OP n(i)}i∈Z. The right dual n-block collec-

tion of an n-block collection σi = (OP n(i), OP n(i + 1), . . . , OP n(i + n)) is

σ∨
i = (OP n(i + n), TP n(i + n − 1), . . . ,

∧j
TP n(i + n − j), . . . ,

∧n
TP n(i)).

Hence, for any coherent sheaf F on P
n, our definition reduces to: F is m-regular

with respect to σ if Extq
(∧−p

T (−m + p),F
) = Hq(P n,�−p(m − p) ⊗ F ) =

0 for all q > 0 and all p, where −n ≤ p ≤ 0.

In [13, Lec. 14], Mumford defined the notion of regularity for a coherent sheaf
over a projective space. A coherent sheaf F on P

n is said to be m-regular in the
sense of Castelnuovo–Mumford if H i(P n,F(m − i)) = 0 for i > 0. The Castel-
nuovo–Mumford regularity of F, RegCM(F ), is the least integer m such that F
is m-regular. It is important to remark that, for coherent sheaves on P

n, the σ -
regularity in the sense of Definition 2.1 and the Castelnuovo–Mumford regularity
agree. Indeed, we can make the following statement.

Proposition 2.4. A coherent sheaf F on P
n is m-regular in the sense of Castel-

nuovo–Mumford if and only if it is m-regular with respect to the n-block collection
σ = (OP n, OP n(1), . . . , OP n(n)). Therefore,

Regσ(F ) = RegCM(F ).

Proof. See [4, Prop. 4.6; 5, Prop. 4.11].

To emphasize that the new notion of regularity generalizes the original definition of
Castelnuovo–Mumford regularity, in [5] we proved that its basic formal properties
remain true in this new setting. More precisely, by [5, Prop. 4.14 and Prop. 4.15]
we have the following result.

Proposition 2.5. Let X be a smooth projective variety of dimension n with an
n-block collection of coherent sheaves σ = (E0, E1, . . . , En), Ej = (E

j

1 , . . . ,Ej
αj ),

that generates D. Let F and G be coherent OX-modules.

(a) If F is m-regular with respect to σ, then the canonical map⊕α−m

s=1 Hom(E−m
s ,F ) ⊗ E−m

s � F

is surjective and F is k-regular with respect to σ for any k ≥ m.

(b) If 0 −→ F1 −→ F2 −→ F3 −→ 0 is an exact sequence of coherent OX-
modules, then

Regσ(F2) ≤ max{Regσ(F1), Regσ(F3)}.
(c) Regσ(F ⊕ G) = max{Regσ(F ), Regσ(G)}.
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The following technical result, which establishes the regularity with respect to
σ = (E0, E1, . . . , En) of any coherent sheaf Ei

t ∈ Ei, will prove to be useful.

Proposition 2.6. Let X be a smooth projective variety of dimension n with an
n-block collection σ = (E0, E1, . . . , En), Ej = (E

j

1 , . . . ,Ej
αj ), that generates D, and

let Hσ = {Ei}i∈Z be the associated helix. Then, for any i ∈ Z and any Ei
t ∈ Ei,

Regσ(E
i
t ) = −i.

Proof. See [5, Prop. 4.9].

We will end this section by recalling the definition of and some basic facts about
monads.

Definition 2.7. Let X be a smooth projective variety. A monad on X is a com-
plex of vector bundles

M• : 0 −→ A
α−→ B

β−→ C −→ 0

that is exact at A and at C. The sheaf E := Ker(β)/Im(α) is called the cohomol-
ogy sheaf of the monad M•.

Remark 2.8. Clearly, the cohomology sheaf E of a monad M• is always a co-
herent sheaf, but more can be said in particular cases. In fact: E is torsion free if
and only if the localized maps αx are injective away from a subset Y ⊂ X of codi-
mension 2; E is reflexive if and only if the localized maps αx are injective away
from a subset Y ⊂ X of codimension 3; and E is locally free if and only if the
localized maps αx are injective for all x ∈X.

A monad 0 −→ A
α−→ B

β−→ C −→ 0 has a display, which is a commutative dia-
gram with exact rows and columns:

0

��

0

��

0 �� A �� K ��

��

E ��

��

0

0 �� A
α �� B ��

β

��

Q ��

��

0 ;

C

��

C

��

0 0

here K := Ker(β) and Q := Coker(α). From the display one easily deduces that,
if a coherent sheaf E on X is the cohomology sheaf of a monad M•, then
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(i) rk(E) = rk(B) − rk(A) − rk(C) and
(ii) ct(E) = ct(B)ct(A)

−1ct(C)−1.

Definition 2.9. A monad on X is called quasi-linear if it has the form

0 −→ ⊕r
j=1 L′

j

α−→ ⊕s
i=1 L i

β−→ ⊕t
k=1 L′′

k −→ 0,

where L i, L′
j , L′′

k are line bundles on X.

Quasi-linear monads appear often in the literature. For instance, Horrocks proved
that any vector bundle on P

3 is the cohomology of a quasi-linear monad, and
Okonek–Spindler proved that any instanton bundle on P

2 l+1 is the cohomology of
a quasi-linear monad (see Section 3 for the precise statements). The goal of the
sequel here is to bound the regularity of the cohomology bundle of a quasi-linear
monad on a projective space P

n and on a hyperquadric Qn.

3. Regularity of Sheaves on Pn

In [11] Horrocks proved that any vector bundle E on P
3 is the cohomology of a

quasi-linear monad

0 −→ ⊕
i OP3(ai) −→ ⊕

j OP3(bj ) −→ ⊕
n OP3(cn) −→ 0.

The goal of this section is to give effective bounds for the Castelnuovo–Mumford
regularity of any rank-r vector bundle E on P

n that is the cohomology of a quasi-
linear monad

0 −→ ⊕s
i=1 OP n(ai) −→ ⊕r+s+t

k=1 OP n(bk) −→ ⊕t
j=1 OP n(cj ) −→ 0

in terms of the integers ai, bk , and cj . In particular, we will bound the Castelnuovo–
Mumford regularity of any vector bundle on P

3 and the Castelnuovo–Mumford
regularity of any mathematical instanton bundle on P

2n+1, since mathematical in-
stanton bundles are the cohomology of a quasi-linear monad of the type

0 −→ OP2n+1(−1)k −→ O2n+2k
P2n+1 −→ OP2n+1(1)k −→ 0.

Remark 3.1. According to Proposition 2.4, all the bounds of the Castelnuovo–
Mumford regularity of a coherent sheaf E on P

n are valid for the regularity of E
with respect to σ = (OP n, OP n(1), . . . , OP n(n)) and vice versa.

Let us now prove the main result of this section.

Theorem 3.2. Let E be a rank-r vector bundle on P
n that is the cohomology of

a quasi-linear monad

0 −→ ⊕s
i=1 OP n(ai)

α−→ ⊕r+s+t
k=1 OP n(bk)

β−→ ⊕t
j=1 OP n(cj ) −→ 0,

with a1 ≤ · · · ≤ as , b1 ≤ · · · ≤ br+s+t , and c1 ≤ · · · ≤ ct . Let c := ∑ t
j=1 cj .

Then E is m-regular for any integer m such that

m ≥ max{(n − 1)ct − (b1 + · · · + bt+n) − n + c + 1, −a1, −b1}.
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Proof. Consider the short exact sequences

0 −→ K −→ ⊕r+s+t
k=1 OP n(bk) −→ ⊕t

j=1 OP n(cj ) −→ 0,

0 −→ ⊕s
i=1 OP n(ai) −→ K −→ E −→ 0

(3.1)

associated to the monad

0 −→ ⊕s
i=1 OP n(ai)

α−→ ⊕r+s+t
k=1 OP n(bk)

β−→ ⊕t
j=1 OP n(cj ) −→ 0,

whereK := Ker(β). Using the cohomological exact sequences associated to them,
it can be easily seen that, for any p ≥ max{−b1 − n, −a1 − n},

H i(E(p)) = H i(K(p)) = 0 for 2 ≤ i ≤ n;
also, for anyp ∈ Z we haveH1(E(p)) = H1(K(p)). To see for whichp the equal-
ity H1(K(p)) = 0 holds, consider the Buchsbaum–Rim complex associated to

F := ⊕r+s+t
k=1 OP n(bk)

β−→ G = ⊕t
j=1 OP n(cj ) −→ 0,

that is, the complex

0 −→ S r+s−1G ∗ ⊗ ∧r+s+t F −→ S r+s−2G ∗ ⊗ ∧r+s+t−1 F −→ · · ·
−→ S 2G ∗ ⊗ ∧t+3 F −→ G ∗ ⊗ ∧t+2 F −→ ∧t+1 F
−→ F ⊗ OP n(c) −→ G ⊗ OP n(c) −→ 0.

We cut this complex into short exact sequences as follows:

0 −→ K ⊗ OP n(c) −→ F ⊗ OP n(c) −→ G ⊗ OP n(c) −→ 0,

0 −→ K2 −→ ∧t+1 F −→ K ⊗ OP n(c) −→ 0,

0 −→ K3 −→ G ∗ ⊗ ∧t+2 F −→ K2 −→ 0,

...

0 −→ Kn −→ S n−2G ∗ ⊗ ∧t+n−1 F −→ Kn−1 −→ 0,

0 −→ Km+1 −→ S n−1G ∗ ⊗ ∧t+n F −→ Kn −→ 0.

We then consider the cohomological exact sequence associated to these short ex-
act sequences tensored by OP n(p − c):

· · · −→ H1
(∧t+1 F ⊗ OP n(p − c)

) −→ H1(K ⊗ OP n(p))

−→ H 2(K2 ⊗ OP n(p − c)) −→ H 2
(∧t+1 F ⊗ OP n(p − c)

) −→ · · ·
...

· · · −→ Hq
(
Sq−1G ∗ ⊗ ∧t+q F ⊗ OP n(p − c)

)
−→ Hq(Kq ⊗ OP n(p − c)) −→ Hq+1(Kq+1 ⊗ OP n(p − c))

−→ Hq+1
(
Sq−1G ∗ ⊗ ∧t+q F ⊗ OP n(p − c)

) −→ · · · .
Observe that, for any q > 0,
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Sq−1G ∗ ⊗ ∧t+q F ⊗ OP n(p − c) = ⊕
l OP n(dl),

where dl = (bk1 + · · · + bkt+q
)− (cj1 + · · · + cjq−1)+ p − c with j1 ≤ · · · ≤ jq−1

and k1 < · · · < kt+q . Hence, for any p ≥ (n − 1)ct − (b1 + · · · + bt+n) − n + c,

h1(K(p)) = h2(K2(p − c)) = · · · = hn(Kn(p − c))

≤ hn
(
S n−1G ∗ ⊗ ∧t+n F ⊗ OP n(p − c)

) = 0.

Therefore, for any p ≥ (n−1)ct −(b1+· · ·+bt+n)−n+c, we have H1(E(p)) =
0 and hence, for any i > 0 and m ≥ max{(n−1)ct − (b1+· · ·+bt+n)−n+c+1,
−a1, −b1},

H i(E(m − i)) = 0;
that is, E is m-regular.

As a by-product we obtain an immediate proof of a result concerning the regu-
larity of mathematical instanton bundles on P

2n+1. (See [7] for n = 1 and [2] for
n ≥ 2; see also [10] for better bounds for general instanton bundles on P

3.)

Corollary 3.3. If E is a mathematical instanton bundle on P
2n+1 with quan-

tum number k, then E is k-regular.

Proof. It was proved by Okonek and Spindler [14] that any mathematical instan-
ton bundle on P

2n+1 is the cohomology of a quasi-linear monad of the type

0 −→ OP2n+1(−1)k −→ O2n+2k
P2n+1 −→ OP2n+1(1)k −→ 0.

Hence, the result follows from Theorem 3.2.

Remark 3.4. Arguing as in Theorem 3.2, we can see that any Schwarzenberger
type bundle is 0-regular—that is, any vector bundle E on P

n arising from an exact
sequence of the type

0 −→ OP n(−1)c −→ Od
P n −→ E −→ 0

is 0-regular.

We would like to know how far is the bound given in Theorem 3.2 from being
sharp. We will end this section by showing cases where the bounds obtained in
Theorem 3.2 are sharp.

Example 3.5. (1) Let a, b, c be integers such that b �= c(n + 1). Any vector
bundle E on P

n with H 0(P n,E) = 0 and that is the cohomology bundle of a
quasi-linear monad of the type

0 −→ OP n(−1)a −→ Ob
P n −→ OP n(1)c −→ 0

has H1(E) �= 0 (see [8] for the existence of such bundles). Indeed, using the dis-
play associated to the monad together with the fact that H 0(P n,E) = 0, we easily
deduce that h1(P n,E) = c(n + 1) − b �= 0. So, any vector bundle E on P

n with
H 0(P n,E) = 0 and that is the cohomology of a quasi-linear monad of the type
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0 −→ OP n(−1)a −→ Ob
P n −→ OP n(1)2 −→ 0

is 2-regular but is not 1-regular. Hence, the bound in Theorem 3.2 is sharp. In
particular, the bound of Theorem 3.2 is sharp for any mathematical instanton bun-
dle E on P

2 l+1 with quantum number k = 2. Indeed, any mathematical instanton
bundle E on P

2 l+1 with quantum number k = 2 is the cohomology bundle of a
quasi-linear monad of type

0 −→ OP2 l+1(−1)2 −→ O2 l+4
P2 l+1 −→ OP2 l+1(1)2 −→ 0,

and the condition H 0(P2 l+1,E) = 0 follows from [1, Lemma 3.4] if l ≥ 2 and
from the stability of E if l = 1.

(2) By [7, Prop. IV.1], the bound given in Theorem 3.2 is sharp for certain math-
ematical instanton bundles on P

3 with quantum number k ≥ 1. In fact, any math-
ematical instanton bundle E on P

3 associated to k + 1 lines on a smooth quadric
verifies h1(E(k − 2)) �= 0 and is the cohomology bundle of a quasi-linear monad
of the type

0 −→ OP3(−1)k −→ O2k+2
P3 −→ OP3(1)k −→ 0.

Therefore, E is k-regular but is not (k − 1)-regular, and the bound given in Theo-
rem 3.2 is sharp. More generally, by [2, Thm. 3.6] it follows that, for any special
symplectic instanton bundle E on P

2 l+1 with quantum number k and for any t with
−1 ≤ t ≤ k − 2, we have H1(E(t)) �= 0 and that E is the cohomology bundle of
a quasi-linear monad

0 −→ OP2 l+1(−1)k −→ O2 l+2k
P2 l+1 −→ OP2 l+1(1)k −→ 0.

Hence, for any special symplectic instanton bundleE on P
2 l+1 with quantum num-

ber k, the bound given in Theorem 3.2 is sharp.

4. Regularity of Sheaves on Hyperquadrics

In this section we will restrict our attention to coherent sheaves over Qn ⊂ P
n+1.

We will bound the regularity of vector bundles that are the cohomology of quasi-
linear monads, and in particular we will bound the regularity of mathematical
instanton bundles on Q2 l+1.

Let n ∈ Z be an integer and let Qn ⊂ P
n+1 be a smooth quadric hypersurface.

In [12], Kapranov defined the locally free sheaves ψi (i ≥ 0) on Qn and consid-
ered the Spinor bundles on Qn, + if n is odd and +1,+2 if n is even, to construct
a resolution of the diagonal , ⊂ Qn × Qn and to describe the bounded derived
category Db(OQn

-mod). In particular, he found that σ̄ = (F0, F1, . . . , Fn) where

Fj = OQn
(−n + j) for 1 ≤ j ≤ n,

F0 =
{
(+1(−n),+2(−n)) if n is even,

(+(−n)) if n is odd

is an n-block collection of locally free sheaves on Qn that generates D [12,
Prop. 4.9]. Dualizing each bundle of this collection and reversing the order, we
get that σ0 := (E0, E1, . . . , En) where
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Ej = OQn
(j) for 0 ≤ j ≤ n − 1,

En =
{
(+1(n − 1),+2(n − 1)) if n is even,

(+(n − 1)) if n is odd

is also an n-block collection of locally free sheaves on Qn that generates D.

In order to define the right dual n-block collection σ∨
j of any subcollection

σj := (Ej , Ej+1, . . . , Ej+n)

of the helix Hσ0 = {Ei}i∈Z associated to σ0, we shall give an elementary descrip-
tion of the locally free sheaves ψi and their basic properties (for more details the
reader can refer to [12]). With notation as before, we will collect the cohomolog-
ical properties of the Spinor bundles we need later.

Lemma 4.1. Let n = 2 l + e ∈ Z (e = 0,1) be an integer, let Qn ⊂ P
n+1 be a

smooth quadric hypersurface, and let j be an integer with 1 ≤ j ≤ n.

(i) For any i such that 0 < i < n and for all t ∈ Z ,

H i(Q2 l+1,+(t)) = H i(Q2 l ,+1(t)) = H i(Q2 l ,+2(t)) = 0.

(ii) For all t < 0,

H 0(Q2 l+1,+(t)) = H 0(Q2 l ,+1(t)) = H 0(Q2 l ,+2(t)) = 0

and
h0(Q2 l+1,+) = h0(Q2 l ,+1) = h0(Q2 l ,+2) = 2�(n+1)/2�.

(iii) Ext i(+(j),+) =
{

0 if i �= j,

C if i = j.

(iv) Ext i(+2(j),+1) = Ext i(+1(j),+2) =
{

0 if i �= j or j ≡ 0 mod 2,

C if i = j and j ≡ 1 mod 2.

(v) Ext i(+1(j),+1) = Ext i(+2(j),+2) =
{

0 if i �= j or j ≡ 1 mod 2,

C if i = j and j ≡ 0 mod 2.

Proof. The assertions (i) and (ii) follow from [15, Thm. 2.3]. The assertion (iii)
follows by induction on j, using (i) and (ii), the fact that + is an exceptional vec-
tor bundle, and the long exact sequence

· · · −→ Ext i−1(OQn
(j)2(n+1)/2,+) −→ Ext i−1(+(j − 1),+)

−→ Ext i(+(j),+) −→ Ext i(OQn
(j)2(n+1)/2,+) −→ · · ·

obtained by applying the functor Hom(·,+) to the exact sequence

0 −→ +(j − 1) −→ OQn
(j)2(n+1)/2 −→ +(j) −→ 0.

The assertions (iv) and (v) follow by induction on j, using (i) and (ii), the fact
that (+1,+2) is an exceptional pair of vector bundles, and (for 1 ≤ m, k ≤ 2) the
long exact sequences

· · · −→ Ext i−1(OQn
(j)2 l

,+k) −→ Ext i−1(+m(j − 1),+k)

−→ Ext i(+k(j),+k) −→ Ext i(OQn
(j)2 l

,+k) −→ · · ·
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and

· · · −→ Ext i−1(OQn
(j)2 l

,+m) −→ Ext i−1(+m(j − 1),+m)

−→ Ext i(+k(j),+m) −→ Ext i(OQn
(j)2 l

,+m) −→ · · ·
obtained by applying the functors Hom(·,+k), 1 ≤ k ≤ 2, to the exact sequences

0 −→ +1(j − 1) −→ OQn
(j)2 l −→ +2(j) −→ 0

and
0 −→ +2(j − 1) −→ OQn

(j)2 l −→ +1(j) −→ 0.

From now on, we set �j := �
j

P n+1 and define ψj inductively as

ψ0 := OQn
, ψ1 := �1(1)|Qn

.

For all j ≥ 2, we may define the locally free sheaf ψj as the unique nonsplitting
extension

0 −→ �j(j)|Qn
−→ ψj −→ ψj−2 −→ 0

(note that Ext1(ψj−2,�j(j)|Qn
) = C). In particular, ψj+2 = ψj for j ≥ n and

ψn = +(−1)2�(n+1)/2�.
The locally free shaves ψj have the following cohomological properties.

Lemma 4.2. Let n = 2 l + e ∈ Z (e = 0,1) be an integer, let Qn ⊂ P
n+1 be a

smooth quadric hypersurface, and let j be an integer with 1 ≤ j ≤ n. Then, for
p, i with 1 ≤ p, i ≤ n − 1, the following statements hold.

(i) If i ≡ 1 mod 2 and p �= 1, . . . , i then, for any l ∈ Z ,

Hp(ψi(l)) = 0.

(ii) If i ≡ 1 mod 2 and p ∈ {1, . . . , i}, then

Hp(ψi(l)) =
{

0 if l �= −p and p ≡ 1 mod 2,

0 if l �= −p + 1 and p ≡ 0 mod 2.

(iii) If i ≡ 0 mod 2 and p �= 1, . . . , i then, for any l ∈ Z ,

Hp(ψi(l)) = 0.

(iv) If i ≡ 0 mod 2 and p ∈ {1, . . . , i}, then

Hp(ψi(l)) =
{

0 if l �= −p and p ≡ 0 mod 2,

0 if l �= −p + 1 and p ≡ 1 mod 2.

For p = 0, n and 1 ≤ i ≤ n − 1:

(v) H 0(ψi(l )) = 0 for any l < 0;
(vi) Hn(ψi(l)) = 0 for any l > −k.

Proof. First we consider the cohomological exact sequence

· · · −→ Hp(�i(i + l )) −→ Hp(�i(i + l )|Qn
)

−→ Hp+1(�i(i + l − 2)) −→ · · · (4.1)
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associated to the exact sequence

0 −→ �j(j − 2) −→ �j(j) −→ �j(j)|Qn
−→ 0.

Using Bott’s formulas, from (4.1) we deduce that, for any l ∈ Z ,

Hp(�j(l)|Qn
) = 0 if p �= j or j − 1,

H i−1(�i(i + l )|Qn
) = 0 if l �= −i + 2,

H i(�i(i + l )|Qn
) = 0 if l �= −i, (4.2)

Hn(�i(i + l )|Qn
) = 0 if l > −n,

H 0(�i(i + l )|Qn
) = 0 if l < 0.

Assume that i ≡ 1 mod 2 (we leave the case i ≡ 0 mod 2 to the reader). If i =
1 then, by definition, ψ1(l ) = �1(1 + l )|Qn

. Hence the result follows from (4.2).
For i ≥ 3, consider the cohomological exact sequence

· · · −→ Hp(�i(i + l )|Qn
) −→ Hp(ψi(l)) −→ Hp(ψi−2(l )) −→ · · · (4.3)

associated to the exact sequence

0 −→ �i(i + l )|Qn
−→ ψi(l) −→ ψi−2(l ) −→ 0.

The result follows if we argue by induction on i, using (4.2) and the exact se-
quence (4.3).

Remark 4.3. According to Lemma 4.2, for any 1 ≤ p ≤ n − 1 and k ∈
Z \ {0, −2, . . . , −j}, if j ≡ 0 mod 2 and k ∈ Z \ {−1, −3, . . . , −j} if j ≡ 1 mod 2,
then

Hp(Qn,ψj(k)) = 0.

Proposition 4.4. Let n ∈ Z be an integer, let Qn ⊂ P
n+1 be a smooth quadric

hypersurface, and let Hσ0 = {Ei}i∈Z be the helix associated to

σ0 = (OQn
, OQn

(1), . . . , OQn
(n − 1), En),

En =
{
(+1(n − 1),+2(n − 1)) if n is even,

(+(n − 1)) if n is odd.

Then the following statements hold.

(i) The right dual base of σ0 is

(H0,ψn−1(n),ψn−2(n), . . . ,ψ1(n),ψ0(n)),

H0 =
{
(+1(n − 1),+2(n − 1)) if n is even,

(+(n − 1)) if n is odd.

(ii) For any j (1 ≤ j ≤ n), the right dual base of the n-block collection

σj = (OQn
(j), . . . , OQn

(n − 1), En−j ,

OQn
(n), OQn

(n + 1), . . . , OQn
(n + j − 1)),

En−j =
{
(+1(n − 1),+2(n − 1)) if n is even,

(+(n − 1)) if n is odd
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is

(OQn
(n + j − 1),ψ∗

1(n + j − 1), . . . ,ψ∗
j−1(n + j − 1),

Hj ,ψn−j−1(n + j), . . . ,ψ0(n + j)),

Hj =
{
(+1(n + j − 1),+2(n + j − 1)) if n is even,

(+(n + j − 1)) if n is odd.

(iii) For any λ∈ Z , the right dual base of the n-block collection

σλ(n+1) = (OQn
(λn), OQn

(1 + λn), . . . , OQn
(n − 1 + λn), Eλ(n+1)+n),

Eλ(n+1)+n =
{
(+1(n − 1 + λn),+2(n − 1 + λn)) if n is even,

(+(n − 1 + λn)) if n is odd
is
(H0,ψn−1((λ + 1)n),ψn−2((λ + 1)n), . . . ,ψ1((λ + 1)n),ψ0((λ + 1)n)),

H0 =
{
(+1(n − 1 + λn),+2(n − 1 + λn)) if n is even,

(+(n − 1 + λn)) if n is odd.

(iv) For any j (1 ≤ j ≤ n) and any λ ∈ Z , the right dual base of the n-block
collection

σj+λ(n+1) = (OQn
(j + λn), . . . , OQn

(n − 1 + λn), Eλ(n+1)+n,

OQn
((λ + 1)n), . . . , OQn

(j − 2 + (λ + 1)n),

OQn
(j − 1 + (λ + 1)n)),

Eλ(n+1)+n =
{
(+1(n − 1 + λn),+2(n − 1 + λn)) if n is even,

(+(n − 1 + λn)) if n is odd
is

(OQn
((λ + 1)n + j − 1),ψ∗

1((λ + 1)n + j − 1), . . . ,

ψ∗
j−1((λ + 1)n + j − 1), Hj ,ψn−j−1((λ + 1)n + j), . . . ,

ψ0((λ + 1)n + j)),

Hj =




(+1((λ + 1)n + j − 1),+2((λ + 1)n + j − 1)) if n is even and
j ≡ 0 mod 2,

(+2((λ + 1)n + j − 1),+1((λ + 1)n + j − 1)) if n is even and
j ≡ 1 mod 2,

(+((λ + 1)n + j − 1)) if n is odd.

Proof. The case of n odd is proved in [4, Prop. 4.2], so let us assume that n is
even. Since the proof is similar in all the cases, we will prove (i) and leave the re-
maining cases to the reader. The orthogonality conditions (2.1) and (2.2) uniquely
determine right dual basis, so the collection

(H 0
1 ,H 0

2 ,H1
1,H 2

1 , . . . ,Hn
1 )

= (+1(n − 1),+2(n − 1),ψn−1(n),ψn−2(n), . . . ,ψ1(n),ψ0(n))

is the right dual base of

(E 0
1 ,E1

1,E 2
1 , . . . ,En

1 ,En
2 ) = (OQn

, OQn
(1), . . . , OQn

(n−1),+1(n−1),+2(n−1))
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if and only if, for any i, j, k, l,

Extp(H i
j ,Ek

l ) = 0 for p ≥ 0

unless Ext k(H k
i ,En−k

i ) = C—that is, if and only if, for any p ≥ 0, the following
conditions are satisfied.

(a) Ext k(ψn−k(n), OQn
(n − k)) = C for 1 ≤ k ≤ n.

(b) Hom(+1(n − 1),+1(n − 1)) = C.

(c) Hom(+2(n − 1),+2(n − 1)) = C.

(d) Extp(+2(n − 1),+1(n − 1)) = 0.
(e) Extp(+1(n − 1),+2(n − 1)) = 0.
(f ) Extp(+1(n − 1), O(k)) = 0 for 0 ≤ k ≤ n − 1.
(g) Extp(+2(n − 1), O(k)) = 0 for 0 ≤ k ≤ n − 1.
(h) Extp(ψn−j(n), OQn

(k)) = 0 for k �= n − j or p �= j (1 ≤ j ≤ n).

(i) Extp(ψn−j(n),+1(n − 1)) = 0 for 1 ≤ j ≤ n.

( j) Extp(ψn−j(n),+2(n − 1)) = 0 for 1 ≤ j ≤ n.

Conditions (a)–(h) follow from Serre’s duality, Lemma 4.1, and the fact that
(+1,+2) is a strongly exceptional pair of vector bundles. On the other hand,
by [12, 4.8 and Prop. 4.11] we have that

(O,ψ∗
1,ψ∗

2 , . . . ,ψ∗
n−1,+

∗
1(1),+

∗
2(1))

is an exceptional collection. Thus, for any p ≥ 0, 1 ≤ j ≤ n, and i = 1, 2,

Extp(ψj ,+i(−1)) = 0,

and this proves (i) and ( j).

According to Proposition 2.5(c) and Proposition 2.6, if a1 ≤ · · · ≤ ar , b1 ≤ · · · ≤
bs , and c1 ≤ · · · ≤ ct then

max
{
Regσ0

(⊕r
i=1 OQn

(ai)
)
, Regσ0

(⊕s
l=1 OQn

(bl)
)
, Regσ0

(⊕t
k=1 OQn

(ck)
)}

= max{−(a1 + l1), −(b1 + u1), −(c1 + v1)},
where a1 = l1n + r1, b1 = u1n + s1, and c1 = v1n + k1 for some integers 0 ≤
r1, s1, k1 ≤ n−1. Keeping this notation, we can state the main result of this section
as follows.

Theorem 4.5. Let n ∈ Z be an integer, let Qn ⊂ P
n+1 be a smooth quadric

hypersurface, and let E be the cohomology of a monad

0 −→ ⊕r
i=1 OQn

(ai)
α−→ ⊕s

l=1 OQn
(bl)

β−→ ⊕t
k=1 OQn

(ck) −→ 0

with a1 ≤ · · · ≤ ar , b1 ≤ · · · ≤ bs , c1 ≤ · · · ≤ ct , and γ = c1 + · · · + ct . Let

m = −α(n + 1) − j − n ≥ max{−(a1 + l1), −(b1 + u1), −(c1 + v1)}
for some integers α and j (1 ≤ j ≤ n), and assume that

αn + (n − 2)ct − (b1 + · · · + bt+n) + γ + j − 1 + n < 0.

Then E is m-regular with respect to the n-block collection
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σ0 = (OQn
, OQn

(1), . . . , OQn
(n − 1), En),

En =
{
(+1(n − 1),+2(n − 1)) if n is even,

(+(n − 1)) if n is odd.

Proof. Denote by σ∨−m−n = (H0, . . . , Hn), Hi = (H i
1 , . . . ,H i

αi
), the right dual

n-block collection of σ−m−n = (E−m−n, . . . , E−m). We need to show that, for any
i and h with 0 ≤ i ≤ n and 1 ≤ h ≤ αi,

Hq(E ⊗ H i∗
h ) = 0, q > 0.

Toward this end, consider the short exact sequences

0 −→ K −→ ⊕s
l=1 OQn

(bl) −→ ⊕t
k=1 OQn

(ck) −→ 0,

0 −→ ⊕r
i=1 OQn

(ai) −→ K −→ E −→ 0,
(4.4)

where K := Ker(β). By assumption,

m ≥ max
{
Regσ0

(⊕r
i=1 OQn

(ai)
)
,

Regσ0

(⊕s
l=1 OQn

(bl)
)
, Regσ0

(⊕t
k=1 OQn

(ck)
)}
.

As a result, according to Proposition 2.5(a),
⊕r

i=1 OQn
(ai),

⊕s
l=1 OQn

(bl), and⊕t
k=1 OQn

(ck) are m-regular with respect to σ0. Hence, for any q > 0 and any i,h
with 0 ≤ i ≤ n and 1 ≤ h ≤ αi,

Hq
((⊕r

i=1 OQn
(ai)

) ⊗ H i∗
h

) = Hq
((⊕s

l=1 OQn
(bl)

) ⊗ H i∗
h

)
= Hq

((⊕t
k=1 OQn

(ck)
) ⊗ H i∗

h

) = 0.

Considering the cohomological exact sequences

· · · −→ Hq
(⊕r

i=1 OQn
(ai) ⊗ H i∗

h

) −→ Hq(K ⊗ H i∗
h )

−→ Hq(E ⊗ H i∗
h ) −→ Hq+1

(⊕r
i=1 OQn

(ai) ⊗ H i∗
h

)
and

· · · −→ Hq−1
(⊕t

k=1 OQn
(ck) ⊗ H i∗

h

) −→ Hq(K ⊗ H i∗
h )

−→ Hq
(⊕s

l=1 OQn
(bl) ⊗ H i∗

h

) −→ · · ·
associated to (4.4), we obtain

Hq(E ⊗ H i∗
h ) = Hq(K ⊗ H i∗

h ), q > 0,

Hq(K ⊗ H i∗
h ) = 0, q ≥ 2.

Therefore, we now need only show that, for any i and h with 0 ≤ i ≤ n and
1 ≤ h ≤ αi,

H1(E ⊗ H i∗
h ) = H1(K ⊗ H i∗

h ) = 0. (4.5)

So consider the Buchsbaum–Rim complex associated to

F := ⊕s
l=1 OQn

(bl) −→ G := ⊕t
k=1 OQn

(ck) −→ 0;
that is,
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0 −→ S s−t−1G ∗ ⊗ ∧s F → S s−t−2G ∗ ⊗ ∧s−1 F −→ · · ·
−→ S 2G ∗ ⊗ ∧t+3 F −→ G ∗ ⊗ ∧t+2 F −→ ∧t+1 F
−→ F ⊗ OQn

(γ ) −→ G ⊗ OQn
(γ ) −→ 0.

We first cut the complex into short exact sequences:

0 −→ K ⊗ OQn
(γ ) −→ F ⊗ OQn

(γ ) −→ G ⊗ OQn
(γ ) −→ 0,

0 −→ K2 −→ ∧t+1 F −→ K ⊗ OQn
(γ ) −→ 0,

0 −→ K3 −→ G ∗ ⊗ ∧t+2 F −→ K2 −→ 0,

...

0 −→ Kn −→ S n−2G ∗ ⊗ ∧t+n−1 F −→ Kn−1 −→ 0,

0 −→ Km+1 −→ S n−1G ∗ ⊗ ∧t+n F −→ Kn −→ 0.

Then we consider the cohomological exact sequence associated to these short ex-
act sequences tensored by H i∗

h ⊗ OQn
(−γ ):

· · · −→ Hq
(
Sq−1G ∗ ⊗ ∧t+q F ⊗ H i∗

h ⊗ OQn
(−γ )

)
−→ Hq(Kq ⊗ H i∗

h ⊗ OQn
(−γ )) −→ Hq+1(Kq+1 ⊗ H i∗

h ⊗ OQn
(−γ ))

−→ Hq+1
(
Sq−1G ∗ ⊗ ∧t+q F ⊗ H i∗

h ⊗ OQn
(−γ )

) −→ · · · .
Observe that, for any q > 0,

Sq−1G ∗ ⊗ ∧t+q F ⊗ OQn
(−γ ) = ⊕

l OQn
(dl),

where dl = (bj1 + · · · + bjt+q
)− (ck1 + · · · + ckq−1)− γ with k1 ≤ · · · ≤ kq−1 and

j1 < · · · < jt+q .

Hereafter we distinguish two cases according to the equivalence of −m − n

modulo n + 1.

Case 1: Assume that −m − n ≡ 0 mod (n + 1); that is, −m − n = α(n + 1).
In this case, by Proposition 4.4(c) we have

(H0, . . . , Hn)

= (H0,ψn−1((α + 1)n),ψn−2((α + 1)n), . . . ,ψ1((α + 1)n),ψ0((α + 1)n)),

H0 =
{
(+1(n − 1 + αn),+2(n − 1 + αn)) if n is even,

(+(n − 1 + αn)) if n is odd,

and (by assumption) αn+ (n− 2)ct − (b1 + · · ·+ bt+n)+ γ −1+n < 0. Hence,
by Lemma 4.1 and Remark 4.3, the following statements hold.

• For any 1 ≤ q ≤ n − 1,

Hq(OQn
(dl) ⊗ H∗

0)

=
{
Hn−q(+1(αn − 1 − dl)) = Hn−q(+2(αn − 1 − dl)) = 0 if n is even,

Hn−q(+(αn − 1 − dl)) = 0 if n is odd.

• For any 1 ≤ q ≤ n − 1 and i with 1 ≤ i ≤ n,

Hq(OQn
(dl) ⊗ H i∗

h ) = Hn−q(ψn−i(αn − dl)) = 0.
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Therefore,

Hq
(
Sq−1G ∗ ⊗ ∧t+q+1 F ⊗ H i∗

h ⊗ det(G )∗)
= Hq+1

(
Sq−1G ∗ ⊗ ∧t+q+1 F ⊗ H i∗

h ⊗ det(G )∗) = 0
and hence

h1(K ⊗ H i∗
h ) = h2(K2 ⊗ H i∗

h ⊗ det(G )∗) = · · · = hn(Kn ⊗ H i∗
h ⊗ det(G )∗)

≤ hn
(
S n−1G ∗ ⊗ ∧t+n F ⊗ H i∗

h ⊗ det(G )∗) = 0.

It then follows that H1(E ⊗ H i∗
h ) = H1(K ⊗ H i∗

h ) = 0, which finishes the proof
in this case.

Case 2: Assume that −m−n ≡ j mod (n+1) with 1 ≤ j ≤ n; that is, assume
−m − n = α(n + 1) + j for some 1 ≤ j ≤ n. In this case, by Proposition 4.4(d)
we have

(H0, . . . , Hn) = (OQn
((α + 1)n + j − 1),ψ∗

1((α + 1)n + j − 1), . . . ,

ψ∗
j−1((α + 1)n + j − 1), Hj ,ψn−j−1((α + 1)n + j), . . . ,

ψ0((α + 1)n + j)),

Hj =
{
(+1((α + 1)n + j − 1),+2((α + 1)n + j − 1) if n is even,

(+((α + 1)n + j − 1) if n is odd,

and (by assumption) αn + (n − 2)ct − (b1 + · · · + bt+n) + γ + j − 1 + n < 0.
Hence, by Lemma 4.1 and Remark 4.3, the following statements hold.

• For any 1 ≤ q ≤ n − 1 and i = 0,

Hq(OQn
(dl) ⊗ H i∗

h ) = Hq(OQn
(dl − (α + 1)n − j + 1)) = 0.

• For any 1 ≤ q ≤ n − 1 and i with 1 ≤ i ≤ j − 1,

Hq(OQn
(dl) ⊗ H i∗

h ) = Hq(ψi(dl − (α + 1)n − j + 1)) = 0.

• For any 1 ≤ q ≤ n − 1 and i = j,

Hq(OQn
(dl) ⊗ H i∗

h )

=



Hn−q(+1((α + 1)n + j − 1 − dl)) = 0 if n is even,

Hn−q(+2((α + 1)n + j − 1 − dl)) = 0 if n is even;

Hn−q(+((α + 1)n + j − 1 − dl)) = 0 if n is odd.
• For any 1 ≤ q ≤ n − 1 and i with j + 1 ≤ i ≤ n,

Hq(OQn
(dl) ⊗ H i∗

h ) = Hn−q(ψn−i(αn + j − dl)) = 0.

Therefore,

Hq
(
Sq−1G ∗ ⊗ ∧t+q+1 F ⊗ H i∗

h ⊗ det(G )∗)
= Hq+1

(
Sq−1G ∗ ⊗ ∧t+q+1 F ⊗ H i∗

h ⊗ det(G )∗) = 0
and hence

h1(K ⊗ H i∗
h ) = h2(K2 ⊗ H i∗

h ⊗ det(G )∗) = · · · = hn(Kn ⊗ H i∗
h ⊗ det(G )∗)

≤ hn
(
S n−1G ∗ ⊗ ∧t+n F ⊗ H i∗

h ⊗ det(G )∗) = 0.

As a result, H1(E ⊗ H i∗
h ) = H1(K ⊗ H i∗

h ) = 0, which finishes the proof.
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In [6] we introduced the notion of an instanton bundle on hyperquadrics Qn ⊂
P

n+1 (see [6, Prop. 4.7] for the existence of such bundles). Extending the ideas
used in Theorem 4.5, we obtain a lower bound for the regularity of instanton bun-
dles on hyperquadrics. The bound that we obtain in the next theorem is better
than any we could obtain as a consequence of Theorem 4.5 because, with linear
monads, we have better control of all the cohomology groups involved. By means
of an example we will see that the bound obtained so far is sharp.

Theorem 4.6. Let E be a mathematical instanton bundle on Qn (n = 2 l + 1)
with quantum number k, and let m = −α(n + 1) − n − j ≥ 2 be an integer for
some α, j ∈ Z with 0 ≤ j ≤ n. Assume that m+α ≥ k. Then E is m-regular with
respect to the n-block collection

σ0 = (OQ2 l+1, OQ2 l+1(1), . . . , OQ2 l+1(2 l ),+(2 l )).

Proof. Any mathematical instanton bundle E on Qn is the cohomology bundle of
a quasi-linear monad

0 −→ OQ2 l+1(−1)k
α−→ O2k+2 l

Q2 l+1

β−→ OQ2 l+1(1)
k −→ 0. (4.6)

Denote by σ∨−m−n = (H0, . . . ,Hn), the right dual n-block collection of σ−m−n =
(E−m−n, . . . , E−m). We must show that, for any i with 0 ≤ i ≤ n,

Hq(E ⊗ H ∗
i ) = 0, q > 0.

Toward this end, consider the short exact sequences

0 −→ K −→ O2k+2 l
Qn

−→ OQn
(1)k −→ 0,

0 −→ OQn
(−1)k −→ K −→ E −→ 0

(4.7)

associated to the monad (4.6), where K := Ker(β). Because m ≥ 2 (by assump-
tion), it follows from Proposition 2.5(a) that OQn

(−1)k, O2k+2 l
Qn

, and OQn
(1)k are

m-regular with respect to σ0. Using the cohomological exact sequences

· · · −→ Hq(OQn
(−1)k ⊗ H ∗

i ) −→ Hq(K ⊗ H ∗
i )

−→ Hq(E ⊗ H ∗
i ) −→ Hq+1(OQn

(−1)k ⊗ H ∗
i )

and

· · · −→ Hq−1(OQn
(1)k ⊗ H ∗

i ) −→ Hq(K ⊗ H ∗
i ) −→ Hq(O2k+2 l

Qn
⊗ H ∗

i ) −→ · · ·
associated to (4.7), we obtain

Hq(E ⊗ H ∗
i ) = Hq(K ⊗ H ∗

i ), q > 0,

Hq(K ⊗ H ∗
i ) = 0, q ≥ 2.

Hence, it remains only to show that, for any i with 0 ≤ i ≤ n,

H1(E ⊗ H ∗
i ) = H1(K ⊗ H ∗

i ) = 0.

So consider the Buchsbaum–Rim complex associated to

O2k+2 l
Qn

−→ OQn
(1)k −→ 0;
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that is,

S k+2 l−1OQn
(−1)k ⊗ ∧2k+2 l O2k+2 l

Qn

−→ S k+2 l−2OQn
(−1)k ⊗ ∧2k+2 l−1 O2k+2 l

Qn
−→ · · ·

−→ S 2OQn
(−1)k ⊗ ∧k+3 O2k+2 l

Qn
−→ OQn

(−1)k ⊗ ∧k+2 O2k+2 l
Qn

−→ ∧k+1 O2k+2 l
Qn

−→ O2k+2 l
Qn

⊗ OQn
(k) −→ OQn

(1)k ⊗ OQn
(k) −→ 0.

Cutting the complex into short exact sequences and twisting by H ∗
i (−k) then

yields, for suitable integers λ, λ1, . . . , λn and ε,

0 −→ K ⊗ H ∗
i −→ H ∗λ

i −→ H ∗ε
i (1) −→ 0,

0 −→ K2 ⊗ H ∗
i (−k) −→ H ∗

i (−k)λ1 −→ K ⊗ H ∗
i −→ 0,

0 −→ K3 ⊗ H ∗
i (−k) −→ H ∗

i (−k − 1)λ2 −→ K2 ⊗ H ∗
i (−k) −→ 0,

...

0 −→ Kn ⊗ H ∗
i (−k) −→ H ∗

i (−k − n + 2)λn−1 −→ Kn−1 ⊗ H ∗
i (−k) −→ 0,

H ∗
i (−k − n + 1)λn −→ Kn ⊗ H ∗

i (−k) −→ 0.

Hence, to prove H1(K ⊗ H ∗
i ) = 0 it suffices to show that, for any q with

1 ≤ q ≤ n − 1,
Hq(H ∗

i (−k − q + 1)) = 0,

Hq+1(H ∗
i (−k − q + 1)) = 0, (4.8)

Hn(H ∗
i (−k − n + 1)) = 0.

Assume that −m− n = α(n+1)+ j for some 1 ≤ j ≤ n. In this case, by Propo-
sition 4.4(iv) we have

(H0, . . . ,Hn) = (OQn
((α + 1)n + j − 1),ψ∗

1((α + 1)n + j − 1), . . . ,

ψ∗
j−1((α + 1)n + j − 1),+((α + 1)n + j − 1),

ψn−j−1((α + 1)n + j), . . . ,ψ0((α + 1)n + j)).

By assumption, m + α ≥ k; that is, αn + n + j + k ≤ 0. In particular,

αn + n + j + k �= 1, 2, 3.

Hence, by Lemma 4.1 and Lemma 4.2, the following statements hold.

• For any 1 ≤ q ≤ n − 1,

H q(OQn
(−(α + 1)n − j + 1 − k − q + 1)) = 0,

H q+1(OQn
(−(α + 1)n − j + 1 − k − q + 1)) = 0,

Hn(OQn
(−(α + 1)n − j + 1 − k − n + 1)) = 0.

• For any 1 ≤ q ≤ n − 1 and i with 1 ≤ i ≤ j − 1,

H q(ψi(−(α + 1)n − j + 1 − k − q + 1)) = 0,

H q+1(ψi(−(α + 1)n − j + 1 − k − q + 1)) = 0,

Hn(ψi(−(α + 1)n − j + 1 − k − n + 1)) = 0.
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• For any 1 ≤ q ≤ n − 1, since +∗ ∼= +(−1) it follows that

Hq(+∗(−(α + 1)n − j + 1 − k − q + 1)) = 0,

H q+1(+∗(−(α + 1)n − j + 1 − k − q + 1)) = 0,

Hn(+∗(−(α + 1)n − j + 1 − k − n + 1)) = 0.

• For any 1 ≤ q ≤ n − 1 and i with j + 1 ≤ i ≤ n,

H q(ψ∗
n−i(−(α + 1)n − j − k − q + 1)) = 0,

H q+1(ψ∗
n−i(−(α + 1)n − j − k − q + 1)) = 0,

Hn(ψ∗
n−i(−(α + 1)n − j − k − n + 1)) = 0.

Therefore, conditions (4.8) are satisfied and thus

H1(E ⊗ H ∗
i ) = H1(K ⊗ H ∗

i ) = 0.

The case j = 0 follows in exactly the same way and so is left to the reader.

It would be nice to know how far are the bounds given in Theorem 4.5 and The-
orem 4.6 from being sharp. In the next example we will see that the bound of
Theorem 4.6 is indeed sharp.

Example 4.7. Let a, b, c, d, e, f , g be homogenous coordinates in P
6, let Q5 ⊂

P
6 be the hyperquadric defined by the equation a2 +b2 +c2 +d 2 +e2 +f 2 +g2 =

0, and consider the matrix with linear entries

A =

 a b c 0 0 d e f 0 0

0 a b c 0 0 d e f 0
0 0 a b c 0 0 d e f


.

Let α : OQ5(−1)3 −→ O10
Q5

be the morphism associated to the 3 × 10 matrix A

and let β : O10
Q5

−→ OQ5(1)
3 be the morphism associated to the 10 × 3 matrix with

linear entries B = At ; for this we transpose with respect to the standard symplec-
tic form

G :=
(

0 −14

14 0

)
.

Since the localized maps αx are injective for all x ∈Q5, the cohomology sheaf of
the monad

0 −→ OQ5(−1)3 α−→ O10
Q5

β−→ OQ5(1)
3 −→ 0

is a rank-4 vector bundle E on Q5. By Theorem 4.6, E is 5-regular with respect
to σ0 = (OQ5 , OQ5(1), . . . , OQ5(4),+(4)). On the other hand, E is by definition
4-regular with respect to σ0 if and only if, for any q > 0,

Hq(E(3)) = Hq(E ⊗ ψ1(3)) = Hq(E ⊗ ψ2(3)) = 0,

Hq(E ⊗ +∗(3)) = Hq(E ⊗ ψ∗
1(2)) = Hq(E(2)) = 0.

Using Macaulay [9], we can compute the cohomology of E; in particular, we
obtain
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H1(E(2)) ∼= C
10.

Hence E is not 4-regular with respect to σ0. Therefore, for this instanton bundle,
the bound given in Theorem 4.6 is sharp.
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