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Invariant Metrics and Distances
on Generalized Neil Parabolas

Nikolai Nikolov & Peter Pflug

1. Introduction and Results

In the survey paper [3], the authors asked for an effective formula for the Cara-
théodory distance cA2,3 on the Neil parabola A2,3 (in the bidisc). Such a formula
was presented in a more recent paper by Knese [4]. To repeat the main result of
[4], we recall that the Neil parabola is given by A2,3 := {(z,w) ∈ D2 : z2 = w3},
where D denotes the open unit disc in the complex plane. Then there is the natu-
ral parameterization p2,3 : D → A2,3, p2,3(λ) := (λ3, λ2). Moreover, let ρ denote
the Poincaré distance of the unit disc. Recall that

ρ(λ,µ) := 1

2
log

1 + mD(λ,µ)

1 − mD(λ,µ)
,

where

mD(λ,µ) :=
∣∣∣∣ λ − µ

1 − λµ̄

∣∣∣∣, λ,µ∈ D.

Let λ,µ∈ D. Then Knese’s result is

cA2,3(p2,3(λ),p2,3(µ)) =
{

ρ(λ2,µ2) if |α0| ≥ 1,

ρ
(
λ2 α0−λ

1−ᾱ0λ
,µ2 α0−µ

1−ᾱ0µ

)
if |α0| < 1,

where α0 := α0(λ,µ) := 1
2 (λ + 1/λ̄ + µ + 1/µ̄). If λµ = 0 then the formula

should be read as if |α0| ≥ 1.
Observe that if λ and µ have a nonobtuse angle—that is, if Re(λµ̄) ≥ 0—then

|α0(λ,µ)| > 1 (cf. Corollary 2).
Moreover, in [4] the formula for the Carathéodory–Reiffen pseudometric γA2,3

is given as

γA2,3((a, b);X) =




|X2| if a = b = 0 and |X2| ≥ 2|X1|,
4|X1|2+|X2|2

4|X1| if a = b = 0 and |X2| < 2|X1|,
2|λb|

1−|b|2 if (a, b) �= (0, 0) and X = λ(3a, 2b), λ∈ C,

where (a, b)∈A2,3 and X ∈ T(a,b)A2,3 := the tangent space in (a, b) at A2,3.
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We point out that these are the first effective formulas for the Carathéodory dis-
tance and the Carathéodory–Reiffen pseudodistance of a nontrivial complex space.

In this paper we will discuss more general Neil parabolas—namely, the spaces

Am,n := {(z,w)∈ D2 : zm = wn},
m, n∈ N, m ≤ n, m, n relatively prime.

For short, we will call Am,n the (m, n)-parabola. As in the case of the classical
Neil parabola, we have the following globally bijective holomorphic parameteri-
zation of Am,n:

pm,n : D → Am,n, pm,n(λ) := (λn, λm), λ∈ D.

Observe that
qm,n := p−1

m,n : Am,n → D

is given outside of the origin by qm,n(z,w) = zkwl, where k, l ∈ Z are such that
kn + lm = 1; furthermore, qm,n(0, 0) = 0. It is clear that qm,n is continuous on
Am,n and holomorphic outside of the origin.

We will study the Carathéodory and the Kobayashi distances and also the
Carathéodory–Reiffen and the Kobayashi–Royden pseudometrics of Am,n. Let
us now recall the objects to be dealt with in this paper:

mAm,n
(ζ, η) := sup{mD(f(ζ), f(η)) : f ∈ O(Am,n, D)}, ζ, η ∈Am,n;

here O(Am,n, D) denotes the family of holomorphic functions on Am,n, that is,
the family of those functions on Am,n that are locally restrictions of holomorphic
functions on an open set in C2.

Observe that the Carathéodory distance cAm,n
is given by cAm,n

(ζ, η) =
tanh−1 mAm,n

(ζ, η); moreover, cD = ρ. We must therefore study holomorphic
functions on the (m, n)-parabola. We have the following bijection of O(Am,n, D)

and a part Om,n(D) of O(D, D), where

Om,n(D) := {h∈ O(D, D) : h(s)(0) = 0, s ∈ Sm,n}
and Sm,n := {s ∈ N : s + m + n /∈ Nm + Nn} (recall that S1,n = ∅ and if m ≥ 2
then maxs∈Sm,n s = nm−m−n). To be precise, if f ∈ O(Am,n, D) then f �pm,n ∈
Om,n(D); conversely, if h∈ Om,n(D) then h � qm,n ∈ O(Am,n, D).

These considerations yield the following description of the Caratheódory dis-
tance on Am,n:

mAm,n
(pm,n(λ),pm,n(µ))

= max{mD(h(λ),h(µ)) : h∈ Om,n(D)}
= max{mD(h(λ),h(µ)) : h∈ Om,n(D), h(0) = 0}
= max{mD(λ

mh(λ),µmh(µ)) : h∈ O(D, D̄), h(j)(0) = 0, j + m∈ Sm,n},
λ,µ∈ D.

We should like to point out that calculating the Carathéodory distance of a gen-
eralized Neil parabola may be viewed as the following interpolation problem for
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holomorphic functions on the unit disc. Let λ,µ be as before and let ζ, η ∈ D. Then
there exists an h ∈ Om,n(D) with h(λ) = ζ,h(µ) = η if and only if mD(ζ, η) ≤
mAm,n

(pm,n(λ),pm,n(µ)). Note that mA1,n(p1,n(λ),p1,n(µ)) = mD(λ,µ).

From the case of domains in Cn it is well known that the Carathéodory distance
need not be an inner distance (see [2]). In the case of a generalized Neil parabola
it turns out that the Carathéodory distance is an inner distance if and only if m = 1.

Recall that the associated inner distance is given by

ci
Am,n

(ζ, η) := inf{LcAn,m
(α) : α is a ‖·‖-rectifiable curve in Am,n

connecting ζ, η}, ζ, η ∈Am,n,

where LcAm,n
denotes the cAm,n

-length. Obviously, cAm,n
≤ ci

Am,n
. Then we have the

following result for the inner distance.

Theorem 1. Let λ,µ∈ D. Then

ci
Am,n

(pm,n(λ),pm,n(µ))

=
{

cD(λ
m,µm) if Re(λµ̄) ≥ cos(π/m)|λµ|,

cD(λ
m, 0) + cD(0,µm) otherwise.

There is also the following comparison result between the Carathéodory distance
and its associated inner one.

Corollary 2. Let λ,µ∈ D.

(a) If Re(λµ̄) ≥ cos(π/m)|λµ|, then

ci
Am,n

(pm,n(λ),pm,n(µ)) = cAm,n
(pm,n(λ),pm,n(µ)).

(b) If Re(λµ̄) < cos(π/m)|λµ|, then

ci
Am,n

(pm,n(λ),pm,n(µ)) = cAm,n
(pm,n(λ),pm,n(µ)) ⇐⇒ (λµ̄)m < 0.

(c) Hence, the following conditions are equivalent:
• ci

Am,n
(pm,n(λ),pm,n(µ)) = cAm,n

(pm,n(λ),pm,n(µ));
• ci

Am,n
(pm,n(λ),pm,n(µ)) = cD(λ

m,µm);
• Re(λµ̄) ≥ cos(π/m)|λµ| or (λµ̄)m < 0.
In particular, cAm,n

is not inner if m > 1.

Note that these results partially cover the result obtained by Knese. Moreover,
observe that the condition Re(λµ̄) ≥ cos(π/m)|λµ| in these results means geo-
metrically that µ lies inside an angular sector around λ of opening angle equal to
π/m (cf. Knese’s result in [4]). And unlike the A2,3 case, the new area (λµ̄)m <

0 (i.e., the “rays” on which the angle between λ and µ is equal to (2j − 1)π/m,
j = 2, . . . ,m − 1) appears for Am,n with m > 2.

In order to prove Theorem 1, we must to calculate the Carathéodory–Reiffen
metric γAm,n

outside of the origin. First, recall its definition:

γAm,n
((z,w);X) := max{|f ′(z,w)X| : f ∈ O(Am,n, D)},
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where (z,w) ∈ Am,n and X is a tangent vector in (z,w) at Am,n. Note that if
(z,w) = ζ = pm,n(λ) and λ ∈ D \ {0}, then the tangent space Tζ(Am,n) at ζ is
spanned by the vector p ′

m,n(λ). The same holds if m = 1 and λ = 0, whereas
T0(Am,n) = C2 if m ≥ 2.

With the foregoing description of O(Am,n, D), we may recast this definition in
a form that is appropriate for our uses here:

γAm,n
(pm,n(λ);p ′

m,n(λ)) = sup

{ |h′(λ)|
1 − |h(λ)|2 : h∈ Om,n(D)

}
.

Then we have the following result.

Theorem 3. Let λ∈ D. Then

γAm,n
(pm,n(λ);p ′

m,n(λ)) = m|λ|m−1

1 − |λ|2m .

It follows from the preceding results (as in the case of domains in Cn) that γAm,n

is the infinitesimal form of cAm,n
outside the origin. More precisely, if λ∈ D \ {0}

then

lim
µ→λ

cAm,n
(pm,n(λ),pm,n(µ))

|λ − µ| = lim
µ→λ

cD(λ
m,µm)

|λ − µ|
= m|λ|m−1

1 − |λ|2m = γAm,n
(pm,n(λ);p ′

m,n(λ)).

Observe that the same holds if m = 1 and λ = 0.
On the other hand, note that

γAm,n
(0;X) = max{|f ′(0)X| : f ∈ O(Am,n, D), f(0) = 0}.

For such f we have f � pm,n(ζ) = ζmh(ζ) when ζ ∈ D, where h ∈ O(D, D̄).

Observe that

∂f

∂w
(0) = h(0),

∂f

∂z
(0) = h(n−m)(0)

(n − m)!
for m ≥ 2.

Thus, if X = (X1,X2)∈ C2, then

γAm,n
(0;X)

= max

{∣∣∣∣X1
h(n)(0)

n!
+ X2

h(m)(0)

m!

∣∣∣∣ : h∈ Om,n(D), h(0) = 0

}

= max

{∣∣∣∣X1
h(n−m)(0)

(n − m)!
+ X2h(0)

∣∣∣∣ : h∈ O(D, D̄), h(j)(0) = 0, j + m∈ Sm,n

}
;

in particular, γAm,n
(0;X) = ‖X‖ if X1X2 = 0. Using the first equality above, we

shall prove the following infinitesimal result at the origin.

Proposition 4. Let Xλ,µ := (λn − µn, λm − µm). Then

lim
λ,µ→0,λ�=µ

cAm,n
(pm,n(λ),pm,n(µ))

γAm,n
(0;Xλ,µ)

= 1.
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Corollary 5. Let m > 1. Then there are points λ,µ∈ D such that

cAm,n
(pm,n(λ),pm,n(µ)) > max{ρ(λm,µm), ρ(λm+1,µm+1)}.

It turns out that the general calculation of the Carathéodory–Reiffen metric at the
origin becomes much more difficult. The next proposition may give some flavor
of the nature of these formulas.

Proposition 6. Let X = (X1,X2)∈ C2. Then

γA3,4(0;X) =




|X1| if |X1| ≥ 2|X2|,
|X2| if |X2| ≥ √

2|X1|,
|X1| c3−18c+(c2+24)3/2

108 if 1 < c := 2 |X2|
|X1| < 2

√
2.

It seems rather difficult to calculate an effective formula of the Carathéodory dis-
tance of Am,n. We do have its value at pairs of “opposite” points; more precisely,
the following is true.

Proposition 7. Let λ∈ D, λ �= 0. Then

mA2,2k+1(p2,2k+1(λ),p2,2k+1(−λ)) = 2|λ|2k+1

1 + |λ|4k+2
.

Observe that now, unlike the previous cases, the number n = 2k + 1 appears in
the formula.

Finally, the discussion of the Kobayashi distance and the Kobayashi–Royden
metric on Am,n becomes comparably much simpler. Let us first recall the def-
initions of the Lempert function k̃Am,n

, the Kobayashi distance kAm,n
, and the

Kobayashi–Royden metric κAm,n
:

• k̃Am,n
(ζ, η) := inf{ρ(λ,µ) : λ,µ ∈ D, ∃ϕ∈O(D,Am,n) : ϕ(λ) = ζ, ϕ(µ) = η},

ζ, η ∈Am,n;
• kAm,n

:= the largest distance on Am,n that is less than or equal to k̃Am,n
;

• κAm,n
(ζ ;X) := inf{α ∈ R+ : ∃ϕ∈O(D,Am,n) : ϕ(0) = ζ, αϕ ′(0) = X}, ζ ∈ Am,n,

X ∈ Tζ(Am,n).

We set k̃Am,n
(ζ, η) := ∞ or κAm,n

(ζ ;X) := ∞ if there are no respective discs ϕ.

Since O(D,Am,n) = {pm,n � ψ : ψ ∈ O(D, D)}, we have the formulas in our
next proposition (see also [3; 4]).

Proposition 8. Let λ,µ∈ D. Then

kAm,n
(pm,n(λ),pm,n(µ)) = k̃Am,n

(pm,n(λ),pm,n(µ)) = ρ(λ,µ).

If λ �= 0, then κAm,n
(pm,n(λ);p ′

m,n(λ)) = 1/(1 − |λ|2).
Let X = (X1,X2)∈ T0Am,n \ {0}. Then

κAm,n
(0;X) =

{ |X2| if m = 1,

∞ otherwise.

At the end of the paper we discuss a simple reducible variety.
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2. Proofs and Additional Remarks

We start with the proof of Theorem 3, which will serve as the basic information
for Theorem 1.

Proof of Theorem 3. Recall that

γAm,n
(pm,n(λ);p ′

m,n(λ)) = max

{ |h′(λ)|
1 − |h(λ)|2 : h∈ Om,n(D)

}
.

Observe that if α ∈ D and (α(ζ) = α−ζ

1−ᾱζ
, then hα = (α � h∈ Om,n(D) (use, e.g.,

the Faà di Bruno formula) and

|h′
α(λ)|

1 − |hα(λ)|2 = |h′(λ)|
1 − |h(λ)|2 .

Then

γAm,n
(pm,n(λ);p ′

m,n(λ))

= max

{ |h′(λ)|
1 − |h(λ)|2 : h∈ Om,n(D), h(0) = 0

}

= max

{ |(λmh̃(λ))′|
1 − |λmh̃(λ)|2 : h̃∈ O(D, D̄), h̃(j)(0) = 0, j + m∈ Sm,n

}

= |λ|m−1 max

{ |mh(λ) + λh′(λ)|
1 − |λmh(λ)|2 : h∈ O(D, D̄), h(j)(0) = 0, j + m∈ Sm,n

}

= m|λ|m−1

1 − |λ|2m .

The last equality follows because the unimodular constants are the only extremal
functions for

max

{ |mh(λ) + λh′(λ)|
1 − |λmh(λ)|2 : h∈ O(D, D̄)

}
.

To prove this, observe that (h(λ),h′(λ)) varies on all pairs (a, b) satisfying |b| ≤
(1 − |a|2)/(1 − |λ|2). Hence we must show that if 0 ≤ c, s < 1 and 0 ≤ t ≤ ts :=
(1 − s2)/(1 − c2) then F(s, t) < F(1, 0), where F(s, t) = (ms + ct)/(1 − c2ms2).

Since F(s, t) ≤ F(s, ts), the problem may be reduced to the inequality

m(1 − c2)s + c(1 − s2)

1 − c2ms2
<

m(1 − c2)

1 − c2m
⇐⇒ c(1 − c2m)

m(1 − c2)
<

1 + c2ms

1 + s
.

Given the inequality 1+c2m

2 <
1+c2ms

1+s
, it is clear that

c(1 − c2m)

m(1 − c2)
<

1 + c2m

2
⇐⇒ 2c

m−1∑
j=0

c2j < m(1 + c2m).

Finally, after summing up the inequalities 1 − c2j+1 > c2m−2j−1(1 − c2j+1) for
j = 0, . . . ,m − 1, the last inequality follows.

We are now in a position to prove Theorem 1.
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Proof of Theorem 1. Set +λ,m = {ζ ∈ D : Re(λζ̄) ≥ cos(π/m)|λζ|} with λ ∈ D

and m∈ N. Recall again that +λ,m is an angular sector around λ.

As a first step we shall prove that if λ∈ D and µ∈+λ,m, then

ci
Am,n

(pm,n(λ),pm,n(µ)) = cD(λ
m,µm).

Since

ci
Am,n

(pm,n(λ),pm,n(µ)) ≥ cAm,n
(pm,n(λ),pm,n(µ)) ≥ cD(λ

m,µm), (1)

we need only prove the opposite inequality. After rotation, we may assume that
λ ∈ [0,1); by continuity, we may also assume that λ,µ �= 0 and arg(µ) ∈
(−π/m,π/m). Then the geodesic for ci

D(λ
m,µm) does not intersect the segment

(−1, 0]. Denote by α this geodesic and by αm its mth root (11/m = 1). Observe
that if ζ, η ∈A∗

m,n := Am,n \ {0}, then

ci
Am,n

(ζ, η) = inf

{∫ 1

0
γAm,n

(α(t);α ′(t)) dt : α : [0,1] → A∗
m,n

is a C1-curve connecting ζ, η

}
(see [5, Thm. 4.2.7]). It follows from Theorem 3 that

ci
Am,n

(pm,n(λ),pm,n(µ)) ≤
∫ 1

0
γAm,n

(pm,n � αm(t); (pm,n � αm)
′(t)) dt

=
∫ 1

0

m|(αm(t))|m−1|α ′
m(t)|

1 − |αm(t)|2m dt =
∫ 1

0

|α ′(t)|
1 − |α(t)|2 dt

= ci
D(λ

m,µm) = cD(λ
m,µm).

It remains to prove that if µ /∈+λ,m then

ci
Am,n

(pm,n(λ),pm,n(µ)) = ci
Am,n

(pm,n(λ), 0) + ci
Am,n

(0,pm,n(µ)).

By the triangle inequality, we need only prove that

ci
Am,n

(pm,n(λ),pm,n(µ)) ≥ ci
Am,n

(pm,n(λ), 0) + ci
Am,n

(0,pm,n(µ)). (2)

Take an arbitrary C1-curve α : [0,1] → A∗
m,n with α(0) = pm,n(λ) and α(1) =

pm,n(µ). Let t0 ∈ (0,1) be the smallest number such that λ0 := qm,n(α(t0)) ∈
∂+λ,m. Then∫ 1

0
γAm,n

(α(t);α ′(t)) dt

=
∫ t0

0
γAm,n

(α(t);α ′(t)) dt +
∫ 1

t0

γAm,n
(α(t);α ′(t)) dt

≥ ci
Am,n

(pm,n(λ),pm,n(λ0)) + ci
Am,n

(pm,n(λ0),pm,n(µ))

≥ cAm,n
(pm,n(λ),pm,n(λ0)) + cAm,n

(pm,n(λ0),pm,n(µ))

≥ cD(λ
m, λm

0 ) + cD(λ
m
0,µm)

= cD(λ
m, 0) + cD(0, λm

0 ) + cD(λ
m
0,µm) (since λm

0 ∈ (−1, 0))

≥ cD(λ
m, 0) + cD(0,µm).
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Now, (2) follows by taking the infimum over all curves under consideration.

Proof of Corollary 2. Part (a) follows by Theorem 1 and inequality (1).
(b) The inequalities

cAm,n
(pm,n(λ),pm,n(µ)) ≤ max{cD(λ

mf(λ),µmf(µ)) : f ∈ O(D, D̄)}
≤ max{cD(λ

mf(λ), 0) + cD(0,µmf(µ)) : f ∈ O(D, D̄)}
≤ cD(λ

m, 0) + cD(0,µm) = ci
Am,n

(pm,n(λ),pm,n(µ))

show that
cAm,n

(pm,n(λ),pm,n(µ)) = ci
Am,n

(pm,n(λ),pm,n(µ))

if and only if λmf(λ) and µmf(µ) lie on opposite rays and |f(λ)| = |f(µ)| = 1
for some f ∈ O(D, D̄)—that is, f is a unimodular constant and (λµ̄)m < 0.

Part (c) of Corollary 2 follows because cD(z, 0) + cD(0,w) = cD(z,w) if and
only if zw̄ ≤ 0.

Remarks. (a) For m∈ N, consider the following distance on D:

ρ(m)(λ,µ) := max{ρD(λ
mh(λ),µmh(µ)) : h∈ O(D, D̄)}.

Note that

lim
ε→0,ε �=0

ρ(m)(λ, λ + ε)

|ε| = |λ|m−1 max

{ |mh(λ) + λh′(λ)|
1 − |λmh(λ)|2 : h∈ O(D, D̄)

}
= γAm,n

(pm,n(λ);p ′
m,n(λ))

by the proof of Theorem 3. It follows that the associated inner distance of ρ(m)

equals ci
Am,n

(pm,n(·),pm,n(·)). Then

ci
Am,n

(pm,n(λ),pm,n(µ)) ≥ ρ(m)(λ,µ)

≥ cAm,n
(pm,n(λ),pm,n(µ)) ≥ ρ(λm,µm).

Moreover, the proof of Corollary 2 shows that the following conditions are
equivalent:

• ci
Am,n

(pm,n(λ),pm,n(µ)) = ρ(m)(λ,µ);
• ci

Am,n
(pm,n(λ),pm,n(µ)) = cAm,n

(pm,n(λ),pm,n(µ));
• ci

Am,n
(pm,n(λ),pm,n(µ)) = ρ(λm,µm);

• Re(λµ̄) ≥ cos(π/m)|λµ| or (λµ̄)m < 0.

As an application of these observations we obtain a simple proof (without calcu-
lations) of Lemma 14 in [6]:

If a, b∈ [0,1), s∈ (0,1], and θ ∈ [−π,π], thenρ(a, beiθ ) ≤ ρ(as, bse isθ ).

In fact, we may assume that s ∈ Q. If s = p/q (1 ≤ p ≤ q), λ = a1/q, and
µ = b1/qe iθ/q, then we have to prove that ρ(λq,µq) ≤ ρ(λp,µp). But the angle
between λ and µ does not exceed π/q ≤ π/p, so

ρ(λp,µp) = ρ(p)(λ,µ) ≥ ρ(λq,µq)

(the last inequality holds for any λ,µ∈ D and q ≥ p).
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(b) Recall that

cAm,n
(pm,n(λ),pm,n(µ))

= max{ρD(λ
mh(λ),µmh(µ)) : h∈ O(D, D̄), h(j)(0) = 0, j + m∈ Sm,n}.

If m = 1 or (m, n) = (2, 3) then ρ(m)(λ,µ) = cAm,n
(pm,n(λ),pm,n(µ)), because

S1,n = ∅ and S2,3 = {1}.
On the other hand, if m �= 1 and m �= n − 1, then the following conditions are

equivalent:

• ρ(m)(λ,µ) = ρ(λm,µm);
• ρ(m)(λ,µ) = cAm,n

(pm,n(λ),pm,n(µ)).

It is clear that the first condition implies the second one. For the converse, ob-
serve that ash varies over O(D, D), the pair (h(λ),h(µ)) varies over all (z,w)∈ D2

with mD(z,w) ≤ mD(λ,µ). Thus,

ρ(m)(λ,µ)

= max{ρD(λ
mz,µmw) : z,w ∈ D with mD(z,w) ≤ mD(λ,µ) or z = w ∈ ∂D}.

It follows by the maximum principle for the continuous plurisubharmonic func-
tion mD(λ

m·,µmw) that if ρ(m)(λ,µ) = ρD(λ
mz,µmw), then either z = w ∈ ∂D

or mD(z,w) = mD(λ,µ). Assuming that ρ(m)(λ,µ) �= ρ(λm,µm) excludes the
first possibility. Then any extremal function h for ρ(m)(λ,µ) satisfies

mD(h(λ),h(µ)) = mD(λ,µ);
that is, h ∈ Aut(D). Because any such function should be also extremal for
cAm,n

(pm,n(λ),pm,n(µ)), it follows that either h(j) �= 0 (j ∈ N) or h is a rota-
tion. In particular, m + 1 /∈ Sm,n; that is, m = 1 or m = n − 1—a contradiction.

Let m ≥ 3. Then m + 2 /∈ Sm,m+1 and hence h must be a rotation. Thus, the
following conditions are equivalent:

• ρ(m)(λ,µ) = max{ρ(λm,µm), ρ(λm+1,µm+1)};
• ρ(m)(λ,µ) = cAm,m+1(pm,n(λ),pm,n(µ)).

(c) Concerning the first condition just listed, we point out that if m > 1 then, by
Corollary 5, there are points λ,µ∈ D such that

ρ(m)(λ,µ) ≥ cAm,n
(pm,n(λ),pm,n(µ))(λ,µ)

> max{ρ(λm,µm), ρ(λm+1,µm+1)}.
On the other hand, we have ρ(2m)(λ, −λ) = ρ(λ2m+1, −λ2m+1) because

mD(λ
2m(α(λ), λ

2m(α(−λ))

= 2(1 − |α|2)|λ|2m+1

|1 + |λ|4m+2 − |α|2(|λ|2 + |λ|4m) + (1 − |λ|4m)(αλ̄ − ᾱλ)|

≤ 2(1 − |α|2)|λ|2m+1

1 + |λ|4m+2 − |α|2(|λ|2 + |λ|4m)
≤ 2|λ|2m+1

1 + |λ|4m+2

(use that 1 + |λ|4m+2 > |λ|2 + |λ|4m).
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Proof of Proposition 4. Observe that there is a constant c > 0 with

cAm,n
(pm,n(λ),pm,n(µ)) ≥ max{ρ(λm,µm), ρ(λm+1,µm+1)} near 0≥ c|Xλ,µ|

and

max{|λ|k−n, |µ|k−n|}|Xλ,µ| ≥ c|λk − µk| for any k > n, λ,µ∈ D.

Let hλ,µ be an extremal function for cAm,n
(pm,n(λ),pm,n(µ)). Then

hλ,µ(ζ) =
[n/m]∑
j=1

ajm,λ,µζ
jm + an,λ,µζ

n +
∑

j>n,j∈Sm,n

aj,λ,µζ
j.

Since |aj,λ,µ| ≤ 1, it follows that

|hλ,µ(λ) − hλ,µ(µ)| ≤ H(λ,µ) := |am,λ,µ(λ
m − µm) + an,λ,µ(λ

n − µn)|

+
[n/m]∑
j=2

|λjm − µjm| +
∞∑

j=n+1

|λj − µj|.

Thus,

1 ≤ lim inf
λ,µ→0,λ�=µ

H(λ,µ)

|hλ,µ(λ) − hλ,µ(µ)| = lim inf
λ,µ→0,λ �=µ

H(λ,µ)

cAm,n
(pm,n(λ),pm,n(µ))

≤ lim inf
λ,µ→0,λ�=µ

|am,λ,µ(λ
m − µm) + an,λ,µ(λ

n − µn)|
cAm,n

(pm,n(λ),pm,n(µ))

+ lim sup
λ,µ→0,λ �=µ

∑ [n/m]
j=2 |λjm − µjm| + ∑∞

j=n+1|λj − µj|
c|Xλ,µ|

= lim inf
λ,µ→0,λ �=µ

|am,λ,µ(λ
m − µm) + an,λ,µ(λ

n − µn)|
cAm,n

(pm,n(λ),pm,n(µ))

≤ lim inf
λ,µ→0,λ�=µ

γAm,n
(0;Xλ,µ)

cAm,n
(pm,n(λ),pm,n(µ))

;

this follows because

γAm,n
(0;X) = max

{∣∣∣∣X1
h(n)(0)

n!
+ X2

h(m)(0)

m!

∣∣∣∣ : h∈ Om,n(D),h(0) = 0

}
.

The opposite inequality

lim sup
λ,µ→0,λ �=µ

γAm,n
(0;Xλ,µ)

cAm,n
(pm,n(λ),pm,n(µ))

≤ 1

can be proven in a similar way; we omit the details.

Proof of Corollary 5. Observe that for any neighborhood U of 0 we may find
points λ,µ ∈ U such that λm − µm = λn − µn �= 0. Then, by Proposition 4, it is
enough to show that

γAm,n
(0;X0) > 1, where X0 := (1,1).
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Since

γAm,n
(0;X0)

= max

{∣∣∣∣h(n−m)(0)

(n − m)!
+ h(0)

∣∣∣∣ : h∈ O(D, D̄), h(j)(0) = 0, j + m∈ Sm,n

}

and since maxs∈Sm,n s = nm − m − n, it follows that

γAm,n
(0;X0) ≥ max{|a + b| : (a, b)∈ Tn−m},

where Tn−m is the set of all pairs (a, b) ∈ C2 for which there is a function h ∈
O(D, D̄) of the form h(z) = a + bzn−m + o(znm−2m−n).

Let k ∈ N be such that k(n−m) ≥ nm− 2m− n. We shall show that there is a
function f ∈ O(D, D̄) of the form f(z) = a + bz + o(zk) such that a, b > 0 and
a + b > 1, which will imply that γAm,n

(0;X0) > 1.
Note that by Schur’s theorem (cf. [1]) such a function f exists if and only if

(1 − |a|2)X2
1 + (1 − |a|2 − |b|2)

n∑
j=2

X2
j ≥ 2|ab|

n∑
j=2

Xj−1Xj , X ∈ Rn. (3)

Since cos π
n+1 is the maximal eigenvalue of the quadratic form

∑n
j=2 Xj−1Xj , we

have

cos
π

n + 1

n∑
j=1

X2
j ≥

n∑
j=2

Xj−1Xj , X ∈ Rn.

Then (3) is satisfied by all pairs (a, b)∈ C2 for which

2 cos
π

n + 1
|ab| ≤ 1 − |a|2 − |b|2.

In particular, we may choose a, b > 0 such that 2ab > 1 − a2 − b2; that is,
a + b > 1.

We now turn to a discussion of the Carathéodory–Reiffen pseudometric on the
(3, 4)-parabola.

Proof of Proposition 6. Recall that

γA3,4(0;X) = max{|X1h
′(0) + X2h(0)| : h∈ O(D, D̄), h′′(0) = 0}.

So, we need to describe the pairs (a0, a1) ∈ C2 for which there is a function h ∈
O(D, D̄) of the form h(ζ) = a0 + a1ζ + o(ζ2). Let I3 be the 3 × 3 unit matrix
and let

M =

 a0 a1 0

0 a0 a1

0 0 a0


.

It follows by Schur’s theorem (cf. [1]) that such an h exists if and only if I3 −M ∗M
is a semipositive matrix. It is easy to check that this condition means that the pair
(|a0|2, |a1|2) belongs to the set
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C := {
(a, b)∈ R2

+ : a + √
b ≤ 1, ab(1 − a) ≤ ((1 − a)2 − b)(1 − a − b)

}
.

The second inequality can be written as

b ≤ (1 − a)
(
1 − √

a
)

or b ≥ (1 − a)
(
1 + √

a
)
.

Hence C = {
(a, b)∈ R2+ : b ≤ (1 − a)

(
1 − √

a
)
, a ≤ 1

}
. Therefore,

γA3,4(0;X) = max
{|X1|

√
b + |X2|

√
a : (a, b)∈C

}
= max

{
t ∈ [0;1] : |X1|(1 − t)

√
1 + t + |X2|t}.

Straightforward calculations show that this last maximum is equal to


|X1| if |X1| ≥ 2|X2|,
|X2| if |X2| ≥ √

2|X1|,
|X1| c

3−18c+(c2+24)3/2

108
if 1 < c := 2

|X2|
|X1| < 2

√
2.

Proof of Proposition 7. This proposition holds trivially for k = 0, so let k ≥ 1.
Recall that

mA2,2k+1(p2,2k+1(λ),p2,2k+1(µ))

= max{mD(f(λ), f(µ)) : f ∈ O(D, D), f (2j−1)(0) = 0, j = 1, . . . , k}
= max{mD(λ

2h(λ),µ2h(µ)) : h∈ O(D, D̄), h(2j−1)(0) = 0, j = 1, . . . , k − 1}.
Then we may take ζ → ζ2k+1 as a competitor for mA2,2k+1 to derive that

mA2,2k+1(p2,2k+1(λ),p2,2k+1(−λ)) ≥ 2|λ|2k+1

1 + |λ|4k+2
.

Moreover, it follows that

mA2,2k+1(p2,2k+1(λ),p2,2k+1(µ))

= sup{mD(λ
2z,µ2w) : mD(z,w) ≤ mA2,2k−1(p2,2k−1(λ),p2,2k−1(µ))}.

Then Proposition 7 will follow by induction on k ∈ N if we show that

mD(z,w) ≤ 2|λ|2k−1

1 + |λ|4k−2
�⇒ mD(λ

2z, λ2w) ≤ 2|λ|2k+1

1 + |λ|4k+2
.

Since 2|λ|2k−1/(1 + |λ|4k−2) = mD(λ
2k−1, −λ2k−1), we may assume as in Re-

mark (b) that z = (α(λ
2k−1) and w = (α(−λ2k−1) for some α ∈ D. Then

mD(λ
2z, λ2w)

= 2(1 − |α|2)|λ|2k+1

|1 + |λ|4k+2 − |α|2(|λ|4 + |λ|4k−2) + (1 − |λ|4)(αλ̄2k−1 − ᾱλ2k−1)|

≤ 2(1 − |α|2)|λ|2k+1

1 + |λ|4k+2 − |α|2(|λ|4 + |λ|4k−2)
≤ 2|λ|2k+1

1 + |λ|4k+2

because 1 + |λ|4k+2 > |λ|4 + |λ|4k−2.
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Remark. The foregoing allows us to deduce an interpolation result as follows.
For given k ∈ N and λ, η, ζ ∈ D, the following conditions are equivalent:

(i) mD(η, ζ) ≤ mD(λ
2k+1, −λ2k−1);

(ii) ∃f∈O(D,D) : f(λ2k+1) = η, f(−λ2k+1) = ζ ;
(iii) ∃f∈O(D,D) : f(λ) = η, f(−λ) = ζ, f (j)(0) = 0, j = 1, . . . , 2k;
(iv) ∃f∈O(D,D) : f(λ) = η, f(−λ) = ζ, f (2j−1)(0) = 0, j = 1, . . . , k.

Indeed, it is trivial that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and the implication (iv) ⇒ (i)
follows by the equalities

mA2,2k+1(p2,2k+1(λ),p2,2k+1(−λ)) = 2|λ|2k+1

1 + |λ|4k+2
= mD(λ

2k+1, −λ2k−1).

Finally, we discuss the proof for the Kobayashi distance and metric.

Proof of Proposition 8. The proof of the formula for k̃Am,n
follows the one for the

case (m, n) = (2, 3) (see [4]). For the reader’s convenience we include it here.
First, k̃Am,n

(pm,n(λ),pm,n(µ)) ≤ ρ(λ,µ) because pm,n is holomorphic. Sec-
ond, since m and n are relatively prime, it is easy to see that O(D,Am,n) =
{pm,n � ψ : ψ ∈ O(D, D)}. Then any ϕ ∈ O(D,Am,n) with ϕ(λ̃) = pm,n(λ) and
ϕ(µ̃) = pm,n(µ) corresponds to some ψ ∈O(D, D) with ψ(λ̃) = λ and ψ(µ̃) = µ.

Thus, ρ(λ,µ) ≤ ρ(λ̃, µ̃) and hence ρ(λ,µ) ≤ k̃Am,n
(pm,n(λ),pm,n(µ)). There-

fore, k̃Am,n
(pm,n(λ),pm,n(µ)) = ρ(λ,µ); in particular, k̃Am,n

is a distance and so
k̃Am,n

= kAm,n
.

The formulas for κAm,n
can be proven in a similar way; we omit the details.

We conclude this paper by mentioning the simplest example of a reducible variety.

Remark. Put A2,2 := {(z,w) ∈ D2 : z2 = w2}. Here A2,2 is reducible and
clearly is biholomorphically equivalent to the coordinate cross V := {(z,w) ∈
D2 : zw = 0}. Therefore, we discuss V instead of A2,2.

It is evident that cV ((z1, 0), (z2 , 0)) = k̃V ((z1, 0), (z2 , 0)) = ρ(z1, z2) and that

k̃V ((z, 0), (0,w)) = ∞ (zw �= 0),

kV ((z, 0), (0,w)) = k̃V ((z, 0), (0, 0)) + k̃V ((0, 0), (0,w)) = ρ(|z|, −|w|).
Moreover, γV ((z, 0); (1, 0)) = κV ((z, 0); (1, 0)) = 1/(1 − |z|2) and so

κV (0;X) =
{ |X| if X1X2 = 0,

∞ otherwise.
Recall now that

O(V, D) = {f +g−f(0) : f ∈ O(D×{0}, D), g ∈ O({0}×D, D), f(0) = g(0)}.
Then obviously γV (0;X) = |X1| + |X2|.

Finally, since z + w ∈ O(V, D), it follows that

cV ((z, 0), (0,w)) = cV ((|z|, 0), (−|w|, 0)) ≥ ρ(|z|, −|w|).
Thus, cV = kV ; in particular, cV = ci

V .
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