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Changes of Variables in ELSV-type Formulas

Sergey Shadrin & Dimitri Zvonkine

1. Introduction

In [5], Goulden, Jackson, and Vakil formulated a conjecture relating certain Hur-
witz numbers (enumerating ramified coverings of the sphere) to the intersection
theory on a conjectural Picard variety Picg,n. This variety, of complex dimension
4g−3+n, is supposedly endowed with a natural morphism to the moduli space of
stable curves Mg,n. The fiber over a point x ∈ Mg,n lying in the open part of the
moduli space is equal to the Jacobian of the corresponding smooth curve Cx. The
variety Picg,n is also supposed to carry a universal curve Cg,n with n disjoint sec-
tions s1, . . . , sn. Denote by L i the pull-back under si of the cotangent line bundle
to the fiber of Cg,n. Then we obtain n tautological 2-cohomology classes ψi =
c1(L i ) on Picg,n.

We shall use the formula from [5] to study the intersection numbers of the
classes ψi on Picg,n (if it is ever to be constructed). In particular, we prove a
Witten–Kontsevich-type theorem relating the intersection theory and integrable
hierarchies. These equations, together with the string and dilation equations, allow
us to compute all the intersection numbers under consideration.

Independently of the conjecture of [5], our results can be interpreted as mean-
ingful statements about Hurwitz numbers. Our methods are close to those of
Kazarian and Lando in [7] and make use of Hurwitz numbers. We also extend the
results of [7] to include the Hodge integrals over the moduli spaces involving one
λ-class.

1.1. The Conjecture

Fix n positive integers b1, . . . , bn. Let d = ∑
bi be their sum.

Definition 1.1. The number of degree-d ramified coverings of the sphere by a
genus-g surface possessing
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• a unique preimage of 0,
• n numbered preimages of ∞ with multiplicities b1, . . . , bn, and
• 2g − 1 + n fixed simple branch points

is called a Hurwitz number and is denoted by hg;b1,...,bn .

Conjecture 1.2 [5]. There exist a compactification of the Picard variety over
the moduli space Mg,n by a smooth (4g − 3 + n)-dimensional orbifold Picg,n,
natural cohomology classes�2 , . . . ,�2g on Picg,n of (complex) degrees 2, . . . , 2g,
and an extension of the tautological classes ψ1, . . . ,ψn such that

hg;b1,...,bn = (2g − 1 + n)! d
∫

Picg,n

1 −�2 + · · · ±�2g

(1 − b1ψ1) · · · (1 − bnψn)
.

Assuming that the conjecture is true we can define

〈τd1 · · · τdn〉 =
∫

Picg,n

ψ
d1
1 · · ·ψdn

n . (1)

By convention, this bracket vanishes unless
∑

di = 4g − 3 + n. We also intro-
duce the following generating series for the intersection numbers of the ψ-classes
on Picg,n:

F(t0, t1, . . . ) =
∑
n

1

n!

∑
d1,...,dn

〈τd1 · · · τdn〉td1 · · · tdn , (2)

and we denote by

U = ∂ 2F

∂ 2 t0
(3)

its second partial derivative.
While Conjecture 1.2 remains open, the situation should be seen in the follow-

ing way. The Hurwitz numbers turn out to have the unexpected property of being
polynomial in variables bi (first conjectured in [4] and proved in [5]). The coeffi-
cients of these polynomials are denoted by 〈τd1 · · · τdn�2k〉. (We restrict ourselves
to the case k = 0 with�0 = 1.) The conjectured relation of these coefficients with
geometry is a strong motivation to study them. Our goal is to find out as much as
we can about the values of the bracket in the combinatorial framework, waiting
for their geometrical meaning to be clarified.

This study was actually initiated in [5]. In particular, the authors proved that
the values of the bracket satisfy the following string and dilation equations:

∂F

∂t0
=

∑
d≥1

td
∂F

∂td−1
+ t 2

0

2
, (4)

∂F

∂t1
= 1

2

∑
d≥0

(d + 1)td
∂F

∂td
− 1

2
F. (5)

By abuse of language we will usually speak of the coefficients of F as intersec-
tion numbers, implicitly assuming the conjecture to be true.
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1.2. Results

We will soon see that F is related to the following generating function for the Hur-
witz numbers:

H(β,p1,p2 , . . . ) =
∑
g,n

1

n!

β2g−1+n

(2g − 1 + n)!

∑
b1,...,bn

hg;b1,...,bn

d
pb1 · · ·pbn . (6)

Here, as before, d = ∑
bi is the degree of the coverings and 2g − 1 + n is the

number of simple branch points.
Denote by Lp the differential operator

Lp =
∑

bpb
∂

∂pb
.

Its action on H consists in multiplying each term by its total degree d.

Theorem 1. The series L2
pH is a τ -function of the Kadomtsev–Petviashvili (or

KP) hierarchy in variables pi; that is, it satisfies the full set of bilinear Hirota
equations. In addition, L2

pH satisfies the dispersionless limit of the KP equations.

The proof of this theorem follows in an almost standard way from the general the-
ory of integrable systems. We will discuss it in Section 3.

Theorem 2. The series U is a τ -function for the KP hierarchy in variables Ti =
ti−1/(i − 1)!; that is, it satisfies the full set of bilinear Hirota equations in these
variables. In addition, it satisfies the dispersionless limit of the KP equations in
the same variables.

Theorem 2 follows from Theorem 1—but far from trivially, in spite of their appar-
ent similarity.

Example 1.3. The string and dilation equations allow one to compute all the val-
ues of the bracket in g = 0,1, 2 knowing only the following values, which can be
obtained using Theorem 2:

g = 0: 〈τ 3
0 〉 = 1;

g = 1: 〈τ2〉 = 1

24
;

g = 2: 〈τ6〉 = 1

1920
, 〈τ2τ5〉 = 19

5760
, 〈τ3τ4〉 = 11

1920
, 〈τ 2

2 τ4〉 = 37

1440
,

〈τ2τ
2
3 〉 = 5

144
, 〈τ 3

2 τ3〉 = 5

24
, 〈τ 5

2 〉 = 25

16
.

Acknowledgments. We are grateful to M. Kazarian and S. Lando for stimu-
lating discussions. We also thank the Stockholm University, where the major part
of this work done, for its hospitality.
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2. Intersection Numbers and Hurwitz Numbers

Here we establish a link between the generating series H (for Hurwitz numbers)
and F (for intersection numbers of the ψ-classes on Picg,n).

We introduce the following linear triangular change of variables:

pb =
∞∑

d=b−1

β−(d+1)/2 (−1)d−b+1

(d − b + 1)! (b − 1)!
td . (7)

Thus,
p1 = β−1/2 t0 − β−1t1 + 1

2β
−3/2 t2 − · · · ,

p2 = β−1t1 − β−3/2 t2 − · · · ,
p3 = 1

2β
−3/2 t2 − · · · .

Let us separate the generating series H into two parts. The unstable part, cor-
responding to the cases g = 0, n = 1, 2, is given by

Hunst(β,p1,p2 , . . . ) =
∞∑
b=1

pb

b2
+ β

2

∞∑
b1,b2=1

pb1pb2

b1 + b2
.

The stable part is given by Hst = H −Hunst.

The change of variables was designed to make the following proposition work.

Proposition 2.1. The change of variables (7) transforms the series Hst into a
series of the form

√
βF +O(β).

Proof. First let β = 1. It is readily seen that, for any d ≥ 0,

d+1∑
b=1

(−1)d−b+1

(d − b + 1)! (b − 1)!
· 1

1 − bψ
= ψd +O(ψ d+1) (8)

as a power series in ψ. Using Conjecture 1.2, it follows that for any d1, . . . , dn we
have ∑

b1,...,bn
1≤bi≤di+1

(−1)d−b+1

(d − b + 1)! (b − 1)!

hg;b1,...,bn

(2g − 1 + n)! d

=
∫

Picg,n

(1 −�2 + · · · ±�2g)

n∏
i=1

(ψ
di
i +O(ψ

di+1
i )).

Now assume that
∑

di = dim(Picg,n) = 4g−3+n. Then each factor on the right-
hand side contributes to the integral only through its lowest-order term. Therefore,
the right-hand side is equal to ∫

Picg,n

ψ
d1
1 · · ·ψdn

n ,

which is, up to a combinatorial factor, precisely a coefficient of F. The purpose of
introducing the parameter β in the change of variables (7) is to isolate such terms
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from the others. Indeed, we claim that the power of β in a term obtained by the
change of variables equals

dim(Picg,n)− ∑
di + 1

2
.

To check this, recall that the power of β in a term of H equals 2g −1+ n by defi-
nition of H. After subtracting (d + 1)/2 for each variable td , we obtain

2g − 1 + n

2
−

∑ di

2
= 4g − 2 + n− ∑

di

2
= dim(Picg,n)− ∑

di + 1

2

as claimed. Applying the change of variables to H, we obtain a series with only
positive (half-integer) powers of β, and the lowest-order terms in β form the series√
βF. �

The transformation of the partial derivatives corresponding to (7) is obtained by
computing the inverse matrix, which is given by

∂

∂pb
=

b−1∑
d=0

β(d+1)/2 (b − 1)!

(b − d − 1)!

∂

∂td
. (9)

Thus

∂

∂p1
= β1/2 ∂

∂t0
,

∂

∂p2
= β1/2 ∂

∂t0
+ β

∂

∂t1
,

∂

∂p3
= β1/2 ∂

∂t0
+ 2β

∂

∂t1
+ 2β3/2 ∂

∂t2
.

Proposition 2.2. The change of variables (7) induces the following transfor-
mations:

Lp −→ Lt =
∑
d≥0

(d + 1)td
∂

∂td
+ 1√

β

∑
d≥1

td
∂

∂td−1
;

L2
pHunst −→ 1√

β
t0(t1 + 1)+ t 2

0 .

Both claims of the proposition are obtained by simple computations.
The concinnity of this result is striking. Indeed, both transforms could have

contained arbitrarily large negative powers of β, but they happen to cancel out in
both cases. Furthermore, L2

pHunst is an infinite series, but after the change of vari-
ables it has become a polynomial with only three terms. Most important of all, the
coefficients L−1 and L0 of β−1/2 and β0 (respectively) in the operator Lt are pre-
cisely the string and dilation operators from equations (4) and (5). This leads to
the following corollaries.
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Corollary 2.3. We have

LtF = F + 2
∂F

∂t1
+ 1√

β

(
∂F

∂t0
− t 2

0

2

)
,

Lt

∂F

∂t0
= 2

∂ 2F

∂t0∂t1
+ 1√

β

(
∂ 2F

∂t 2
0

− t0

)
.

Corollary 2.4. The change of variables (7) induces the following transforma-
tions of generating series:

L2
pHst −→ 1√

β
[U − t0(t1 + 1)] +Oβ(1),

L2
pH −→ 1√

β
U +Oβ(1).

Here Oβ(1) is a series containing only nonnegative powers of β.

Proof. The first result follows from Corollary 2.3; the second one is obtained after
a (yet another!) cancellation of the term t0(t1+1)with the contribution ofL2

pHunst.

�

3. Hirota Equations and KP Hierarchy

In this section we recall some necessary facts about the Hirota and the KP hierar-
chies and then use them to prove Theorem 1. We start with a brief introduction to
these hierarchies (see e.g. [6] for more details).

The semi-infinite wedge space W is the vector space of formal (possibly infi-
nite) linear combinations of infinite wedge products of the form

zk1 ∧ zk2 ∧ · · · ,
with ki ∈ Z , ki = i, starting from some i. Consider a sequence ϕ1,ϕ2 , . . . of
Laurent series ϕi ∈ C[z−1, z] such that ϕi = zi + (lower-order terms) starting
from some i. Then ϕ1 ∧ ϕ2 ∧ · · · is an element of W. The elements that can be
represented in this way are called decomposable. One way to check whether an
element is decomposable is to verify that it satisfies the Plücker equations.

Now we will assign an element ofW to any power series in variables p1,p2 , . . . .
The series will turn out to be a solution of the Hirota hierarchy if and only if the
corresponding element of W is decomposable.

To a Young diagram µ with d squares we assign the Schur polynomial sµ in
variables p1,p2 , . . . defined by

sµ = 1

d!

∑
σ∈Sd

χµ(σ)pσ .

Here Sd is the symmetric group, σ is a permutation, χµ(σ) is the character of σ in
the irreducible representation assigned to µ, and pσ = pl1 · · ·plk , where l1, . . . , lk
are the lengths of cycles of σ. The Schur polynomials sµ with area(µ) = d form
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a basis of the space of quasihomogeneous polynomials of weight d (the weight of
pi being equal to i).

Consider a power series τ in variables pi. Decomposing τ in the basis of Schur
polynomials, we can uniquely assign to it a (possibly infinite) linear combination
of Young diagrams µ (of all areas). Now, in this linear combination we replace
each Young diagram µ = (µ1,µ2 , . . . ) by the wedge product

z1−µ1 ∧ z2−µ2 ∧ · · · ,
where (µ1,µ2 , . . . ) are the lengths of the columns of µ in decreasing order with
an infinite number of zeroes added at the end. We have thus obtained an element
wτ ∈W.

The bilinear Plücker equations on the coordinates ofwτ happen to combine into
bilinear differential equations on τ, called the Hirota equations. Thus, as we said,
wτ is decomposable if and only if τ is a solution of the Hirota equations. Let us
define these equations precisely.

Consider two partitions λ and µ of an integer d. Denote by χµ(λ) the charac-
ter of any permutation with cycle type λ in the irreducible representation assigned
to µ. Denote by |Aut(λ)| the number of permutations of the elements of λ that
preserve their values. For instance, |Aut(7, 6, 6, 4,1,1,1,1,1)| = 2! · 5!.

Let di = ∂/∂pi. Let Dµ be the differential operator

Dµ =
∑

λ,|λ|=d

χµ(λ)
dλ1 · · · dλk
|Aut(λ)| ,

where k is the number of elements of λ. For instance:

D() = 1, D(1) = d1, D(2) = 1
2d

2
1 + d2 , D(1,1) = 1

2d
2
1 − d2 ,

D(3) = 1
6d

3
1 + d1d2 + d3, D(2,1) = 1

3d
3
1 − d3, D(1,1,1) = 1

6d
3
1 − d1d2 + d3.

Let τ be a formal power series in p1,p2 , . . . . If the constant term of τ does not
vanish, we can also consider its logarithm F = ln τ.

Definition 3.1. The Hirota hierarchy is the following family of bilinear differ-
ential equations (see [1, Prop. 1]):

Hiri,j(τ ) = D()τ ·D(j,i)τ −D(i−1)τ ·D(j,1)τ +D(j)τ ·D(i−1,1)τ (10)

for 2 ≤ i ≤ j.

Substituting τ = eF and dividing by τ 2, we obtain a family of equations on F.
It is called the Kadomtsev–Petviashvili (or KP) hierarchy:

KPi,j(F ) = Hiri,j(eF )

e2F
. (11)

Finally, by leaving only the linear terms in the KP hierarchy we obtain its dis-
persionless limit :

DKPi,j(F ) = linear part of KPi,j(F ). (12)
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Example 3.2. Denoting the derivative with respect to pi by the index i, we have

Hir2,2 = ττ2,2 − τ 2
2 − ττ1,3 + τ1τ3 + 1

4τ
2
1,1 − 1

3τ1τ1,1,1 + 1
12ττ1,1,1,1,

KP2,2 = F2,2 − F1,3 + 1
2F

2
1,1 + 1

12F1,1,1,1,

DKP2,2 = F2,2 − F1,3 + 1
12F1,1,1,1,

Hir2,3 = ττ2,3 − τ2τ3 − ττ1,4 + τ1τ4 + 1
2τ1,1τ1,2 − 1

2τ1τ1,1,2 − 1
6τ1,1,1τ2

+ 1
6ττ1,1,1,2 − 1

2τ1τ2,2 + 1
2ττ1,2,2 − τ1,2τ2 − 1

2ττ1,1,3 + 1
2τ1,1τ3

+ 1
24ττ1,1,1,1,1 − 1

8τ1τ1,1,1,1 + 1
12τ1,1τ1,1,1,

KP2,3 = F2,3 − F1,4 + F1,1F1,2 + 1
6F1,1,1,2 + 1

2F1F2,2 − 1
2F1F1,3 + 1

4F1F
2

1,1

+ 1
24F1F1,1,1,1 + 1

2F1,2,2 − 1
2F1,1,3 + 1

2F1,1F1,1,1 + 1
24F1,1,1,1,1,

DKP2,3 = F2,3 − F1,4 + 1
6F1,1,1,2 + 1

2F1,2,2 − 1
2F1,1,3 + 1

24F1,1,1,1,1.

Remark 3.3. Every Hirota equation can be simplified by adding to it some par-
tial derivatives of lower equations. This, in turn, leads to simplified KP and DKP
equations. For instance, we have

Hir2,3 − 1

2

∂Hir2,2

∂p1
= ττ2,3 − τ2τ3 − ττ1,4 + τ1τ4 + 1

2
τ1,1τ1,2

− 1

2
τ1τ1,1,2 − 1

6
τ1,1,1τ2 + 1

6
ττ1,1,1,2 ,

KP2,3 − 1

2
F1 KP2,2 − 1

2

∂KP2,2

∂p1
= F2,3 − F1,4 + F1,1F1,2 + 1

6
F1,1,1,2 ,

DKP2,3 − 1

2

∂DKP2,2

∂p1
= F2,3 − F1,4 + 1

6
F1,1,1,2.

Thus we obtain a simplified hierarchy that is, of course, equivalent to the initial
one. Sometimes it is the equations of this simplified hierarchy that are called Hi-
rota equations. However, for our purposes it is easier to use the equations as we
defined them.

Proof of Theorem 1. We will actually prove that, for any function c = c(β), the
series c + L2

pH satisfies the Hirota hierarchy. Let us show that the element of W
assigned to c+L2

pH is decomposable. Consider the following Laurent series in z:

ϕ1 = cz +
∑
n≥0

βn(n+1)/2z−n, ϕi = zi − e(i−1)βzi−1 for i ≥ 2.

The coefficients of these series are shown in the following matrix.

. . . −4 −3 −2 −1 0 1 2 3 4 5 . . .

. . . e10β e6β e3β eβ 1 c 0 0 0 0 . . .

. . . 0 0 0 0 0 −e−β 1 0 0 0 . . .

. . . 0 0 0 0 0 0 −e−2β 1 0 0 . . .

. . . 0 0 0 0 0 0 0 −e−3β 1 0 . . .

. . . 0 0 0 0 0 0 0 0 −e−4β 1 . . .
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We claim that expanding the wedge product ϕ1 ∧ ϕ2 ∧ · · · and then replacing
every Young diagram by the corresponding Schur polynomial will yield the series
c + L2

pH. The proof goes as in [7].
We introduce the cut-and-join operator

A = 1

2

∞∑
i,j=1

[
(i + j)pipj

∂

∂pi+j

+ ijpi+j

∂ 2

∂pi∂pj

]
.

Then LpH satisfies the equation ∂(LpH )/∂β = A(LpH ) (see [2]). Since the op-
erator Lp commutes both with A and with ∂/∂β, the series L2

pH satisfies the same
equation.

The Schur polynomials sλ are eigenvectors of A. The eigenvalue corresponding
to a Young diagram λ equals fλ = 1

2

∑
λi(λi − 2i + 1), where the λi are the col-

umn lengths. This allows one to reconstitute the whole series L2
pH starting with

its β-free terms L2
pH |β=0: if

L2
pH |β=0 =

∑
cλsλ

then

L2
pH =

∑
cλsλe

fλβ.

It is apparent from the form of the preceding matrix that the coefficients of sλ
in the expansion are nonzero in only two cases: (i) for the empty diagram, where
the coefficient equals c; and (ii) for the hook Young diagrams λ = hook(a, b)with
column lengths

a + 1, 1,1, . . . ,1︸ ︷︷ ︸
b

.

For a Young diagram like that, the coefficient of shook(a,b) equals

(−1)be [a(a+1)/2−b(b+1)/2]β.

For the β-free terms we have

L2
pH |β=0 =

∑
i≥1

pi =
∑
a,b≥0

(−1)bshook(a,b)

(the second equality is an exercise in representation theory). To this we add the re-
mark that a(a+1)/2−b(b+1)/2 is precisely the eigenvalue fλ for λ = hook(a, b).
It follows that the series corresponding to ϕ1 ∧ ϕ2 ∧ · · · equals L2

pH as claimed.
Thus we have proved that the series c + L2

pH satisfies the Hirota hierarchy.
The claim about the DKP equations is a simple corollary. Indeed, it follows

from Definition 3.1 that, for any series G,

Hiri,j(1 +G)− Hiri,j(G) = DKPi,j(G).

Hence, because both L2
pH and 1 + L2

pH satisfy the Hirota equations, it follows
immediately that L2

pH satisfies the dispersionless KP equations. �
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4. Hirota Equations and the Change of Variables

Now we shall study the effect of the change of variables (7) on the Hirota hier-
archy before proving Theorem 2.

In Section 3 we assigned to eachYoung diagramµ an operatorDµ and then used
these operators as building blocks to define the Hirota equations. It turns out that
the change of variables (7) acts on Dµ by “biting off” the corners of µ. From this
we will deduce that each Hirota equation becomes, after the change of variables,
a linear combination of lower Hirota equations.

As in Theorem 2, we rescale the variable ti by setting ti = i! Ti+1. Then we
have

∂

∂pi

=
(
i − 1

0

)
β1/2 ∂

∂T1
+

(
i − 1

1

)
β

∂

∂T2
+ · · · +

(
i − 1
i − 1

)
βi/2 ∂

∂Ti
(13)

instead of equation (9).
Consider a linear differential operator D with constant coefficients in variables

pi. Denote ∂/∂pi by di and consider di as a new set of variables. Introduce the
differential operator

S =
∑
i≥1

idi
∂

∂di+1

in these variables. Then we have the following lemma.

Lemma 4.1. Assume that D is a quasihomogeneous polynomial in the variables
di with total weight n. Applying the change of variables (13) to D viewed as a dif-
ferential operator is then equivalent to applying the differential operator βn/2eS/

√
β

to D viewed as a polynomial in variables di.

The proof is a simple check.
What we actually want is to apply the change of variables (13) to the operators

Dµ defined in Section 3. Indeed, these operators are the building blocks of the
Hirota equations (Definition 3.1). The answer is given in Proposition 4.3.

Definition 4.2. A square of a Young diagram µ is called a corner if, when we
erase it, we obtain another Young diagram. In other words, a corner is a square
with coordinates (i,µi) such that either µi+1 < µi or µi is the last column of µ.
If (i,µi) is a corner of µ then we will denote by µ− �i the diagram obtained by
erasing this corner.

Proposition 4.3. We have

SDµ =
∑

(i,µi)=corner of µ

(µi − i) ·Dµ−�i
.

Proof. Let µ be a Young diagram with d squares and let λ be a partition of d − 1.
Assume that λ has k parts. Then, for 1 ≤ i ≤ k, denote by λ + 1i the partition of
d obtained from λ by replacing λi by λi + 1.

Writing down explicitly the action of S on Dµ, one finds that the assertion of
the proposition is equivalent to the following identity:
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∑
(i,µi)=corner of µ

(µi − i) · χµ−�i
(λ) =

k∑
i=1

λi · χµ(λ+ 1i ). (14)

In order to prove this identity we need a short digression into the representation
theory of the symmetric group as presented in [10].

Consider the subgroup Sd−1 ⊂ Sd consisting of the permutations that fix the
last element d. The irreducible representation of Sd assigned to µ is then also a
representation of Sd−1, although not necessarily irreducible. It turns out that this
representation is isomorphic to ⊕

corners of µ

µ− �i,

where, by abuse of notation, µ − �i stands for the irreducible representation of
Sd−1 assigned to this Young diagram.

Further, consider the following element of the group algebra CSd :

X = (1, d)+ (2, d)+ · · · + (d − 1, d).

This element (the sum of all transpositions involving d) is called the first Jucys–
Murphy–Young element, and it obviously commutes with the subgroup Sd−1.

Hence its eigenspaces in the representation µ coincide with the irreducible sub-
representations of Sd−1; that is, they are also in one-to-one correspondence with
the corners of µ. The eigenvalue corresponding to the corner (i,µi) equals µi − i

(see [10]).
Using this information, let us choose a permutation σ ∈ Sd−1 with cycle type λ

and compute in two different ways the character

χµ(σ ·X),

where σ ·X ∈ CSd.

First way. Both σ and X leave invariant the irreducible subrepresentations of
Sd−1. For X, such a subrepresentation is an eigenspace with eigenvalue µi − i;
the character of σ in the same subrepresentation equals χµ−�i

(λ). We obtain the
left-hand side of equation (14).

Second way. Let us see what happens when we multiply σ by X. Each transpo-
sition in X increases the length of precisely one cycle of σ by 1. This is equivalent
to increasing one of the λi by 1. Moreover, if the ith cycle of σ has length λi, then
it will be touched by a transposition from X exactly λi times. Thus we obtain the
right-hand side of (14).

This completes the proof. �

Proposition 4.4. The change of variables (13) transforms the Hirota equation
Hiri,j into an equation of the form∑

2≤i′≤i, 2≤j ′≤j

i′≤j ′

ci′,j ′β(i′+j ′ )/2 Hiri′,j ′

for some rational constants ci′,j ′ . The constant ci,j of the leading term equals 1.
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Proof. By Definition 3.1, the equation Hiri,j has the form

Hiri,j(τ ) = D()τ ·D(j,i)τ −D(i−1)τ ·D(j,1)τ +D(j)τ ·D(i−1,1)τ.

According to Lemma 4.1, applying the change of variables to the equation is the
same as applying to each Dµ in this expression the operator

β(i+j)/2eS/
√
β.

To simplify the computations, consider the flow e tS applied to Hiri,j . We will
compute the derivative of this flow with respect to t. If D is the vector space of
all polynomials in variables di, then Hiri,j lies in D ⊗ D. The flow e tS acts as
e tS ⊗ e tS, while its derivative with respect to t is 1 ⊗ S + S ⊗ 1.

We will prove that 1 ⊗ S + S ⊗ 1 applied to Hiri,j is a linear combination of
lower Hirota equations (i ′ < i, j ′ < j). Since this is true for all i, j, when we in-
tegrate the flow we see that Hiri,j will have changed by a linear combination of
lower Hirota equations.

It remains to apply 1 ⊗ S + S ⊗ 1 to Hiri,j . For this we use Proposition 4.3. If
i < j we obtain

D() · [(i − 2)D(j,i−1) + (j − 1)D(j−1,i)] + 0 ·D(j,i) −D(i−1) · (j − 1)D(j−1,1)

− (i − 2)D(i−2) ·D(j,1) +D(j) · (i − 2)D(i−2,1) + (j − 1)D(j−1) ·D(i−1,1)

= (i − 2)Hiri−1,j + (j − 1)Hiri,j−1.

If i = j we obtain

D() · (i − 2)D(i,i−1) + 0 ·D(i,i) −D(i−1) · (i − 1)D(i−1,1)

− (i − 2)D(i−2) ·D(i,1) +D(i)(i − 2) ·D(i−2,1) + (i − 1)D(i−1) ·D(i−1,1)

= (i − 2)Hiri−1,i .

This completes the proof. �

Remark 4.5. The family of equations given in Proposition 4.4 is equivalent to
the Hirota hierarchy. Indeed, the equations of the Hirota hierarchy can be obtained
from these equations by linear combinations and vice versa.

Proof of Theorem 2. The series c + L2
pH satisfies the Hirota equations by Theo-

rem 1. Therefore, by Proposition 4.4 and Remark 4.5, the series obtained from it
under the change of variables (7) also satisfies the Hirota hierarchy. According to
Corollary 2.4, this new series has the form

c + 1√
β
U +Oβ(1).

Taking c = c ′/
√
β and considering the lowest-order terms in β, we obtain that

c ′ +U satisfies the Hirota hierarchy for any constant c ′. It follows that U satisfies
the dispersionless limit of the KP hierarchy. �
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Appendix: On Hodge Integrals

In this section we use the change of variables suggested in [7] to study Hodge in-
tegrals over the moduli spaces of curves. We consider the integrals involving a
unique λ-class and arbitrary powers of ψ-classes.

A.1. Hurwitz Numbers and Hodge Integrals

Here we study intersection theory on moduli spaces rather than on Picard varieties.
We follow the same path as in Sections 1 and 2 but with different intersection num-
bers and Hurwitz numbers. Our aim is to extend the results of [7].

Instead of (1), we define the brackets

〈τd1 · · · τdn〉(k) =
∫

Mg,n

ψ
d1
1 · · ·ψdn

n λk (15)

for k + ∑
di = 3g − 3 + n (otherwise the bracket vanishes).

Instead of (2), we use the generating series

F (k)(t0, t1, . . . ) =
∑
n

1

n!

∑
d1,...,dn

〈τd1 · · · τdn〉(k)td1 · · · tdn . (16)

We can also regroup these series into a unique series

F (z; t0, t1, . . . ) =
∑
k≥0

(−1)kzkF (k).

Instead of the Hurwitz numbers of Definition 1.1 we now use different Hurwitz
numbers. Fix n positive integers b1, . . . , bn, and let d = ∑

bi be their sum.

Definition A.6. The number of degree-d ramified coverings of the sphere by
a genus-g surface possessing n numbered preimages of ∞ with multiplicities
b1, . . . , bn and d + n+ 2g− 2 fixed simple branch points is called a Hurwitz num-
ber and is denoted by hg;b1,...,bn .

We introduce the following generating series for Hurwitz numbers:

H(β,p1,p2 , . . . ) =
∑
g,n

1

n!

βd+n+2g−2

(d + n+ 2g − 2)!

∑
b1,...,bn

hg;b1,...,bnpb1 · · ·pbn .

This series is divided in two parts. The unstable part, corresponding to g = 0, n =
1, 2, equals

Hunst =
∑
b≥1

βb−1b
b−2

b!
pb + 1

2

∑
b1,b2≥1

βb1+b2
b
b1
1 b

b2
2

(b1 + b2)b1! b2!
pb1pb2;

the stable part equals Hst = H −Hunst.

Finally, instead of Conjecture 1.2 we use the so-called ELSV formula proved
in [2].
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Theorem 3 (ELSV formula). We have

hg;b1,...,bn = (d + n+ 2g − 2)!
n∏
i=1

b
bi
i

bi!

∫
Mg,n

1 − λ1 + λ2 − · · · ± λg

(1 − b1ψ1) · · · (1 − bnψn)
.

As before, it turns out that the series F and H are related via a change of variables
based on equation (8). However, the change of variables differs from (7) owing
to (i) the factors bbii /bi! in the ELSV formula and (ii) a different relation between
the number of simple ramification points and the dimension of the Picard /moduli
space. Namely, following [7], we let

pb =
∞∑

d=b−1

(−1)d−b+1

(d − b + 1)! bb−1
β−b−(2d+1)/3td . (17)

Thus
p1 = β−4/3t0 − β−6/3t1 + 1

2β
−8/3t2 − · · · ,

p2 = 1
2β

−9/3t1 − 1
2β

−11/3t2 + · · · ,
p3 = 1

9β
−14/3t2 − · · · .

This change of variables transformsH into a series in variables t0, t1, . . . , and β2/3.

We will also need a more detailed version of equation (8):
d+1∑
b=1

(−1)d−b+1

(d − b + 1)! (b − 1)!
· 1

1 − bψ
= ψd +

∞∑
k=1

ad,d+kψ
d+k,

where ad,d+k are some rational constants that actually happen to be integers. For
instance,

1

1 − ψ
= 1 + ψ + ψ 2 + · · · ,

− 1

1 − ψ
+ 1

1 − 2ψ
= ψ + 3ψ 2 + 7ψ 3 + · · · ,

1/2

1 − ψ
− 1

1 − 2ψ
+ 1/2

1 − 3ψ
= ψ 2 + 6ψ 3 + 25ψ 4 + · · · .

Using these constants, we introduce the following differential operators:

L1 =
∞∑
n=0

an,n+1tn+1
∂

∂tn
,

L2 =
∞∑
n=0

an,n+2 tn+2
∂

∂tn
+ 1

2!

∞∑
n1,n2=0

an1,n1+1an2,n2+1tn1+1tn2+1
∂ 2

∂tn1∂tn2

,

L3 =
∞∑
n=0

an,n+3 tn+3
∂

∂tn
+ 1

2!

∞∑
n1,n2=0

an1,n1+2an2,n2+1tn1+2 tn2+1
∂ 2

∂tn1∂tn2

+ 1

2!

∞∑
n1,n2=0

an1,n1+1an2,n2+2 tn1+1tn2+2
∂ 2

∂tn1∂tn2

+ 1

3!

∞∑
n1,n2,n3=0

an1,n1+1an2,n2+1an3,n3+1tn1+1tn2+1tn3+1
∂ 3

∂tn1∂tn2∂tn3

,
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and so on. We can also regroup these operators in a unique operator

L = 1 + zL1 + z2L2 + · · · .
These operators and the change of variables (17) were designed to make the fol-

lowing proposition work.

Proposition A.7. Performing the change of variables (17) on the series Hst and
replacing β2/3 by z, we obtain the series LF.

Proof. Using the ELSV formula, one can check that the change of variables (17)
transforms H into the series∑
n,g

1

n!

∑
d1,...,dn

∫
Mg,n

(1−β2/3λ1+β 4/3λ2 −· · ·)
n∏
i=1

(ψ
di
1 +β2/3adi,di+1ψ

di+1
1 +· · ·).

The proposition follows. �

A.2. Hierarchies and Operators

Proposition A.8. We have that L = e l , where

l = zl1 + z2 l2 + · · ·
is a first-order linear differential operator :

lk = αn,n+k tn+k

∂

∂tn
.

Proof. Consider the operators lk and l as just described with indeterminate coef-
ficients αn,n+k. Consider the expansion of e l and denote by an,n+k the coefficient
of tn+k

∂

∂tn
in this expansion. We have

an,n+1 = αn,n+1,

an,n+2 = αn,n+2 + 1
2αn,n+1αn+1,n+2 ,

an,n+3 = αn,n+3 + 1
2αn,n+1αn+1,n+3 + 1

2αn,n+2αn+2,n+3

+ 1
6αn,n+1αn+1,n+2αn+2,n+3,

and so on. Note that these equalities allow us to determine the coefficients α un-
ambiguously once the coefficients a are known.

Now consider the coefficient of a monomial
p∏
i=1

tni+ki

∂

∂tni

in the same expansion of e l . It is equal to

|Aut{(n1, k1), . . . , (np, kp)}|
p!

∏
αni,ni+ki + higher-order terms,

and we claim that this sum can be factorized as
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|Aut{(n1, k1), . . . , (np, kp)}|
p!

∏
ani,ni+ki .

Indeed, suppose that we have already chosen a power of l, say lq with a term
in each of the q factors that contribute to the coefficient of

p−1∏
i=1

tni+ki

∂

∂tni
.

Now we must choose some additional power l r of l and a term in each of the r
factors that will contribute to the coefficient of

tnp+kp

∂

∂tnp
= tn+k

∂

∂tn
.

Moreover, we must choose the positions of the r new factors among the q that are
already chosen. This can be done in(

q + r

q

)
ways. (The operator tn+k

∂
∂tn

acts by replacing tn by tn+k; hence the r terms in
question divide the segment [n, n + k] into r parts and should be ordered in a
uniquely determined way.)

In the end we must divide the coefficient so obtained by (q + r)!, since we are
looking at e l . Thus we obtain a coefficient of

1

q!
· 1

r!
for any choice of r terms.

Now, if q = 0 then what we have finally obtained is precisely the expression
for an,n+k. For a general q we will therefore obtain the same expression for an,n+k

divided by q!. Thus we have proved that an,n+k = anp,np+kp can be factored out
in the coefficient of

p∏
i=1

tni+ki

∂

∂tni
.

The same is true for ani,ni+ki for all i. Hence the coefficient is the product of
ani,ni+ki as claimed.

In other words, we have shown that the coefficients of exp(l) coincide with
those of L. �

Conjecture A.9. The operators lk have the form

lk = ck
∑
n≥0

(
n+ k + 1
k + 1

)
tn

∂

∂tn+k

for some sequence of rational constants ck.

The sequence ck seems to be quite irregular and starts as follows:

1, −1

2
,

1

2
, −2

3
,

11

12
, −3

4
, −11

6
,

29

4
,

493

12
, −2711

6
, −12406

15
,

2636317

60
, . . . .
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We shall now establish a hierarchy of partial differential equations satisfied by
F. We use Propositions A.7 and A.8 together with the following fact.

Theorem 4 (see [9] or [7]). The seriesH satisfies the KP hierarchy in variables
p1,p2 , . . . .

This theorem is proved in the same manner as Theorem 2 once we observe that
exp(H ) satisfies the cut-and-join equation.

Applying the change of variables (17) to the KP equations yields the partial dif-
ferential equations that are satisfied by LF. These equations can, of course, be
considered as equations on F , since the coefficients of L are known. However,
the equations thus obtained are infinite; that is, they have an infinite number of
terms. Our goal is to prove that we can combine them in a way that leads to finite
differential equations.

The derivatives ∂/∂pb are expressed via ∂/∂td by computing the inverse of the
matrix of the change of variables (17). We have

∂

∂pb
= bb−1

b−1∑
d=0

βb+(2d+1)/3

(b − d − 1)!

∂

∂td
. (18)

Thus
∂

∂p1
= β 4/3 ∂

∂t0
,

∂

∂p2
= 2β7/3 ∂

∂t0
+ 2β 9/3 ∂

∂t1
,

∂

∂p3
= 9

2
β10/3 ∂

∂t0
+ 9β12/3 ∂

∂t1
+ 9β14/3 ∂

∂t2
.

Now using Theorem 4 and Proposition A.7 allows us to transform the KP hier-
archy into a system of equations on F. We will illustrate the procedure on the
example of KP2,2.

We know that KPi,j(H ) = 0. For i = j = 2 this means

∂ 2H

∂p2
2

− ∂ 2H

∂p1∂p3
+ 1

2

(
∂ 2H

∂p2
1

)2

+ 1

12

∂ 4H

∂p4
1

= 0.

Using H = Hst + Hunst and the explicit expression of Hunst, we transform KPi,j

into a (finite) equation K̂Pi,j on Hst. For instance, for i = j = 2 we obtain

∂ 2Hst

∂p2
2

− ∂ 2Hst

∂p1∂p3
+ 1

2

(
∂ 2Hst

∂p2
1

)2

+ 1

12

∂ 4Hst

∂p4
1

+ 1

2
β2 ∂

2Hst

∂p2
1

= 0.

Applying the change of variables (18) and replacing β2/3 by z, we transform this
into an equation KPi,j on LF. For i = j = 2 we have

−∂ 2(LF )

∂t0∂t1
+ 1

2

(
∂ 2(LF )

∂t 2
0

)2

+ 1

12

∂ 4(LF )

∂t 4
0

+ z

(
4
∂ 2(LF )

∂t 2
1

− 9
∂ 2(LF )

∂t0∂t2

)
= 0.

In principle, we could have stopped here. However, in this form the equation is
useful only for studying the z-free part F (0) of F , which was already done in [7].
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Indeed, the operators Li for i ≥ 1 are composed of infinitely many terms. This
means that if we develop this equation and take its coefficient of z1, we will ob-
tain an infinite equation on F (0) and F (1). Such an equation is quite useless if we
want to compute F (1). Therefore we continue with the following theorem (recall
that L = e l).

Theorem 5. Consider the expression

e−l KPi,j(e
lF )

as a series in z. Then its coefficient of zk is a finite differential equation on
F (0), . . . ,F (k).

Example A.10. The coefficient of z1 in e−l KP2,2(e
lF ) gives the following

equation:

− ∂ 2F (1)

∂t0∂t1
+ ∂ 2F (0)

∂t 2
0

∂ 2F (1)

∂t 2
0

+ 1

12

∂ 4F (1)

∂t 4
0

+ 12
∂ 2F (0)

∂t0∂t2
− 3

∂ 2F (0)

∂t 2
1

− 2
∂ 2F (0)

∂t 2
0

∂ 2F (0)

∂t0∂t1
− 1

3

∂ 4F (0)

∂t 3
0∂t1

= 0.

Assuming that we know F (0), this equation—together with the string and dilation
equations—allows us to compute all the coefficients of F (1) (i.e., all Hodge inte-
grals involving λ1).

Proof of Theorem 5. LetQ be a linear differential operator (in variables td)whose
coefficients are polynomials in z. Then

e−lQe l = Q+ [Q, l ] + 1

2
[[Q, l ], l ] + · · ·

is a series in z whose coefficients are finite differential operators. We will denote
this series by Q̂. Now suppose we have several linear operators Q1, . . . ,Qr as be-
fore. Since l is a first-order operator, we obtain

e−lQ1(e
lF ) · · ·Qr(e

lF ) = Q̂1(F ) · · · Q̂r(F ).

This is, once again, a series in z whose coefficients are finite differential equations
on the F (k). The theorem now follows from the fact that every equation KPi,j is a
finite linear combination of expressions of the form

Q1(e
lF ) · · ·Qr(e

lF ). �

Thus every equation KPi,j and every power of z gives us a finite differential equa-
tion on the functionsF (k). We now describe some facts concerning these equations
that we have observed but not proved.

For any F (k) and any (d ′, d ′′) �= (0, 0), by taking linear combinations of the
equations in question we can obtain an equation of the form
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∂F (k)

∂td ′∂td ′′
= terms with more than two derivations.

For homogeneity reasons the sum of indices in these derivatives will be smaller
than d ′ +d ′′. Hence we use similar equations with smaller d ′ +d ′′ in order to sim-
plify the right-hand part by substitutions. After a finite number of substitutions
we will obtain an expression of ∂F (k)/∂td ′∂td ′′ exclusively via partial derivatives
with respect to t0. Moreover, these expressions can themselves be organized into
equations on F :

F0,1 =
(

1

2
F 2

0,0 + 1

12
F0,0,0,0

)
− z

(
1

24
F 2

0,0,0 + 1

720
F0,0,0,0,0,0

)

+ z2

(
1

720
F0,0,0F0,0,0,0,0 + 1

360
F 2

0,0,0,0 + 1

30240
F0,0,0,0,0,0,0,0

)
+ · · · ,

F0,2 =
(

1

6
F 3

0,0 + 1

12
F0,0F0,0,0,0 + 1

24
F 2

0,0,0 + 1

240
F0,0,0,0,0,0

)

− z

(
1

24
F0,0F

2
0,0,0 + 1

720
F0,0F0,0,0,0,0,0 + 7

720
F0,0,0F0,0,0,0,0

+ 1

180
F 2

0,0,0,0 + 1

7560
F0,0,0,0,0,0,0,0

)
+ · · · ,

F1,1 =
(

1

3
F 3

0,0 + 1

6
F0,0F0,0,0,0 + 1

24
F 2

0,0,0 + 1

144
F0,0,0,0,0,0

)

− z

(
1

12
F0,0F

2
0,0,0 + 1

360
F0,0F0,0,0,0,0,0 + 13

720
F0,0,0F0,0,0,0,0

+ 1

120
F 2

0,0,0,0 + 1

4320
F0,0,0,0,0,0,0,0

)
+ · · · ,

F0,3 =
(

1

24
F 4

0,0 + 1

24
F 2

0,0F0,0,0,0 + 1

24
F0,0F

2
0,0,0 + 1

240
F0,0F0,0,0,0,0,0

+ 1

120
F0,0,0F0,0,0,0,0 + 1

160
F 2

0,0,0,0 + 1

6720
F0,0,0,0,0,0,0,0

)
+ · · · ,

F1,2 =
(

1

8
F 4

0,0 + 1

8
F 2

0,0F0,0,0,0 + 1

12
F0,0F

2
0,0,0 + 1

90
F0,0F0,0,0,0,0,0

+ 1

60
F0,0,0F0,0,0,0,0 + 23

1440
F 2

0,0,0,0 + 1

2880
F0,0,0,0,0,0,0,0

)
+ · · · .

It is not entirely unexpected that the free terms of these equations turn out to form
the well-known Korteweg–de Vries (KdV) hierarchy on F (0).

The first equation listed (expressing F0,1), together with the string and dilation
equations, is sufficient to determine the values of all Hodge integrals involving a
single λ-class. This approach seems to be simpler than the method of [8] based
on the study of double Hurwitz numbers.



228 Sergey Shadrin & Dimitri Zvonkine

References

[1] B. A. Dubrovin and S. M. Natanzon, Real theta-function solutions of the
Kadomtsev–Petviashvili equation, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988),
267–286, 446 (in Russian); English translation in Math. USSR-Izv. 32 (1989),
269–288.

[2] T. Ekedahl, S. Lando, M. Shapiro, and A. Vainshtein, Hurwitz numbers and
intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297–327.

[3] I. P. Goulden and D. M. Jackson, Transitive factorizations into transpositions and
holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997), 51–60.

[4] , The number of ramified coverings of the sphere by the double torus, and a
general form for higher genera, J. Combin. Theory Ser. A 88 (1999), 259–275.

[5] I. P. Goulden, D. M. Jackson, and R.Vakil, Towards the geometry of double Hurwitz
numbers, Adv. Math. 198 (2005), 43–92.

[6] V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations
of infinite-dimensional Lie algebras, Adv. Ser. Math. Phys., 2, World Scientific,
Teaneck, NJ, 1987.

[7] M. E. Kazarian and S. K. Lando, An algebro-geometric proof of Witten’s
conjecture, Max-Planck Institute preprint MPIM2005-55, 2005,
〈http: //www.mpim-bonn.mpg.de /preprints〉.

[8] Y.-S. Kim, Computing Hodge integrals with one λ-class, preprint, 2005, arXiv:
math-ph /0501018.

[9] A. Okounkov, Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000),
447–453.

[10] A. Okounkov, A. M. Vershik, and A. Yu, A new approach to representation theory
of symmetric groups II, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.
(POMI) 307 (2004), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, 57–98,
281 (in Russian); English translation in J. Math. Sci. (New York) 131 (2005),
5471–5490.

S. Shadrin
Department of Mathematics
University of Zürich
Winterthurerstrasse 190
CH-8057 Zürich
Switzerland

sergey.shadrin@math.uzh.ch

Department of Mathematics
Institute of System Research
Nakhimovsky Prospekt 36-1
Moscow 117218
Russia

shadrin@mccme.ru

D. Zvonkine
Institut mathématique de Jussieu
Université Paris VI
175, rue du Chevaleret
75013 Paris
France

zvonkine@math.jussieu.fr


