The Structure of Stable Minimal Surfaces Near a Singularity

William H. Meeks III

1. Introduction

Meeks, Perez, and Ros [4] have proved the following remarkable local removable singularity result for a minimal lamination of a Riemannian 3-manifold N : If $\mathcal{S} \subset N$ is a closed countable set and if \mathcal{L} is a minimal lamination of $N-\mathcal{S}$ that satisfies, in a punctured neighborhood W of each isolated point p of \mathcal{S}, a curvature estimate of the form $\left|K_{\mathcal{L} \cap W}\right|(x) d^{2}(x, p)<C$, then \mathcal{L} extends to a minimal lamination $\overline{\mathcal{L}}$ of N. Here, $K_{\mathcal{L} \cap W}(x)$ is the Gaussian curvature function of the leaves of \mathcal{L} in W and $d(x, p)$ is the distance function to p in N. By the Gauss equation, the preceding estimate on curvature can be replaced by the estimate $\left|A_{\mathcal{L} \cap W}\right|(x) d(x, p)<$ C^{\prime}, where $|A|$ is the norm of the second fundamental form of the leaves of \mathcal{L}.

In general, a minimal lamination \mathcal{L} of $N-\mathcal{S}$ fails to satisfy the latter local curvature estimate; that is, $\left|K_{\mathcal{L} \cap W}\right| d^{2}<C$ around isolated points $p \in \mathcal{S}$. However, stable minimal surfaces satisfy such an estimate by the curvature estimates of Schoen [10] and Ros [9]. It follows that if L is a stable leaf of \mathcal{L} then the sublamination \bar{L}, which as a set is the closure of L in \mathcal{L}, extends across the closed countable set \mathcal{S}. Moreover, the sublamination of limit leaves of \mathcal{L} can also be shown to satisfy the local curvature estimate, so this sublamination extends across the set \mathcal{S} (see [6;7] for details).

We note that the local removable singularity theorem in [6] depends strongly on the embeddedness of the minimal surface leaves of the lamination \mathcal{L}. In this paper, we extend the stated local removable singularity result for minimal laminations with a curvature estimate to a different but related problem. For this related problem, there is a single isolated point $p \in N$ where we would like to extend an immersed minimal surface M that satisfies some related curvature estimate at the point; however, we do not assume the surface M is embedded and will only require that the extended surface \bar{M} be a smooth branched minimal surface. This result is contained in the following Theorems 1.3 and 1.4; Theorem 1.3 describes a curvature estimate for certain stable minimal surfaces in \mathbb{R}^{3}. Before stating these results, we make two definitions.

[^0]Definition 1.1. A minimal surface M in \mathbb{R}^{3} is locally complete outside of a point $p \in \mathbb{R}^{3}$ if p is not in the closure of ∂M and there exists a neighborhood W of p such that any divergent path of finite length in M whose limiting endpoint is W must have p as its limiting endpoint. If W can be taken to be \mathbb{R}^{3}, then M is called complete outside of p.

Definition 1.2. A minimal surface M in \mathbb{R}^{3} is locally proper outside of $p \in \mathbb{R}^{3}$ if p is not in the closure of ∂M and there exists a neighborhood W of p such that each component of $M \cap \bar{W}$ is proper in $\bar{W}-\{p\}$; here, \bar{W} denotes the closure of W.

We remark that if M is locally proper at p then it is locally complete at p.
Theorem 1.3 (Improved Curvature Estimate). If M is an orientable stable minimal surface in \mathbb{R}^{3} that is locally complete outside of a point p, then for all $\varepsilon>0$ there exists $a \delta>0$ such that, for the ball $W=B(p, \delta),\left|A_{M \cap W}\right|(x) d(x, p)<\varepsilon$.

Theorem 1.4 (Extension Theorem). Suppose M is an orientable minimal surface in \mathbb{R}^{3} that is locally complete outside of a point p. Iffor all $\varepsilon>0$ there exists a $\delta>0$ such that, for the ball $W=B(p, \delta),\left|A_{M \cap W}\right|(x) d(x, p)<\varepsilon$, then each component C of $\bar{W} \cap M$ is a simply connected minimal surface with $\partial C \subset \partial W$ that satisfies one of the following statements.

1. C is a compact minimal disk.
2. C is conformally a punctured disk that is properly immersed in $W-\{p\}$; in this case, C extends smoothly across p to a smooth branched minimal disk \bar{C}.
If M is locally proper at p, then statements 1 and 2 imply that M extends smoothly across p as a branched minimal surface.
3. C is conformally diffeomorphic to the closed upper half-space $\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \geq\right.$ $0\}$. For positive $t \leq \delta, C$ intersects $\partial B(p, t)$ transversely in a single complete curve and $\partial B(p, t)$ becomes orthogonal to C as t approaches 0 .

Suppose now that M is a properly immersed orientable stable minimal surface in a punctured ball in \mathbb{R}^{3} with boundary on the boundary of the ball. In this case, Theorem 1.3 implies that M satisfies the curvature estimate hypothesis given in Theorem 1.4. Hence, by properness, there exists some small closed subball B centered at the puncture such that: (i) outside the interior of B, M is a smooth compact surface; and (ii) inside B, M consists of a finite number of compact disk components that satisfy item 1 in Theorem 1.4 and a finite number of punctured disk components C that satisfy item 2 in Theorem 1.4 (by properness, there are no components satisfying item 3 in Theorem 1.4). It then follows from item 2 in Theorem 1.4 that M extends to a smooth branched minimal immersion of a smooth compact surface \bar{M}, where $M=\bar{M}-\left\{p_{1}, \ldots, p_{n}\right\}$ with the points $\left\{p_{1}, \ldots, p_{n}\right\}$ corresponding to the ends of the noncompact annular components of $M \cap B$. This consequence is a classical result of Gulliver and Lawson.

Corollary 1.5 [4]. If M is a properly immersed stable orientable minimal surface in a punctured ball in \mathbb{R}^{3} with the boundary of M contained in the boundary of the balls, then M is conformally a finitely punctured compact Riemann surface \underline{M}, where \underline{M} maps smoothly into \mathbb{R}^{3} and extends M as a compact branched minimal surface.

The results described in Theorems 1.3 and 1.4 are motivated by the papers [4] and [6].

We prove Theorems 1.3 and 1.4, as well as their natural generalization to Riemannian 3-manifolds, in Section 2. In particular, we see that the Gulliver-Lawson result (Corollary 1.5) also holds in Riemannian 3-manifolds.

Theorem 1.4 should hold in greater generality. Based on work in [6], I make the following conjecture. For this conjecture, one generalizes in the natural way the notion of "complete outside of a point" to the notion of "complete outside of a closed set". This conjecture is closely related to the Fundamental Removable Singularities Conjecture in [6] for a minimal lamination in $\mathbb{R}^{3}-A$, where A is a closed set of 1-dimensional Hausdorff measure 0.

Conjecture 1.6 (Removable Singularity Conjecture for Stable Minimal Surfaces). If N is a Riemannian 3-manifold with nonnegative Ricci curvature and if M is a stable immersed minimal surface in N that is complete outside of a closed set A of 1-dimensional Hausdorff measure 0 , then M extends smoothly across A. In particular, if $N=\mathbb{R}^{3}$ and M is connected and embedded, then \bar{M} is a plane.

We remark that there exists a stable simply connected minimal surface in hyperbolic 3-space \mathbb{H}^{3} (or in $\mathbb{H}^{2} \times \mathbb{R}$) that is complete outside of a closed set A consisting of a single point; hence, Conjecture 1.6 requires an essentially nonnegative hypothesis on the curvature of N.

2. Proofs of Theorems $\mathbf{1 . 3}$ and $\mathbf{1 . 4}$ in the Manifold Setting

We first recall a removable singularity result from [6] that we refer to as the Stability Lemma (also see [1] for this result). For the sake of being self-contained, we repeat the proof of this result here. The proof of the Stability Lemma is motivated by a similar conformal change of metric argument that was first applied by Gulliver and Lawson in [4] and by the proof of a similar lemma in [5].

Lemma 2.1 (Stability Lemma). Let $L \subset \mathbb{R}^{3}-\{\overrightarrow{0}\}$ be a stable orientable minimal surface that is complete outside the origin. Then, \bar{L} is a plane.

Proof. If $\overrightarrow{0} \notin \bar{L}$, then L is complete and hence is a plane by the main theorem in [2], [3], or [8]. Assume now that $\overrightarrow{0} \in \bar{L}$. Let R denote the radial distance to the origin and consider the metric $\tilde{g}=\frac{1}{R^{2}} g$ on L, where g is the metric induced by the usual inner product $\langle\cdot, \cdot\rangle$ of \mathbb{R}^{3}. Since $\left(\mathbb{R}^{3}-\{\overrightarrow{0}\}, \hat{g}\right)$ with $\hat{g}=\frac{1}{R^{2}}\langle\cdot, \cdot\rangle$ is isometric
to $\mathbb{S}^{2}(1) \times \mathbb{R}$, where $\mathbb{S}^{2}(1)$ is the unit 2-sphere, our definition of complete outside of a point forces $(L, \tilde{g}) \subset\left(\mathbb{R}^{3}-\{\overrightarrow{0}\}, \hat{g}\right)$ to be complete.

We now check that (L, g) is flat. The Laplacians and Gauss curvatures of g, \tilde{g} are related by the equations $\tilde{\Delta}=R^{2} \Delta$ and $\tilde{K}=R^{2}\left(K_{L}+\Delta \log R\right)$. Since $\Delta \log R=$ $2\left(1-\|\nabla R\|^{2}\right) / R^{2} \geq 0$, we have

$$
-\tilde{\Delta}+\tilde{K}=R^{2}\left(-\Delta+K_{L}+\Delta \log R\right) \geq R^{2}\left(-\Delta+K_{L}\right)
$$

Since $K_{L} \leq 0$ and (L, g) is stable, it follows that $-\Delta+K_{L} \geq-\Delta+2 K_{L} \geq 0$ and so $-\tilde{\Delta}+\tilde{K} \geq 0$ on (L, \tilde{g}). Since \tilde{g} is complete, the universal covering of L is conformally \mathbb{C} (Fischer-Colbrie and Schoen [3]). Because (L, g) is stable, there exists a positive Jacobi function u on L. Passing to the universal covering \hat{L}, we have $\Delta \hat{u}=2 K_{\hat{L}} \hat{u} \leq 0$; hence, the lifted function \hat{u} is a positive superharmonic on \mathbb{C} and therefore constant. Thus, $0=\Delta u-2 K_{L} u=-2 K_{L} u$ on L, which means that $K_{L}=0$.

Assume now that M is an orientable stable minimal surface in a 3-manifold N that is complete outside of a point $p \in N$. We first prove the curvature estimate in Theorem 1.3 in the 3-manifold N setting. In other words, the following assertion holds.

Assertion 2.2. For all $\varepsilon>0$ there exists a $\delta>0$ such that, for the ball $W=$ $B(p, \delta),\left|A_{M \cap W}\right|(x) d(x, p)<\varepsilon$, where $|A|$ is the norm of the second fundamental form of M.

Proof. Let $\varepsilon>0$. If the assertion fails, then there exists a sequence of points $\left\{p_{n}\right\}_{n} \subset M$ that converges to p and such that $|A|\left(p_{n}\right) d\left(p_{n}, p\right) \geq \varepsilon$. Choose a small compact extrinsic metric ball B centered at p and of small fixed radius r_{0} that is the image of a fixed-size ball of radius r_{0} in $T_{p} N$ under the exponential map. By curvature estimates for stable minimal surfaces, $\left|A_{M \cap B}\right|(x) d(x, p)<C_{0}$ for some constant C_{0}.

Let $\lambda_{n}=1 / d\left(p_{n}, p\right)$. Consider the metrically expanded balls $B(n)=\lambda_{n} B$ of radius $\lambda_{n} r_{0}$. When viewed in geodesic coordinates centered at the origin p in $B(n)$, these balls converge uniformly to \mathbb{R}^{3} as $n \rightarrow \infty$. Define the related surfaces $M(n)=\lambda_{n}(B \cap M) \subset B(n)$, which we may consider to lie in \mathbb{R}^{3}. Let \tilde{p}_{n} denote the points $\lambda_{n} p_{n} \in \mathbb{S}^{2}(1) \subset \mathbb{R}^{3}$ and assume that the sequence $\left\{\tilde{p}_{n}\right\}_{n}$ converges to a point $q \in \mathbb{S}^{2}(1)$. The surfaces $M(n)$ have uniformly bounded second fundamental form outside of any fixed neighborhood of the origin and so, once a subsequence is chosen, there exists an immersed minimal surface M_{∞} in $\mathbb{R}^{3}-\{\overrightarrow{0}\}$ that is a limit of compact domains of $M(n)$ all passing through the points p_{n} and with $q \in M_{\infty}$. The surface M_{∞} can be chosen to satisfy the following statements:

1. for some positive constant $\tilde{C}_{0},\left|A_{M_{\infty}}\right|(x) d(x, \overrightarrow{0}) \leq \tilde{C}_{0}$ and $\left|A_{M_{\infty}}\right|(q) \geq \varepsilon$;
2. M_{∞} is complete outside of $\overrightarrow{0}$;
3. M_{∞} is stable.

The construction of M_{∞} is standard, but for the sake of completeness we shall briefly sketch the proof of its existence. Because the second fundamental forms
of $M(n) \cap\left(\mathbb{R}^{3}-\mathbb{B}\left(\frac{1}{2}\right)\right)$ are uniformly bounded, there exists a fixed $\delta \in\left(0, \frac{1}{4}\right)$ such that the intrinsic δ-disks $B_{M(n)}\left(\tilde{p}_{n}, \delta\right)$ are graphs of gradient at most 1 over their tangent planes and are area minimizing in $B(n) \subset \mathbb{R}^{3}$ (limit coordinates). A subsequence of these disks converges to an area-minimizing minimal disk $D(q, \delta)$ centered at $q \in \mathbb{S}^{2}(1)$ of radius δ and with $\left|A_{D(p, \delta)}\right|(q) \geq \varepsilon$. Since the $M(n)$ have uniformly bounded second fundamental forms on compact subsets of $\mathbb{R}^{3}-\{\overrightarrow{0}\}$, the analytic disk $D(q, \delta)$ lies on a maximal minimally immersed surface $M_{\infty} \subset$ $\mathbb{R}^{3}-\{\overrightarrow{0}\}$ that satisfies the curvature estimate given in item 1. Items 2 and 3 follow from this definition of M_{∞} and because the $M(n)$ have positive Jacobi functions that, when appropriately normalized and after choosing a subsequence, yield a positive limit Jacobi function on the limit surface M_{∞}. However, the existence of M_{∞} contradicts the Stability Lemma, which proves Assertion 2.2.

We will now apply the curvature estimate in Assertion 2.2 to describe the geometry of M very close to p. Assume from this point on that M satisfies this curvature estimate but is not necessarily stable. We will prove Theorem 1.4 in the 3-manifold N setting.

Since $M \subset N-\{p\}$ is complete outside of p, by definition (suitably extended to the general ambient setting) there exists a neighborhood W of p in N such that any divergent path of finite length in M with limiting point in W has its endpoint at p. Given $\varepsilon>0$, let $\delta>0$ be the related radius given by Assertion 2.2. We can assume that the extrinsic ball $B(p, \delta)$ is contained in W. Consider geodesic coordinates in $B(p, \delta)$ defined out to distance δ. Next we describe the two possibilities that may occur after choosing a possibly smaller δ.

Assertion 2.3. For any fixed $\tau \in(0,1]$, there is a small $\delta>0$ such that the following statements hold.

1. If the extrinsic distance function $d: N \rightarrow[0, \infty)$ to the point p, restricted to a component C of $M \cap B(p, \delta)$, has a critical point on the interior of C, then C is a compact disk with $\partial C \subset \partial B(p, \delta)$.
2. If $\left.d\right|_{C}$ has no critical points on a component C of $M \cap B(p, \delta)$, then the angles between the tangent planes to C and the radial geodesics in $B(p, \delta)$ centered at p are less than τ. Furthermore, for $t<\delta, C \cap \partial B(p, t)$ is a connected immersed complete noncompact curve of geodesic curvature less than τ / t in this sphere. In particular, C is noncompact.

Proof. Let $\varepsilon=\frac{1}{4}$. By Assertion 2.2, there exists a $\delta>0$ such that the absolute values of principal curvatures of a point of $M \cap B(p, \delta)$ are less than half the absolute values of principal curvatures of the metric spheres in $B(p, \delta)$ centered at p and passing through the point. It follows that the distance function d to the point p restricted to $M \cap B(p, \delta)$ has only critical points of index 0 . In particular, if $x \in M \cap B(p, \delta)$ is a critical point of $\left.d\right|_{M}$, then the component $C(x)$ of $M \cap \bar{B}(p, \delta)$ containing x lies in $\bar{B}(p, \delta)-B(p, d(x))$ and away from any intrinsic small neighborhood of x in $C(x)$; the tangent planes to $C(x)$ make an angle uniformly bounded away from $\pi / 2$ with the radial geodesics. Otherwise, a small
perturbation \tilde{d} of d has two critical points of index 0 on $C(x)$ and no critical points of index 1 or 2 . By elementary Morse theory, $C(x)$ is not connected-a contradiction. In particular, $\left.d\right|_{C(x)}$ has a unique critical point and $C(x)$ is a compact disk with $\partial C(x) \subset \partial B(p, \delta)$. This proves the first item in the statement of the assertion.

The proof of the second item of Assertion 2.3 follows from a similar argument. Note that if a component C of $M \cap \bar{B}(p, \delta)$ is almost orthogonal to the spheres $\partial B(p, t), 0<t<\delta$, then the curvature estimate in Assertion 2.2 gives the desired estimate on the geodesic curvature and connectedness of $C \cap \partial B(p, t)$. Assume now that d_{C} has no critical points.

If the component C were compact, then $\left.d\right|_{C}$ would have a minimal value at an interior point of C; this follows from our initial assumptions that $B(p, \delta) \subset W$ and $M \cap W$ is "complete" except at p. Since we are assuming that $\left.d\right|_{C}$ has no critical points, C is noncompact. Assume that δ is chosen sufficiently small that both $B(p, 2 \delta) \subset W$ and the same curvature estimate hold in this bigger ball. Let \tilde{C} be the related component of $M \cap \bar{B}(p, 2 \delta)$. It follows that $\left.d\right|_{\tilde{C}}$ also has no critical points since \tilde{C} is not compact. This substitution for a larger domain-coupled with our discussion of the previous case, where d when restricted to a component had a critical point-shows that the angle that C makes with the radial geodesics is small with a better estimate when the second fundamental form of M has a better curvature estimate. This better curvature estimate is the one given by Assertion 2.2. It follows that if, at a point q very close to p, the component C makes an angle greater than τ with the radial lines, then the component $C(q)$ of $C \cap \bar{B}(p,|q|)$ is compact and so $\left.d\right|_{C(q)}$ has a local minimum. This means that $\left.d\right|_{C}$ has a critical point, which contradicts our hypothesis for C. This completes the proof of Assertion 2.3.

We now complete the proof of Theorem 1.4 in the Riemannian setting. By Assertion 2.3, a component C of $M \cap \bar{B}(p, \delta)$ either satisfies item 1 in the statement of Theorem 1.4 (with \mathbb{R}^{3} replaced by N) or we may assume that C is almost orthogonal to $\partial B(p, t)$ for $t \in(0, \delta)$. In particular, C is either diffeomorphic to $\mathbb{S}^{1} \times[0, \infty)$ (when ∂C is compact) or to $\mathbb{R} \times[0, \infty$) (when ∂C is noncompact). If ∂C is compact, then a standard application of the proof of the monotonicity formula for area (see e.g. the beginning of the proof of Theorem 5.1 in [6]) shows that the lengths of the curves $C \cap \partial B(p, t), 0<t \leq 1$, are less than C_{0} / t for some constant C_{0}. If g denotes the metric on C, then the conformally related and complete metric $\tilde{g}=$ $\frac{1}{d^{2}} g$ on C is a complete metric with linear area growth, where d is the distance to p. This implies that C is conformally a punctured disk.

If ∂C is not compact, then a similar argument shows that the metric $\tilde{g}=\frac{1}{d^{2}} g$ is complete and asymptotically flat away from its boundary, ∂C has bounded geodesic curvature in the new metric, and (C, \tilde{g}) has quadratic area growth. It follows that (C, \tilde{g}) embeds in a complete surface of quadratic area growth and so C has full harmonic measure. Since C is simply connected with one boundary component, it is conformally the closed unit disk \mathbb{D} with a connected closed set of measure 0 removed from its boundary. Since the connected set in $\partial \mathbb{D}$ has measure 0 , it must consist of a single point. Thus, C is conformally equivalent to $\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \geq 0\right\}$.

In the case where C is conformally $\mathbb{D}-\{\overrightarrow{0}\}$ with finite area (from the monotonicity formula), standard regularity theorems for conformal harmonic maps imply that the proper mapping $f: \mathbb{D}-\{\overrightarrow{0}\}=C \rightarrow \bar{B}(p, \delta)-\{p\}$ extends smoothly across p to a conformal branched harmonic map $\bar{f}: \mathbb{D} \rightarrow \bar{B}(p, \delta)$. This completes the proof of Theorem 1.4 in the manifold setting N.

References

[1] T. H. Coding and W. P. Minicozzi II, The space of embedded minimal surfaces of fixed genus in a 3-manifold V; Fixed genus, preprint, math.DG/0509647, 2005.
[2] M. do Carmo and C. K. Peng, Stable complete minimal surfaces in \mathbb{R}^{3} are planes, Bull. Amer. Math. Soc. 1 (1979), 903-906.
[3] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), 199-211.
[4] R. Gulliver and H. B. Lawson, The structure of stable minimal hypersurfaces near a singularity, Geometric measure theory and the calculus of variations (Arcata, 1984), Proc. Sympos. Pure Math., 44, pp. 213-237, Amer. Math. Soc., Providence, RI, 1986.
[5] W. H. Meeks III, J. Pérez, and A. Ros, The geometry of minimal surfaces of finite genus II; nonexistence of one limit end examples, Invent. Math 158 (2004), 323-341.
[6] ——, Embedded minimal surfaces: Removable singularities, local pictures and parking garage structures, the dynamics of dilation invariant collections and the characterization of examples quadratic curvature decay, preprint, http://www.ugr.es/local/jperez/papers/papers.htm.
[7] W. H. Meeks III and H. Rosenberg, The minimal lamination closure theorem, Duke Math. J. 133 (2006), 467-497.
[8] A. V. Pogorelov, On the stability of minimal surfaces, Dokl. Akad. Nauk SSSR 260 (1981), 293-295.
[9] A. Ros, One-sided complete stable minimal surfaces, J. Differential Geom. 74 (2006), 69-92.
[10] R. Schoen, Estimates for stable minimal surfaces in three dimensional manifolds, Ann. of Math. Stud., 103, pp. 111-126, Princeton Univ. Press, Princeton, NJ, 1983.

Mathematics Department
University of Massachusetts
Amherst, MA 01003
bill@math.umass.edu

[^0]: Received January 3, 2006. Revision received April 11, 2006.
 This material is based upon work for the NSF under Award no. DMS-0405836. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the NSF.

