
Michigan Math. J. 55 (2007)

The Structure of Stable Minimal Surfaces
Near a Singularity

William H. Meeks I I I

1. Introduction

Meeks, Perez, and Ros [4] have proved the following remarkable local removable
singularity result for a minimal lamination of a Riemannian 3-manifold N : If
S ⊂ N is a closed countable set and if L is a minimal lamination of N − S that
satisfies, in a punctured neighborhood W of each isolated point p of S, a curvature
estimate of the form |KL∩W |(x) d 2(x,p) < C, then L extends to a minimal lami-
nation L ofN. Here, KL∩W(x) is the Gaussian curvature function of the leaves of L
in W and d(x,p) is the distance function to p in N. By the Gauss equation, the pre-
ceding estimate on curvature can be replaced by the estimate |AL∩W |(x) d(x,p) <

C ′, where |A| is the norm of the second fundamental form of the leaves of L.

In general, a minimal lamination L of N−S fails to satisfy the latter local curva-
ture estimate; that is, |KL∩W | d 2 < C around isolated points p ∈ S. However, sta-
ble minimal surfaces satisfy such an estimate by the curvature estimates of Schoen
[10] and Ros [9]. It follows that if L is a stable leaf of L then the sublamination L,
which as a set is the closure of L in L, extends across the closed countable set S.
Moreover, the sublamination of limit leaves of L can also be shown to satisfy the
local curvature estimate, so this sublamination extends across the set S (see [6; 7]
for details).

We note that the local removable singularity theorem in [6] depends strongly
on the embeddedness of the minimal surface leaves of the lamination L. In this
paper, we extend the stated local removable singularity result for minimal lamina-
tions with a curvature estimate to a different but related problem. For this related
problem, there is a single isolated point p ∈ N where we would like to extend an
immersed minimal surface M that satisfies some related curvature estimate at the
point; however, we do not assume the surface M is embedded and will only re-
quire that the extended surface M be a smooth branched minimal surface. This
result is contained in the following Theorems 1.3 and 1.4; Theorem 1.3 describes a
curvature estimate for certain stable minimal surfaces in R

3. Before stating these
results, we make two definitions.
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Definition 1.1. A minimal surface M in R
3 is locally complete outside of a point

p ∈ R
3 if p is not in the closure of ∂M and there exists a neighborhood W of p

such that any divergent path of finite length in M whose limiting endpoint is W

must have p as its limiting endpoint. If W can be taken to be R
3, then M is called

complete outside of p.

Definition 1.2. A minimal surface M in R
3 is locally proper outside of p ∈ R

3

if p is not in the closure of ∂M and there exists a neighborhood W of p such that
each component of M ∩ W is proper in W − {p}; here, W denotes the closure
of W.

We remark that if M is locally proper at p then it is locally complete at p.

Theorem 1.3 (Improved Curvature Estimate). If M is an orientable stable min-
imal surface in R

3 that is locally complete outside of a point p, then for all ε > 0
there exists a δ > 0 such that, for the ball W = B(p, δ), |AM∩W |(x) d(x,p) < ε.

Theorem 1.4 (Extension Theorem). Suppose M is an orientable minimal sur-
face in R

3 that is locally complete outside of a point p. If for all ε > 0 there exists
a δ > 0 such that, for the ball W = B(p, δ), |AM∩W |(x) d(x,p) < ε, then each
component C of W ∩ M is a simply connected minimal surface with ∂C ⊂ ∂W

that satisfies one of the following statements.

1. C is a compact minimal disk.
2. C is conformally a punctured disk that is properly immersed in W − {p}; in

this case, C extends smoothly across p to a smooth branched minimal disk C.

If M is locally proper at p, then statements 1 and 2 imply that M extends smoothly
across p as a branched minimal surface.

3. C is conformally diffeomorphic to the closed upper half-space {(x1, x2) | x2 ≥
0}. For positive t ≤ δ, C intersects ∂B(p, t) transversely in a single complete
curve and ∂B(p, t) becomes orthogonal to C as t approaches 0.

Suppose now that M is a properly immersed orientable stable minimal surface in
a punctured ball in R

3 with boundary on the boundary of the ball. In this case,
Theorem 1.3 implies that M satisfies the curvature estimate hypothesis given in
Theorem 1.4. Hence, by properness, there exists some small closed subball B

centered at the puncture such that: (i) outside the interior of B, M is a smooth
compact surface; and (ii) inside B, M consists of a finite number of compact disk
components that satisfy item 1 in Theorem 1.4 and a finite number of punctured
disk components C that satisfy item 2 in Theorem 1.4 (by properness, there are no
components satisfying item 3 in Theorem 1.4). It then follows from item 2 in The-
orem 1.4 that M extends to a smooth branched minimal immersion of a smooth
compact surface M , where M = M − {p1, . . . ,pn} with the points {p1, . . . ,pn}
corresponding to the ends of the noncompact annular components of M ∩B. This
consequence is a classical result of Gulliver and Lawson.
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Corollary 1.5 [4]. If M is a properly immersed stable orientable minimal sur-
face in a punctured ball in R

3 with the boundary of M contained in the boundary
of the balls, then M is conformally a finitely punctured compact Riemann surface
M, where M maps smoothly into R

3 and extends M as a compact branched mini-
mal surface.

The results described in Theorems 1.3 and 1.4 are motivated by the papers [4]
and [6].

We prove Theorems 1.3 and 1.4, as well as their natural generalization to Rie-
mannian 3-manifolds, in Section 2. In particular, we see that the Gulliver–Lawson
result (Corollary 1.5) also holds in Riemannian 3-manifolds.

Theorem 1.4 should hold in greater generality. Based on work in [6], I make
the following conjecture. For this conjecture, one generalizes in the natural way
the notion of “complete outside of a point” to the notion of “complete outside of
a closed set”. This conjecture is closely related to the Fundamental Removable
Singularities Conjecture in [6] for a minimal lamination in R

3 − A, where A is a
closed set of 1-dimensional Hausdorff measure 0.

Conjecture 1.6 (Removable Singularity Conjecture for Stable Minimal Sur-
faces). If N is a Riemannian 3-manifold with nonnegative Ricci curvature and if
M is a stable immersed minimal surface in N that is complete outside of a closed
set A of 1-dimensional Hausdorff measure 0, then M extends smoothly across A.

In particular, if N = R
3 and M is connected and embedded, then M is a plane.

We remark that there exists a stable simply connected minimal surface in hyper-
bolic 3-space H

3 (or in H
2 × R) that is complete outside of a closed set A con-

sisting of a single point; hence, Conjecture 1.6 requires an essentially nonnegative
hypothesis on the curvature of N.

2. Proofs of Theorems 1.3 and 1.4 in the Manifold Setting

We first recall a removable singularity result from [6] that we refer to as the Sta-
bility Lemma (also see [1] for this result). For the sake of being self-contained,
we repeat the proof of this result here. The proof of the Stability Lemma is moti-
vated by a similar conformal change of metric argument that was first applied by
Gulliver and Lawson in [4] and by the proof of a similar lemma in [5].

Lemma 2.1 (Stability Lemma). Let L ⊂ R
3 −{�0} be a stable orientable minimal

surface that is complete outside the origin. Then, L is a plane.

Proof. If �0 /∈ L, then L is complete and hence is a plane by the main theorem in
[2], [3], or [8]. Assume now that �0 ∈L. Let R denote the radial distance to the ori-
gin and consider the metric g̃ = 1

R2 g on L, where g is the metric induced by the
usual inner product 〈·, ·〉 of R

3. Since (R3 − {�0}, ĝ) with ĝ = 1
R2 〈·, ·〉 is isometric
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to S
2(1) × R, where S

2(1) is the unit 2-sphere, our definition of complete outside
of a point forces (L, g̃) ⊂ (R3 − {�0}, ĝ) to be complete.

We now check that (L, g) is flat. The Laplacians and Gauss curvatures of g, g̃ are
related by the equations �̃ = R2� and K̃ = R2(KL +� logR). Since � logR =
2(1 − ‖∇R‖2)/R2 ≥ 0, we have

−�̃ + K̃ = R2(−� + KL + � logR) ≥ R2(−� + KL).

Since KL ≤ 0 and (L, g) is stable, it follows that −� + KL ≥ −� + 2KL ≥ 0
and so −�̃+ K̃ ≥ 0 on (L, g̃). Since g̃ is complete, the universal covering of L is
conformally C (Fischer-Colbrie and Schoen [3]). Because (L, g) is stable, there
exists a positive Jacobi function u on L. Passing to the universal covering L̂, we
have �û = 2KL̂û ≤ 0; hence, the lifted function û is a positive superharmonic on
C and therefore constant. Thus, 0 = �u − 2KLu = −2KLu on L, which means
that KL = 0.

Assume now that M is an orientable stable minimal surface in a 3-manifold N

that is complete outside of a point p ∈N. We first prove the curvature estimate in
Theorem 1.3 in the 3-manifold N setting. In other words, the following assertion
holds.

Assertion 2.2. For all ε > 0 there exists a δ > 0 such that, for the ball W =
B(p, δ), |AM∩W |(x) d(x,p) < ε, where |A| is the norm of the second fundamen-
tal form of M.

Proof. Let ε > 0. If the assertion fails, then there exists a sequence of points
{pn}n ⊂ M that converges to p and such that |A|(pn) d(pn,p) ≥ ε. Choose a
small compact extrinsic metric ball B centered at p and of small fixed radius r0

that is the image of a fixed-size ball of radius r0 in TpN under the exponential map.
By curvature estimates for stable minimal surfaces, |AM∩B |(x) d(x,p) < C0 for
some constant C0.

Let λn = 1/d(pn,p). Consider the metrically expanded balls B(n) = λnB

of radius λnr0. When viewed in geodesic coordinates centered at the origin p in
B(n), these balls converge uniformly to R

3 as n → ∞. Define the related surfaces
M(n) = λn(B ∩ M) ⊂ B(n), which we may consider to lie in R

3. Let p̃n denote
the points λnpn ∈ S

2(1) ⊂ R
3 and assume that the sequence {p̃n}n converges to a

point q ∈ S
2(1). The surfaces M(n) have uniformly bounded second fundamental

form outside of any fixed neighborhood of the origin and so, once a subsequence
is chosen, there exists an immersed minimal surface M∞ in R

3 −{�0} that is a limit
of compact domains of M(n) all passing through the points pn and with q ∈M∞.

The surface M∞ can be chosen to satisfy the following statements:

1. for some positive constant C̃0, |AM∞|(x) d(x, �0) ≤ C̃0 and |AM∞|(q) ≥ ε;
2. M∞ is complete outside of �0;
3. M∞ is stable.

The construction of M∞ is standard, but for the sake of completeness we shall
briefly sketch the proof of its existence. Because the second fundamental forms
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of M(n)∩ (
R

3 − B
( 1

2

))
are uniformly bounded, there exists a fixed δ ∈ (

0, 1
4

)
such

that the intrinsic δ-disks BM(n)(p̃n, δ) are graphs of gradient at most 1 over their
tangent planes and are area minimizing in B(n) ⊂ R

3 (limit coordinates). A sub-
sequence of these disks converges to an area-minimizing minimal disk D(q, δ)
centered at q ∈ S

2(1) of radius δ and with |AD(p,δ)|(q) ≥ ε. Since the M(n) have
uniformly bounded second fundamental forms on compact subsets of R

3 − {�0},
the analytic disk D(q, δ) lies on a maximal minimally immersed surface M∞ ⊂
R

3 − {�0} that satisfies the curvature estimate given in item 1. Items 2 and 3 follow
from this definition of M∞ and because the M(n) have positive Jacobi functions
that, when appropriately normalized and after choosing a subsequence, yield a
positive limit Jacobi function on the limit surface M∞. However, the existence of
M∞ contradicts the Stability Lemma, which proves Assertion 2.2.

We will now apply the curvature estimate in Assertion 2.2 to describe the geometry
of M very close to p. Assume from this point on that M satisfies this curvature es-
timate but is not necessarily stable. We will prove Theorem 1.4 in the 3-manifold
N setting.

Since M ⊂ N − {p} is complete outside of p, by definition (suitably extended
to the general ambient setting) there exists a neighborhood W of p in N such that
any divergent path of finite length in M with limiting point in W has its endpoint
at p. Given ε > 0, let δ > 0 be the related radius given by Assertion 2.2. We can
assume that the extrinsic ball B(p, δ) is contained in W. Consider geodesic coor-
dinates in B(p, δ) defined out to distance δ. Next we describe the two possibilities
that may occur after choosing a possibly smaller δ.

Assertion 2.3. For any fixed τ ∈ (0,1], there is a small δ > 0 such that the
following statements hold.

1. If the extrinsic distance function d : N → [0, ∞) to the point p, restricted to a
component C of M ∩ B(p, δ), has a critical point on the interior of C, then C

is a compact disk with ∂C ⊂ ∂B(p, δ).
2. If d|C has no critical points on a component C of M ∩B(p, δ), then the angles

between the tangent planes to C and the radial geodesics in B(p, δ) centered
at p are less than τ. Furthermore, for t < δ, C ∩ ∂B(p, t) is a connected im-
mersed complete noncompact curve of geodesic curvature less than τ/t in this
sphere. In particular, C is noncompact.

Proof. Let ε = 1
4 . By Assertion 2.2, there exists a δ > 0 such that the absolute

values of principal curvatures of a point of M ∩ B(p, δ) are less than half the ab-
solute values of principal curvatures of the metric spheres in B(p, δ) centered at
p and passing through the point. It follows that the distance function d to the
point p restricted to M ∩ B(p, δ) has only critical points of index 0. In partic-
ular, if x ∈ M ∩ B(p, δ) is a critical point of d|M , then the component C(x) of
M ∩B(p, δ) containing x lies in B(p, δ)−B(p, d(x)) and away from any intrin-
sic small neighborhood of x in C(x); the tangent planes to C(x) make an angle
uniformly bounded away from π/2 with the radial geodesics. Otherwise, a small
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perturbation d̃ of d has two critical points of index 0 on C(x) and no critical points
of index 1 or 2. By elementary Morse theory, C(x) is not connected—a contradic-
tion. In particular, d|C(x) has a unique critical point and C(x) is a compact disk
with ∂C(x) ⊂ ∂B(p, δ). This proves the first item in the statement of the assertion.

The proof of the second item of Assertion 2.3 follows from a similar argument.
Note that if a component C of M ∩ B(p, δ) is almost orthogonal to the spheres
∂B(p, t), 0 < t < δ, then the curvature estimate in Assertion 2.2 gives the desired
estimate on the geodesic curvature and connectedness of C ∩ ∂B(p, t). Assume
now that dC has no critical points.

If the component C were compact, then d|C would have a minimal value at an
interior point of C; this follows from our initial assumptions that B(p, δ) ⊂ W

and M ∩ W is “complete” except at p. Since we are assuming that d|C has no
critical points, C is noncompact. Assume that δ is chosen sufficiently small that
both B(p, 2δ) ⊂ W and the same curvature estimate hold in this bigger ball. Let
C̃ be the related component of M ∩B(p, 2δ). It follows that d|C̃ also has no criti-
cal points since C̃ is not compact. This substitution for a larger domain—coupled
with our discussion of the previous case, where d when restricted to a component
had a critical point—shows that the angle that C makes with the radial geodesics is
small with a better estimate when the second fundamental form of M has a better
curvature estimate. This better curvature estimate is the one given byAssertion 2.2.
It follows that if, at a point q very close to p, the component C makes an angle
greater than τ with the radial lines, then the component C(q) of C ∩ B(p, |q|) is
compact and so d|C(q) has a local minimum. This means that d|C has a critical
point, which contradicts our hypothesis for C. This completes the proof of Asser-
tion 2.3.

We now complete the proof of Theorem 1.4 in the Riemannian setting. By Asser-
tion 2.3, a component C of M ∩ B(p, δ) either satisfies item 1 in the statement of
Theorem 1.4 (with R

3 replaced by N) or we may assume that C is almost orthogo-
nal to ∂B(p, t) for t ∈ (0, δ). In particular, C is either diffeomorphic to S

1× [0, ∞)

(when ∂C is compact) or to R × [0, ∞) (when ∂C is noncompact). If ∂C is com-
pact, then a standard application of the proof of the monotonicity formula for area
(see e.g. the beginning of the proof of Theorem 5.1 in [6]) shows that the lengths
of the curves C ∩ ∂B(p, t), 0 < t ≤ 1, are less than C0/t for some constant C0. If
g denotes the metric on C, then the conformally related and complete metric g̃ =
1
d 2 g on C is a complete metric with linear area growth, where d is the distance to
p. This implies that C is conformally a punctured disk.

If ∂C is not compact, then a similar argument shows that the metric g̃ = 1
d 2 g

is complete and asymptotically flat away from its boundary, ∂C has bounded geo-
desic curvature in the new metric, and (C, g̃) has quadratic area growth. It follows
that (C, g̃) embeds in a complete surface of quadratic area growth and so C has full
harmonic measure. Since C is simply connected with one boundary component,
it is conformally the closed unit disk D with a connected closed set of measure 0
removed from its boundary. Since the connected set in ∂D has measure 0, it must
consist of a single point. Thus, C is conformally equivalent to {(x1, x2) | x2 ≥ 0}.
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In the case where C is conformally D−{�0} with finite area (from the monotonic-
ity formula), standard regularity theorems for conformal harmonic maps imply that
the proper mapping f : D − {�0} = C → B(p, δ) − {p} extends smoothly across
p to a conformal branched harmonic map f : D → B(p, δ). This completes the
proof of Theorem 1.4 in the manifold setting N.

References

[1] T. H. Coding and W. P. Minicozzi II, The space of embedded minimal surfaces of
fixed genus in a 3-manifold V; Fixed genus, preprint, math.DG/0509647, 2005.

[2] M. do Carmo and C. K. Peng, Stable complete minimal surfaces in R
3 are planes,

Bull. Amer. Math. Soc. 1 (1979), 903–906.
[3] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces

in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980),
199–211.

[4] R. Gulliver and H. B. Lawson, The structure of stable minimal hypersurfaces near a
singularity, Geometric measure theory and the calculus of variations (Arcata, 1984),
Proc. Sympos. Pure Math., 44, pp. 213–237, Amer. Math. Soc., Providence, RI, 1986.

[5] W. H. Meeks III, J. Pérez, and A. Ros, The geometry of minimal surfaces of finite
genus II; nonexistence of one limit end examples, Invent. Math 158 (2004), 323–341.

[6] , Embedded minimal surfaces: Removable singularities, local pictures
and parking garage structures, the dynamics of dilation invariant collections
and the characterization of examples quadratic curvature decay, preprint,
http: //www.ugr.es/ local /jperez /papers/papers.htm.

[7] W. H. Meeks III and H. Rosenberg, The minimal lamination closure theorem, Duke
Math. J. 133 (2006), 467–497.

[8] A. V. Pogorelov, On the stability of minimal surfaces, Dokl. Akad. Nauk SSSR 260
(1981), 293–295.

[9] A. Ros, One-sided complete stable minimal surfaces, J. Differential Geom. 74
(2006), 69–92.

[10] R. Schoen, Estimates for stable minimal surfaces in three dimensional manifolds,
Ann. of Math. Stud., 103, pp. 111–126, Princeton Univ. Press, Princeton, NJ, 1983.

Mathematics Department
University of Massachusetts
Amherst, MA 01003

bill@math.umass.edu


