
Michigan Math. J. 55 (2007)

Limiting Weak-type Behavior
for the Riesz Transform and

Maximal Operator When λ →∞
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1. Introduction

The goal of this paper is to analyze the limiting weak-type behavior of important
operators in harmonic analysis when they act on singular measures in R

n. Consider
the j th Riesz transform Rj defined on appropriate functions by

Rjf(x) = 

(
n+1

2

)
π(n+1)/2

p.v.
∫

Rn

xj − yj

|x − y|n+1
f(y) dy. (1.1)

Here Rj is bounded from Lp(Rn) into itself for 1 < p < ∞ and from L1(Rn) into
the weak-L1 space L1,∞(Rn). That is, there exist constants Cp for each 1 < p <

∞ and C1 such that, for all functions f ∈Lp(Rn),

‖Rjf ‖p ≤ Cp‖f ‖p; (1.2)

moreover, for all f ∈L1(Rn) and λ > 0,

λm{x ∈R
n : |Rjf(x)| > λ} ≤ C1‖f ‖1. (1.3)

These are referred to as the strong-type (p, p) and weak-type (1,1) inequalities,
respectively. See Stein [12] for the basic theory.

The strong-type (p, p) constant Cp is

Cp =
{

tan
(

π
2p

)
if 1 < p ≤ 2,

cot
(

π
2p

)
if 2 ≤ p < ∞.

This is proved by Pichorides [11] for n = 1 and completed by Iwaniec and Martin
[5] for higher dimensions. When n = 1, the weak-type constant C1 is

C1 =
1+ 1

32 + 1
52 + 1

72 + 1
92 + · · ·

1− 1
32 + 1

52 − 1
72 + 1

92 − · · ·
.

This is proved by Davis [2] and Baernstein [1]. However, for higher dimensions
the question remains open. One conjecture regarding the weak-type constant is
that it is independent of dimension n. A recent result [6] proved by the present
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author is that the constant C1 is at worst logarithmic with respect to n. The proof
entails a modification of the Calderón–Zygmund theory; however, an observation
leads to the following precise limit result, proved in [7] for singular integral oper-
ators of convolution type.

Theorem 1.1. Let f ∈L1(Rn). Then

lim
λ→0

λm{x ∈R
n : |Rjf(x)| > λ} = 2

πn

∣∣∣∣
∫

Rn

f(x) dx

∣∣∣∣. (1.4)

It is easy to check that the limit is 0 when λ → ∞. However, as shown in this
paper, the situation changes dramatically when the Riesz transforms are consid-
ered as operators on singular measures. In particular, the next theorem is proved
in Section 2. The notations and facts needed are as follows:

1. Let k be an integer less than n, and let ν denote a singular measure supported
on a k-dimensional Lipschitz surface 
 (or a countable union of surfaces). In
general, dν = fdHk


 , where Hk

 is the k-dimensional Hausdorff measure re-

stricted to 
.

2. A countable collection of sets {Ai}i in R
n is said to be Hk-disjoint if

Hk(Ai ∩ Aj) = 0 whenever i �= j.

3. An arbitrary Lipschitz surface is locally a Lipschitz graph and hence may be
decomposed into a countable union of graphs that are Hk-disjoint.

4. The constant in front of the Riesz transform integral is denoted by Cn.

5. The Riesz transform is defined on the measure ν by

Rjν(x) = Cn

∫



xj − yj

|x − y|n dν(y).

Observe that, when k < n, this is a usual integral and is not principle valued.
6. The vector Riesz transform R is defined as Rν(x) = (R1ν(x), . . . , Rnν(x)).

Theorem 1.2. Let 
 = ⋃
i 
i be the countable union of k-dimensional Lipschitz

surfaces that are Hk-disjoint. Let dνi = fidHk

i

, where fi ∈L1(
i), be a measure
supported on 
i satisfying ‖ν‖1 = ∑

i‖νi‖1 < ∞. Then

lim
λ→∞ λm{x ∈R

n : |Rν(x)| > λ} = Cn,k‖ν‖1, (1.5)

where

Cn,k = 1√
π



(
n−k+1

2

)


(
n−k+2

2

) . (1.6)

Thus the behavior of the weak-type inequality at both ends (λ = 0 and λ = ∞)

are now precisely known (for certain classes of measures). The motivation for
Theorem 1.2 comes from a theorem of Varopolous [14].

Theorem 1.3. There exists a c > 0 such that, for any finite Radon measure ν,

lim inf
λ→∞ λm{x ∈R

n : |Rν(x)| > λ} ≥ c‖νs‖1, (1.7)

where νs is the singular part of ν.
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Varopolous’s theorem is true for a larger class of measures. Thus the question for
exact constant c remains open in the general case although (1.6) is one candidate at
least when the dimension of ν is k. The techniques used to prove Theorem 1.2 de-
pend on the tangency properties available for Lipschitz surfaces and hence cannot
be directly extended to arbitrary measures.

On the other hand, they are not specific to the Riesz transform and can be used
to prove analogous results for other operators that occur in harmonic analysis. The
key property required is that an operator T map to a function Tν that has a spe-
cific approach rate near the surface 
. In general, let ϕ : [0,∞) → [0,∞) be an
increasing surjective function and let T satisfy two conditions as follows.

1. The weak-type inequality:

sup
λ>0

ϕ(λ)m{x ∈R
n : |Tν(x)| > λ} ≤ C1

∫



ϕ(|f(x0)|) dH
(x0), (1.8)

with C1 depending only on n and k and not on 
.

2. The limit equality: for a.e. x0 ∈
,

lim
t→0

γn−k t
n−kϕ(|Tν(x0 + t �n)|) = C

ϕ(|f(x0)|)
(sin �)n−k

, (1.9)

where � is the smallest angle that �n (see Section 2(2)) makes with the tangent
space at x0 and where γn−k is the volume of the unit ball in R

n−k.

Then

lim
λ→∞ϕ(λ)m{x ∈R

n : |Tν(x)| > λ} = C

∫



ϕ(|f(x0)|) dH
(x0). (1.10)

The Riesz transform and the Hardy–Littlewood maximal operator (described after
Remark 1.1) satisfy conditions (1.8) and (1.9) with ϕ(λ) = λ. The Riesz and Bessel
potentials (see Grafakos [4, pp. 414–420]) Is and Js satisfy (1.9) when 0 < s <

n− k and ϕ(λ) = λp for p = (1− s/(n− k))−1. At present, however, it is known
only that they satisfy (1.8) when 
 is a Lipschitz graph and with C1 depending
on the Lipschitz constant. Hence the main result (1.10) is not yet known for these
operators in full generality.

Remark 1.1. This question of whether the weak-type inequality is independent
of the Lipschitz constant is of independent interest and should be explored for such
operators in general.

The Hardy–Littlewood centered maximal operator M acts on a measure ν by

Mν(x) = sup
r>0

|ν|(B(x, r))

m(B(x, r))
, (1.11)

where B(x, r) is the ball centered at x with radius r. This sublinear operator is
strong-type (p, p) and weak-type (1,1) and satisfies results analogous to (1.4) and
(1.7). The best constants in these cases are not known in general. The exception is
when n = 1, for which case the weak-type constant is found by Melas [10]. Stein
and Stromberg [13] have shown that the strong-type (p, p) constant is indepen-
dent of dimension n and that the weak-type (1,1) constant is at worst linear in n. It
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is an open question whether the latter is independent of n. The following theorem,
analogous to Theorem 1.2, is proved for the maximal operator in Section 3.

Theorem 1.4. Let 
 = ⋃
i 
i be the countable union of k-dimensional Lipschitz

surfaces that are Hk-disjoint. Let dνi = fidHk

i

(where 0 ≤ fi ∈ L1(
i)) be a

measure supported on 
i and satisfying ‖ν‖1 =
∥∥∑

i νi

∥∥
1 < ∞. Then

lim
λ→∞ λm{x ∈R

n : Mν(x) > λ} = C̃n,k‖ν‖1, (1.12)

where

C̃n,k =
(
γn−k

√
n− k

n−k)(
γk

√
k

k)
γn

√
n

n
. (1.13)

Besides finding the approach rate to 
 (done in Lemmas 2.1 and 3.1), there are two
important approximations that simplify the proofs of these theorems. First, since
every Lipschitz surface is locally a Lipschitz graph, it suffices to prove the the-
orems for countable unions of Lipschitz graphs. Second, it suffices to prove the
theorem for a single Lipschitz graph and then use the weak-type inequality avail-
able for these operators to extend to the general case. These arguments are given
for the Riesz transform.

2. Proof of Theorem 1.2

The proof proceeds in five steps as follows.
(1) Assume f ∈Cc(
) and 
 is a Lipschitz graph; in other words, assume there

exists a % : D ⊂ R
k → 
 ⊂ R

n such that %(x) = (x, φ(x)), where φ : D →
R

n−k is Lipschitz. Without loss of generality, assume that D = R
k. Note that D

may be considered as R
k × {0}n−k.

(2) Assume x ∈R
k is a point where D%(x) exists and hence the tangent plane

(%(x) exists at the point %(x). Let N⊥ = {0}k ×R
n−k and S n−k−1 = S n−1∩N⊥.

The symbol �n denotes any element of S n−k−1.

(3) Let
t1
λ = inf{t > 0 : |Rν(%(x)+ t �n)| < λ}

and
t 2
λ = sup{t > 0 : |Rν(%(x)+ t �n)| > λ}.

For i ∈ {1, 2}, let

Ei
λ(x) = {%(x)+ t �n : �n∈ S n−k−1 and 0 < t < t iλ(x, �n)}

and Eλ = {x ∈R
n : |Rν(x)| > λ}. It follows from Fubini’s theorem that∫

Rk

mn−k(E
1
λ(x)) dx ≤ mn(Eλ) ≤

∫
Rk

mn−k(E
2
λ (x)) dx

and

mn−k(E
i
λ(x)) =

∫
S n−k−1

∫ t i
λ
(x,�n)

0
r n−k−1 dr dσ(�n)

=
∫
S n−k−1

t iλ(x, �n)n−k

n− k
dσ(�n).
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It is an easy exercise to show that Rν is continuous away from 
 and hence
|Rν(%(x)+ t iλ(x, �n)�n)| = λ whenever t iλ(x, �n) > 0. Therefore,

λmn−k(E
i
λ(x)) =

1

σn−k

∫
S n−k−1

H i
λ(x, �n) dσ(�n),

where H i
λ(x, �n) = γn−k t

i
λ(x, �n)n−k|Rν(%(x)+ t iλ(x, �n)�n)|.

It can also be shown that H i
λ is bounded and compactly supported; therefore, if

the limit limλ→∞ H i
λ(x, �n) exists for all �n ∈ S n−k−1 and almost every x, then the

Lebesgue dominated convergence theorem implies

lim
λ→∞ λm(Eλ) = lim

λ→∞

∫
Rk

λmn−k(E
i
λ(x)) dx

= lim
λ→∞

∫
Rk

1

σn−k

∫
S n−k−1

H i
λ(x, �n) dσ(�n) dx

=
∫

Rk

1

σn−k

∫
S n−k−1

lim
λ→∞H i

λ(x, �n) dσ(�n) dx.

Since t iλ(x, �n) decreases to 0 as λ →∞, it suffices to show that

lim
t→0

γn−k t
n−k|Rν(%(x)+ t �n)|

exists and equals the appropriate limit.
It is proved in Lemmas 2.1 and 2.2 that

1

σn−k

∫
S n−k−1

lim
λ→∞H i

λ(x, �n) dσ(�n) = Cn,k|f(%(x))|J%(x), (2.1)

where J%(x) is the Jacobian of % at x and where Cn,k is given in (1.6). This com-
pletes the proof of the theorem when f ∈Cc(
) and 
 is a Lipschitz graph, since∫

Rk|f(%(x))|J%(x) dx = ‖ν‖1.

(4) Let f ∈ L1(
) and g ∈ Cc(
). Let νf and νg be the associated measures.
Define

τλ(ν) = λm(x ∈R
n : |Rν(x)| > λ) (2.2)

for any measure ν. Then, for each c ∈ (0,1), by the weak-type inequality for the
Riesz operator (see Mattila [9, Thm. 20.26, p. 301]) it follows that

τλ(νf) ≤ 1

c
τcλ(νg)+ 1

1− c
τ(1−c)λ(νf−g)

≤ 1

c
τcλ(νg)+ C̃

1− c
‖f − g‖L1(
).

Since Cc(
) is dense in L1(
) and since c ∈ (0,1) is arbitrary, the proof in
part (3) implies

lim sup
λ→∞

τλ(νf) ≤ Cn,k‖νf‖1.
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The other inequality Cn,k‖νf‖1 ≤ lim infλ→∞ τλ(νf) is obtained similarly. There-
fore, as required,

lim
λ→∞ τλ(νf) = Cn,k‖νf‖1 for all f ∈L1(
).

(5) The theorem is proved when 
 is a Lipschitz graph. Now consider 
 =⋃
i 
i as in the statement of the theorem. Denote τλ as in (2.2) and define τ(µ) =

limλ→∞ τλ(µ) for measure µ whenever the limit exists. The proof in part (4)
implies that (1.5) holds for each νi. Now observe that, for c ∈ (0,1),

τλ

( ∞∑
i=1

νi

)
≤ 1

c
τcλ

( N∑
i=1

νi

)
+ 1

1− c
τ(1−c)λ

( ∞∑
i=N+1

νi

)
,

and similarly

τλ

( N∑
i=1

νi

)
≤ 1

c
τcλ

( ∞∑
i=1

νi

)
+ 1

1− c
τ(1−c)λ

( ∞∑
i=N+1

νi

)
.

It follows from the weak-type inequality satisfied by R that

τ(ν) = lim
N→∞ τ

( N∑
i=1

νi

)
.

Hence it suffices to prove the theorem when 
 = ⋃N
i=1 
i is a finite union of Lip-

schitz graphs.
The proof proceeds by induction. Assume the theorem holds when 
 is

⋃N−1

graph pieces. Let ν = ∑N
i=1 νi and η = ∑N−1

i=1 νi. The objective is to prove

τ(ν) = τ(η)+ τ(νN),

which in turn equals Cn,k(‖η‖1 + ‖νN‖1) = Cn,k‖ν‖1 as required.
Let Ek =

{
x ∈
N : dist

(
x,

⋃N−1
i=1 
i

)
> 1

k

}
. Then

∞⋃
k=1

Ek = 
N

∖ (

N ∩

N−1⋃
i=1


i

)
and νN

(⋃
k

Ek

)
= νN(
N) = ‖νN‖1.

Let ν k
N = νN |Ek

. Suppose τ(η+ ν k
N ) exists and is equal to τ(η)+ τ(ν k

N ) for each
k. Then

τ(ν) = lim
k→∞ τ(η + ν k

N )

= τ(η)+ lim
k→∞ τ(ν k

N )

= τ(η)+ τ(νN).

It therefore suffices to assume that dist
(

N ,

⋃N−1
i=1 
i

)
> ε for some ε > 0.

Now consider

3
ε/k

1 = {
x ∈R

n : dist
(
x,

⋃N−1
i=1 
i

)
< ε

k

}
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and

3
ε/k

2 = {
x ∈R

n : dist(x, 
N) < ε
k

}
.

If x ∈R
n \ (3ε/k

1 ∪3
ε/k

2 ), then

|Rν(x)| ≤ c‖ν‖1

(ε/k)n
.

Hence, for λ large, Eλ = {x ∈R
n : |Rν(x)| > λ} ⊂ 3

ε/k

1 ∪3
ε/k

2 .

Let Cε = c‖ν‖1/((1− 1/k)ε)n. If x ∈3
ε/k

1 then

|Rν(x)| − Cε ≤ |Rη(x)| ≤ |Rν(x)| + Cε,

and if x ∈3
ε/k

2 then

|Rν(x)| − Cε ≤ |RνN(x)| ≤ |Rν(x)| + Cε.

This shows that, for λ large,

Eλ ≈ {x ∈R
n : |Rη(x)| > λ} � {x ∈R

n : |RνN(x)| > λ},
from which it follows that τ(ν) exists and equals τ(η)+ τ(νN) as required. Thus
τ(ν) = Cn,k‖ν‖1 when ν is supported on a countable union of Lipschitz surfaces
and is absolutely continuous with respect to the Hausdorff k-measure Hk. This
completes the proof of the theorem.

The next step is to prove the lemmas required to confirm (2.1). Let T be a singular
integral operator with kernel K(x, y) = 5(x− y)/|x− y|n. Assume that 5(x) as
defined on R

n \{�0} is homogeneous of degree 0—that is, 5(y) = 5(y/|y|)—and
satisfies

∫
S n−1 5(e) dσ(e) = 0. Assume also that 5 is bounded and continuous

on S n−1.

Given x0 ∈R
k × {0}n−k and unit vector �n ∈ {0}k × R

n−k, let � be the smallest
angle that �n makes with the tangent space (%(x0). Let (̃%(x0) = (%(x0) −%(x0)

be the tangent plane parallel to (%(x0) and passing through the origin. With a mild
abuse of notation, let µ
 and µ(%

denote the k-dimensional Hausdorff measure
restricted to 
 and (%(x0) respectively.

Lemma 2.1. Let x0 ∈R
k be a point where D%(x0) exists and has rank k. Let �

be the smallest angle that �n makes with the tangent space (̃%(x0). Then the fol-
lowing statements hold.

(1)

lim
t→0

t n−k|Tν(%(x0)+ t �n)| = |Tµ(̃%
(�a)|

sin(�)n−k
|f(%(x0))|, (2.3)

where

�a = �n− Proj(̃%
(�n)

| �n− Proj(̃%
(�n)| . (2.4)
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(2) If T = Rj , the j th Riesz transform, then

lim
t→0

γn−k t
n−k|Rjν(%(x0)+ t �n)| = Cn,k aj

sin(�)n−k
|f(%(x0))|, (2.5)

where aj is the j th component of the vector �a defined in (2.4) and Cn,k is the
constant defined in (1.6).

(3) If R is the vector Riesz transform, then

lim
t→0

γn−k t
n−k|Rν(%(x0)+ t �n)| = Cn,k

sin(�)n−k
|f(%(x0))|. (2.6)

Proof. Without loss of generality, the following assumptions are made.

• Since the final result is independent of the position of 
 in R
n, it suffices to as-

sume x0 = %(x0) = �0 and (̃%(x0) = (%(x0) = R
k × {0}n−k := (; therefore,

�n is any unit vector not on (.

• f is continuous and compactly supported on 
 and Hk(
) < ∞. The approxi-
mation arguments in the proof of Theorem 1.2 extend this to the general setting.

Using these and the continuity assumption on f , analysis shows that (2.3) is re-
duced to proving

lim
t→0

t n−k|Tµ
(t �n)| = lim
t→0

t n−k|Tµ((t �n)|. (2.7)

Given ε > 0, let Aε = 
 ∩ B(0, ε) and 3ε = Proj((Aε), the orthogonal pro-
jection onto (. Observe that

lim
t→0

t n−k|Tµ
(t �n)| = lim
t→0

t n−k

∣∣∣∣
∫
Aε

5(t �n− y)

|t �n− y|n dµ
(y)

∣∣∣∣,
since |5(t �n− y)|/|t �n− y|n < cε−n for y ∈
 \Aε and ‖µAε

‖1 < ∞. If % is the
Lipschitz graph of Aε on 3ε, define %t : 1

t
3ε → 1

t
Aε by %t(x) = (x, t−1φ(tx))

as the Lipschitz graph of t−1Aε. Then the Jacobian satisfies J%t(x) = J%(tx):

t n−kTµAε
(t �n)| = t n−k

∫
3ε

5(t �n−%(x))

|t �n−%(x)|n J%(x) dx

=
∫
t−13ε

5(�n−%t(x))

| �n−%t(x)|n
J%(tx) dx

=
∫
t−13ε

[K(�n, %t(x))−K(�n, x)]J%(tx) dx (2.8)

+
∫
t−13ε

K(�n, x)J%(tx) dx. (2.9)

Because % is Lipschitz, J% is bounded in 3ε; also, J%(0) = 1 by construction.
Consider the second term (2.9):∫

t−13ε

K(�n, x)J%(tx) dx =
∫
t−13ε

K(�n, x)(J%(tx)− J%(0)) dx

+ J%(0)
∫
t−13ε

K(�n, x) dx,
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which converges to
∫

Rk K(�n, x) dx = Tµ((�n) as t → 0. To prove this, let
Bk(0, R) = ( ∩ B(0, R). Given ε̃ > 0, there exists large R such that∫

Rk\Bk(0,R)

K(�n, x) dx < ε̃.

Thus, for t small enough,∫
t−13ε

|K(�n, x)||J%(tx)− J%(0)| dx

< 2‖J%‖∞ ε̃ + ‖K(�n, ·)‖∞
∫
Bk(0,R)

|J%(tx)− J%(0)| dx

→2‖J%‖∞ ε̃ as t → 0 (since J%∈L1
loc(R

k )).

Since ε̃ is arbitrary, it follows that

lim
t→0

∫
t−13ε

K(�n, x)J%(tx) dx = Tµ((�n). (2.10)

The other term (2.8),∫
t−13ε

[K(�n, %t(x))−K(�n, x)]J%(tx) dx,

is bounded up to constants by∫
t−13ε

|K(�n, %t(x))−K(�n, x)| dx

≤
∫
t−13ε

|5(�n−%t(x))−5(�n− x)|
| �n−%t(x)|n dx (2.11)

+ ‖5‖∞
∫
t−13ε

∣∣∣∣ 1

| �n−%t(x)|n
− 1

| �n− x|n
∣∣∣∣ dx. (2.12)

Both (2.11) and (2.12) go to 0. To see this, let Sϕ = {x ∈ R
n : angle x makes

with ( is less than ϕ}. Because of tangency at �0, for each ϕ > 0 there exists an
ε > 0 such that Aε = 
 ∩ B(0, ε) ⊂ Sϕ; hence t−1Aε ⊂ Sϕ for all t > 0. This
means that φ(y)/|y| → 0 as |y| → 0. Observe that, for x ∈(,

| �n− x| − |t−1φ(tx)| ≤ |�n−%t(x)| ≤ |�n− x| + |t−1φ(tx)|.
Since �n is a fixed vector not on (, there exists a c > 0 such that |x| ≤ c| �n − x|
for all x ∈(. Hence, for x ∈ t−13ε,

| �n− x|(1− c tan(ϕ)) ≤ |�n−%t(x)| ≤ |�n− x|(1+ c tan(ϕ)),

where ϕ → 0 as ε → 0. Choose ε small so that 1
2 < c tan(ϕ) < 1. Then

| �n− x|
2

≤ |�n−%t(x)| ≤ |�n− x|
2

for all x ∈ t−13ε. In short, | �n − x| ≈ |�n −%t(x)| for x in the domain of %t. An
application of this fact and the Lebesgue dominated convergence theorem shows
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that the difference term (2.11) goes to 0 as t goes to 0; and (2.12) is proved simi-
larly. In conclusion, lim t→0 t n−kTµ
(t �n) = Tµ((�n).

Recall that �a = (�n− Proj((�n))/| �n− Proj((�n)|. Then

Tµ((�n) =
∫
(

K(�n− Proj((�n), y) dµ((y)

= 1

| �n− Proj((�n)|n−k

∫
(

K(�a, y) dµ((y)

= 1

sin(�)n−k
Tµ((�a).

This completes the proof of part (1) of the lemma.
Now consider the Riesz transform Rj with kernel K(x, y) = Cn(xj − yj )/

|x − y|n+1. By part (1),

lim
t→0

t n−kRjµ
(t �n) = Cn

sin(�)n−k

∫
(

aj − yj

|a − y|n+1
dµ((y)

= Cnaj

sin(�)n−k

∫
Rk

1

(1+ |y|2)(n+1)/2
dy,

since �a is perpendicular to ( and yj is an odd function when restricted to (. To
obtain the constant Cn,k in (1.6), note first (see Jones [8, p. 314]) that∫

Rk

1

(1+ |y|2)(n+1)/2
dy = √

π
k


(
n−k+1

2

)


(
n+1

2

) ,

and then sort this with corresponding representations for Cn and γn−k.

For part (3), consider the vector Riesz transform R. Then

lim
t→0

t n−k|Rµ
(t �n)| =
( n∑

j=1

(
lim
t→0

t n−k|Rjµ
(t �n)|
)2

)1/2

= Cn,k

sin(�)n−k
.

This completes the proof of the lemma.

It follows from Lemma 2.1 and what was proved before it that

lim
λ→∞ λm(Eλ) =

∫
Rk

1

σn−k

∫
S n−k−1

lim
λ→∞H i

λ(x, �n) dσ(�n) dx

= Cn,k

∫
Rk

f(%(x))

(
1

σn−k

∫
S n−k−1

1

sin(�)n−k
dσ(�n)

)
dx.

The following lemma completes the proof of Theorem 1.2. Recall that

• % is the Lipschitz map from R
k × {0}n−k → 
,

• (%(x) is the tangent k-space to 
 at %(x),
• � is the smallest angle that the fixed vector �n∈ {0}k ×R

n−k makes with (%(x),
and

• J%(x) is the Jacobian of % at x.
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Lemma 2.2.

J%(x) = 1

σn−k

∫
S n−k−1

1

sin(�)n−k
dσ(�n).

Proof. If �̃ = π

2 − �, then 1
sin �

=
√

1+ tan2 �̃. The claim is that tan �̃ =
|∇(φ · �n)(x)|, which implies

1

sin �
=

√
1+ |∇(φ · �n)(x)|2. (2.13)

To prove this claim, let P1 be the orthogonal projection of R
n onto (%(x) and let

P2 be the orthogonal projection onto R
k × {0}n−k. It is readily observed that � =

∠[�n, P1(�n)] and �̃ = ∠[P1(�n), P2 � P1(�n)], where ∠[v, w] denotes the angle
between the vectors v and w. Since D%(x) = (x, Dφ(x)), it follows that the
minimal angle � occurs when

(�e, �n) · (D%(x) · �e) = 1+ �n ·Dφ(x) · �e
is maximized over �e ∈ S k−1 × {0}n−k. But �n · Dφ(x) · �e = ∇(φ · �n)(x) · �e is
maximized when �e = ∇(φ · �n)(x)/|∇(φ · �n)(x)|. The triangle determined by the
vectors �e and D%(x) · �e = (�e, |∇(φ · �n)(x)| �n) has the acute angle �̃, and tan �̃ =
|∇(φ · �n)(x)| as required. Notice further that

∇(φ · �n)(x) = [�nT ·Dφ(x0)]
T = Dφ(x)T · �n,

where T denotes the transpose of the matrix. Therefore, Lemma 2.2 can be rewrit-
ten as

J%(x) = 1

σn−k

∫
S n−k−1

√
1+ |Dφ(x)T · �n|2

n−k

dσ(�n). (2.14)

The usual formulation of the Jacobian of a graph of a function agrees with (2.14)
when k = n− 1. The lemma is proved by induction, as follows.

Let L : R
k → R

n−k be a linear map and let L̃ : R
k → R

n be the graph of L

defined by L̃�v = (�v, L�v). Let Ik and In−k be the k × k and (n − k) × (n − k)

identity matrices, respectively. There are two equivalent ways of formulating the
Jacobian [|L̃|] of L̃. The first is as the stretch factor of the action of L̃ on the unit
ball Bk(0,1) ⊂ R

k; that is,

[|L̃|] = Hk(L̃(Bk(0,1)))

γk

. (2.15)

By an orthogonal transformation A : R
n → R

n with determinant 1, the image of
L̃ can be rotated to R

k × {0}n−k in such manner that

A

(
L̃ · �e
|L̃ · �e|

)
= �e

for all �e ∈ S k−1 × {0}n−k. Let G = A � L̃(Bk(0,1)). Then

G = {
t�e ∈R

k × {0}n−k : �e ∈ S k−1 and 0 ≤ t <
√

1+ |L · �e|2 }
.

Since the Hk measure is invariant under A, definition (2.15) is equivalent to
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[|L̃|] = 1

σk

∫
S k−1

√
1+ |L · �e|2 k

dσ(�e). (2.16)

Observe that (2.14) is the dual version of (2.16).
The second formulation of the Jacobian [|L̃|] is as the determinant of the sym-

metric component of L̃; that is,

[|L̃|] = det[L̃∗ � L̃] = det[Ik + L∗ � L], (2.17)

where L∗ is the adjoint of L. The dual version of this determinant corresponding
to (2.14) is det[In−k + L � L∗ ]. Hence the lemma is proved if

det[Ik + L∗ � L] = det[In−k + L � L∗ ]. (2.18)

The proof is by induction on dimension n. The case n = 2 follows because
(2.18) is already known to hold when k = n − 1 for all n. Assume the identity
holds for n and all k < n. For dimension n + 1, if 2k < n + 1 then (following
an orthogonal transformation on L) L may be assumed to map into R

k × {0}n−2k.

This allows reduction of the problem to a smaller-dimensional case for which the
induction hypothesis applies. The case 2k > n+1 is also implicit because it is the
dual case (L̃∗ : R

n+1−k → R
n+1 whenever L̃ : R

k → R
n+1). Finally, in the spe-

cial case 2k = n+ 1, equality follows from a simple algebraic proof.

Note as a special case of (2.18) that det[In + �b∗ · �b] = 1+ |�b|2 for �b ∈ R
n. The

identity should have generalizations and applications elsewhere.

3. Proof of Theorem 1.4

It suffices to prove the theorem for 
 a Lipschitz graph above R
k. The general

case follows by an approximation that uses the fact that M is a weak-type (1,1)
operator over finite Borel measures.

Let % : D ⊂ R
k → 
 ⊂ R

n be such that %(x) = (x, φ(x)), where φ : D →
R

n−k is Lipschitz. Without loss of generality, assume that D = R
k. Observe that

D may be considered as R
k × {0}n−k. Let Eλ = {x ∈ R

n : |Mν(x)| > λ}. Then
repeating the arguments of the proof of Theorem 1.2 leads to

lim
λ→∞ λm(Eλ) =

∫
Rk

1

σn−k

∫
S n−k−1

lim
t→0

H(t, x, �n) dσ(�n) dx,

where H(t, x, �n) = γn−k t
n−k|Mν(%(x) + t �n)|. The next lemma shows that this

lim t→0 H(t, x, �n) = C̃n,kf(%(x))/sin(�)n−k, where � is the angle �n makes with
(%(x) and C̃n,k is given in (1.13). This fact and an application of Lemma 2.2 yield
the final result.

Lemma 3.1. For almost every x ∈R
k and for each �n∈ {0}k × S n−k−1, the limit

lim
t→0

γn−k t
n−kMν(%(x)+ t �n) = C̃n,kf(%(x))

sin(�)n−k
, (3.1)

where � is the smallest angle that the vector �n makes with the tangent plane (%(x)

and where C̃n,k is the constant given in (1.13).
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Proof. Suppose x ∈ R
k \ supp(f � %). Then Mν is bounded in a neighborhood

of %(x) and so the limit is 0 as required. Since the boundary of the support has
zero k-Hausdorff measure, assume that f(%(x)) > 0. Let µ
 be the k-Hausdorff
measure restricted to 
; that is, let µ
 = Hk


. The continuity of f can be used to
show that it suffices to assume f ≡ 1 on 
. Hence the problem reduces to proving

lim
t→0

γn−k t
n−kMµ
(%(x)+ t �n) = C̃n,k

sin(�)n−k
. (3.2)

The following notation is used in the proof.

• The Lipschitz map % is not considered for the rest of the lemma’s proof. There-
fore, assume without loss of generality that x = %(x) = 0

¯
and the tangent

space (%(x) = R
k × {0}n−k := (. This means that �n is some unit vector that

makes a minimal angle � with R
k×{0}n−k. Furthermore, let xt = %(x)+ t �n =

t �n and t ′ = dist(xt , () = t sin �.

• S(ϕ, x) = {y ∈R
n : the angle that y − x makes with (%(x) is less than ϕ}.

• rt = inf{r > 0 : Mµ
(%(x)+ t �n) = µ
(B(%(x)+ t �n, rt ))/γnr
n
t }.

The approach behavior of rt as t → 0 can be split into three distinct cases.

Case 1: lim inf t→0 rt/t
′ > 1.

Case 2: lim inf t→0 rt/t
′ = 1.

Case 3: lim inf t→0 rt/t
′ < 1.

Case 1 leads to the proof of the lemma. Case 2 probably never happens; however,
the present proof shows only that if Case 2 does occur then the result agrees with
the claim of this lemma. Case 3 never happens.

Case 1: lim inf t→0 rt/t
′ = α > 1. Let α ′ = α sin � so that lim inf t→0 rt/t

′ =
α ′ > sin �. Assume the limit exists and equals α ′. Observe that

Hk(
 ∩ B(xt , rt )) = Hk

(
t

(
1

t

 ∩ B

(
xt

t
,
rt

t

)))
= t kHk

(
1

t

 ∩ B

(
x1,

rt

t

))
.

Similarly, Hk(( ∩ B(xt , rt )) = t kHk(( ∩ B(x1, rt/t)).
Since rt/t → α ′, it follows that

Hk

(
( ∩ B

(
x1,

rt

t

))
→ Hk(( ∩ B(x1, α ′)) as t → 0.

Given ε > 0, for t small it follows that

Hk

(
1

t

 ∩ B(x1, α ′ − ε)

)
≤ Hk

(
1

t

 ∩ B

(
x1,

rt

t

))

≤ Hk

(
1

t

 ∩ B(x1, α ′ + ε

))
.

Therefore,

lim
t→0

Hk

(
1

t

 ∩ B

(
x1,

rt

t

))
= Hk(( ∩ B(x1, α ′))

if and only if
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lim
t→0

Hk

(
1

t

 ∩ B(x1, α ′)

)
= Hk(( ∩ B(x1, α ′)). (3.3)

Equality (3.3) is proved next.
Since ( is the tangent space of 
 at 0, it follows that 
 is locally a graph

over (. There exists a %̃ : Bk(0, R) ⊂ ( → 
 where %̃(x) = (x, φ̃(x)) and
φ̃ : Bk(0, R) → R

n−k is Lipschitz.
Define

%̃t :
1

t
Bk(0, R) → 1

t

 by %̃t(y) = 1

t
%̃(ty) =

(
y,

1

t
φ̃(ty)

)
.

For small t > 0,

Hk

(
1

t

 ∩ B(x1, α ′)

)
=

∫
Proj(((1/t)
∩B(x1,α ′ ))

J%̃t(y) dy.

Computation gives J%̃t(y) = J%̃(ty). Therefore,

Hk

(
1

t

 ∩ B(x1, α ′)

)
=

∫
Proj(((1/t)
∩B(x1,α ′ ))

J%̃(ty) dy.

Some basic analysis shows that Proj(
(

1
t

 ∩ B(x1, α ′)

)
converges in measure to

( ∩ B(x1, α ′). Hence

lim
t→0

Hk

(
1

t

 ∩ B(x1, α ′)

)
= lim

t→0

∫
(∩B(x1,α ′ )

J%̃(ty) dy

= lim
t→0

∫
(∩B(x1,α ′ )

(J%̃(ty)− J%̃(0)) dy

+ J%̃(0)Hk(( ∩ B(x1, α ′))

= Hk(( ∩ B(x1, α ′)).

The last equality follows because J%̃∈L1
loc(B(0, r)) and J%̃(0) = 1. This proves

(3.3). Then

t n−kMµ
(xt ) = t n−k Hk(
 ∩ B(xt , rt ))

γnr
n
t

=
(

t

rt

)n−k
t k

γnr
k
t

Hk

(
1

t

 ∩ B

(
x1,

rt

t

))

→ Hk(( ∩ B(x1, α ′)
γnα ′n

≤ Mµ((x1).

Therefore,
lim sup

t→0
γn−k t

n−kMµ
(xt ) ≤ γn−kMµ((x1). (3.4)

On the other hand, if r̃ satisfies

Mµ((x1) = Hk(( ∩ B(x1, r̃ ))

γn r̃ n
,
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then

t n−kMµ
(xt ) ≥ t n−k Hk(
 ∩ B(xt , t r̃ ))

γnt nr̃ n

→Mµ((x1).

Hence
γn−kMµ((x1) ≤ lim inf

t→0
γn−k t

n−kMµ
(xt ). (3.5)

It follows from (3.4) and (3.5) that if lim inf t→0rt/t
′ > 1 then

lim
t→0

γn−k t
n−kMµ
(xt ) = γn−kMµ((x1).

Next observe that, since dist(x1, () = sin �,

Mµ((x1) = sup
r>sin �

µ((B(x1, r) ∩()

γnr n

= sup
r>sin �

γk

√
r 2 − sin2 �

k

γnr n
.

Some basic calculation shows that this is equal to C̃n,k/γn−k sin �n−k, where C̃n,k

is given in (1.6). This proves the lemma in Case 1. It remains to consider Case 2
and Case 3.

Case 2: lim inf t→0 rt/t
′ = 1. Assume the limit exists and equals 1. The proof

given in Case 1 can be used here to show that

lim inf
t→0

γn−k t
n−kMµ
(xt ) ≥ Mµ((x1).

Suppose ti → 0 and

lim
i→∞ γn−k t

n−k
i

Hk(
 ∩ B(xti , rti ))

γnr
n
ti

> (1+ ε)Mµ((x1). (3.6)

Choose 1 < α < (1+ ε)1/n. Then the left term in (3.6) is

≤ lim
i→∞ γn−k

(
ti

rti

)n

t n−k
i αn Hk(
 ∩ B(xti , αti))

γn(αti)n

≤ αnMµ((x1) < (1+ ε)Mµ((x1),

which contradicts (3.6). (The middle inequality is a consequence of Case 1.)
Therefore,

lim
t→0

γn−k t
n−kMµ
(xt ) = Mµ((x1) = C̃n,k

(sin �)n−k
,

as required.
Although it is not proved here, it is expected that Case 2 does not occur.

Case 3: lim inf t→0 rt/t
′ < 1. Let S(ϕ) := S(ϕ, 0) with S(ϕ, x) as defined

near the beginning of the proof. Choose ϕ small enough so that, for t small,
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B(xt , rt ) ∩ S(ϕ) = ∅. It is also easy to prove that, for ε small, 
 ∩ B(0, ε) =

 ∩ S(ϕ) ∩ B(0, ε). Since B(xt , rt ) ⊂ B(0, ε) for t small enough, it follows that

 ∩ B(xt , rt ) = ∅. This would imply by the definition of rt that Mµ
(xt ) = 0, a
contradiction. Hence Case 3 cannot happen, and this completes the proof of the
lemma.
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