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Extremal Discs and Analytic Continuation
of Product CR Maps

A. Scalari & A. Tumanov

Introduction

One of the essentially multidimensional phenomena in complex analysis is the
forced analytic continuation of a germ of a biholomorphic map M1 → M2 be-
tween real analytic manifolds M1 and M2 in Cn, n > 1. Poincaré (1907) observed
that a biholomorphic map sending an open piece of the unit sphere in C2 to an-
other such open piece must be an automorphism of the unit ball. This was proved
for Cn by Tanaka (1962) and then rediscovered by Alexander [A].

Pinchuk [P] proved that, if M1 and M2 are strictly pseudoconvex real analytic
nonspherical hypersurfaces and M2 is compact, then a germ of a biholomorphic
map M1 → M2 holomorphically extends along any path in M1. Ezhov, Kruzhilin,
and Vitushkin [EKV] gave a different proof of that result. Webster [W] proved
that a germ of a biholomorphic map M1 → M2 between real algebraic Levi non-
degenerate hypersurfaces in Cn is algebraic.

There is an impressive number of publications in which M1 and M2 are real
algebraic manifolds of different dimensions or higher codimension, in particular
real quadratic manifolds (see [BER]). Hill and Shafikov [HS] proved the analytic
continuation result in higher codimension where only one of the manifoldsM1 and
M2 is assumed to be algebraic. There are many more results on the problem that
we omit here (see e.g. [BER; HS] for references).

Despite the large amount of work done on the problem, there seem to be no re-
sults in the literature whereM1 andM2 are manifolds of higher codimension in Cn

and neither of them is algebraic. In this paper we consider the case in which M1 is
a real analytic strictly pseudoconvex manifold and M2 is the Cartesian product of
several compact strictly convex real analytic hypersurfaces. In particular, we give
another proof of Pinchuk’s [P] result for the case where M2 is strictly convex and
neither of the Mj is assumed to be nonspherical.

For the case in which M2 is the product of two spheres, the result was obtained
earlier by the first author [Sc]. In this paper we significantly simplify and gen-
eralize the proof given in [Sc]. Following [Sc], we use a new method based on
extremal discs in higher codimension. As by-products, we obtain some properties
of extremal discs that may be useful elsewhere.
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1. Strictly Pseudoconvex Manifolds

In this section we recall basic notation and definitions concerning real manifolds
in complex space.

Let M be a C∞-smooth real generic manifold in CN of real codimension k.

Recall that M is generic if Tp(M)+ JTp(M) = Tp(CN) for p ∈M, where T(M)

denotes the tangent bundle to M and where J is the operator of multiplication by
the imaginary unit in T(CN). Recall that the complex tangent space T c

p (M) of
M at p ∈ M is defined as T c

p (M) = Tp(M) ∩ JTp(M). If M is generic then M

is a CR manifold, which means that dimC T
c
p (M) is independent of p and that

T c(M) forms a bundle. Recall that the space T (1,0)
p (M) ⊂ Tp(M)⊗ C of com-

plex (1, 0)-vectors is defined as T (1,0)
p (M) = {

X ∈ Tp(M)⊗C : X = ∑
aj∂/∂zj

}
.

The CR-dimension dimCR(M) of M is equal to dimC T
c
p (M) = dimC T

(1,0)
p (M).

If dimCR(M) = n, then N = n+ k.

Let T ∗(CN) be the real cotangent bundle of CN. Since every (1,0)-form is
uniquely determined by its real part, we represent T ∗(CN) as the space of (1,0)-
forms on CN. Then T ∗(CN) is a complex manifold. Let N ∗(M) ⊂ T ∗(CN) be
the real conormal bundle of M ⊂ CN. Using the representation of T ∗(CN) by
(1,0)-forms, we define the fiber N ∗

p (M) at p ∈M as

N ∗
p (M) = {φ ∈ T ∗

p (C
N) : Reφ|Tp(M) = 0}.

We use the angle brackets 〈·, ·〉 to denote the natural pairing between vectors
and covectors, so we write 〈φ, ξ〉 = ∑

φjξj for their coordinate representations.
In a fixed coordinate system, we will identify φ = ∑

φj dzj ∈ T ∗(CN) with the
vector φ = (φ1, . . . ,φN) ∈ CN. Then, for φ ∈N ∗

p (M), the vector φ̄ is orthogonal
to M in the real sense; that is, Re〈φ,X〉 = 0 for all X ∈ Tp(M).

Since M is generic, it follows that locally M can be defined as ρ(z) = 0, where
ρ = (ρ1, . . . , ρk) is a smooth real vector function such that ∂ρ1 ∧ · · · ∧ ∂ρk �= 0.
The forms ∂ρj (j = 1, . . . , k) define a basis of N ∗

p (M), so every φ ∈N ∗
p (M) can

be written as φ = ∑
cj∂ρj , cj ∈ R.

For every φ ∈N ∗
p (M), we define the Levi form L(p,φ) of M at p ∈M in the

conormal direction φ = ∑
cj∂ρj as

L(p,φ)(X,Y ) = −
∑

cj∂∂̄ρj(X, Ȳ ),

where X,Y ∈ T 1,0
p (M). The form L(p,φ) is a hermitian form on T 1,0

p (M). This
definition is independent of the defining function. The forms L(p,φ) can be
regarded as components of the Np(M)-valued Levi form L(p), where N(M) =
T(CN)|M/T(M) is the normal bundle ofM ⊂ CN. Indeed,L(p)(X,X)∈Np(M)

is such an element with

Re〈φ,L(p)(X,X)〉 = L(p,φ)(X,X) for all φ ∈N ∗
p (M).

The Levi cone �p ⊂ Np(M) is defined as the convex span of the values of the Levi
form L(p); that is,

�p = Conv{L(p)(X,X) : X ∈ T 1,0
p (M), X �= 0}.
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We also need the Levi cone Hp ⊂ Tp(M). We put

Hp = {ξ ∈ Tp(M) : [Jξ ] ∈�p},
where the brackets denote the class in the quotient space Np(M). If M is a strictly
pseudoconvex hypersurface, then �p is the half-line defined by the inner normal
to M at p and Hp is a half-space of Tp(M). The dual Levi cone �∗

p is defined as

�∗
p = {φ ∈N ∗

p (M) : L(p,φ) > 0},
where L(p,φ) > 0 means that the form L(p,φ) is positive definite. The cones
�p and �∗

p are dual; that is, ξ ∈�p if and only if Re〈φ, ξ〉 > 0 for all φ ∈�∗
p.

We say that M is strictly pseudoconvex at p if �∗
p �= ∅. We say that M is

strictly pseudoconvex if it holds at every p ∈M. We say that the Levi form L(p)

is generating if �p has nonempty interior.
Changing notation, we introduce the coordinates (z,w)∈CN (z= x + iy∈Ck,

w ∈ Cn) so that the defining function of M can be chosen in the form ρ =
x−h(y,w), where h = (h1, . . . ,hk) is a smooth real vector function and the equa-
tions of M take the following form (see e.g. [BER]):

xj = hj(y,w) = 〈Ajw, w̄〉 +O(|y|3 + |w|3), 1 ≤ j ≤ k; (1.1)

here the Aj are hermitian matrices. Then T
1,0

0 (M) is identified with the w-space
Cn and, for φ = ∑

cj dzj ∈N ∗
0(M), the Levi formL(0,φ) has the matrix

∑
cjAj .

Hence, the manifold M of the form (1.1) is strictly pseudoconvex at 0 if and only
if there exists a c ∈ Rk such that

∑
cjAj > 0. It has a generating Levi form at 0 if

and only if the matrices A1, . . . ,Ak are linearly independent.
We say that a vector-valued hermitian form B splits into scalar forms of dimen-

sions (n1, . . . , nk) if the source and target spaces V and Z of B split into direct
sums V = ∑

Vj and Z = ∑
Zj , with dimVj = nj > 0 and dimZj = 1, such

that B(u, v) = ∑
Bj(uj , vj ); here uj , vj ∈ Vj , u = ∑

uj , v = ∑
vj , and Bj is a

Zj -valued hermitian form on Vj . We need the following simple result.

Proposition 1.1. Let M be a connected real-analytic generic manifold in CN.

Suppose that the Levi form of M splits into scalar forms on an open subset of M;
then it splits into scalar forms everywhere on M. If M is strictly pseudoconvex,
then the Levi form is generating and splits into positive-definite forms.

Proof. The set of all splittable hermitian forms is a real analytic (even algebraic)
subset of the set of all hermitian forms. The map M �p �→ L(p) is real analytic.
Since it takes an open set of M to splittable forms and since M is connected, it
follows that the whole image belongs to splittable forms. The rest of the conclu-
sions hold automatically, so the proof is complete.

2. Extremal Discs

We recall some facts about the theory of extremal discs (see [L, T1]).
Let M be a smooth generic manifold in CN. An analytic disc in CN is a contin-

uous mapping f : )̄ → CN that is holomorphic in the unit disc ). We say that f
is attached to M if f(b)) ⊂ M.
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An analytic disc f attached to M is called stationary if there exists a nonzero
continuous holomorphic mapping f ∗ : )̄ \ {0} → T ∗(CN) such that f̃ = ζf ∗ is
holomorphic in ) and f ∗(ζ) ∈ N ∗

f(ζ)(M) for all ζ ∈ b). In other words, f ∗ is a
punctured analytic disc with a pole of order at most1at 0 and attached toN ∗(M) ⊂
T ∗(CN) such that the natural projection sends f ∗ to f. We call f ∗ a lift of f , and
we always use the term “lift” in this sense.

We call a disc f defective if it has a nonzero lift f ∗ that is holomorphic in the
whole unit disc including 0. For a strictly convex hypersurface, all defective discs
are constant.

We call a lift f ∗ of a stationary disc f supporting if, for all ζ ∈ b), f ∗(ζ) de-
fines a (strong) supporting real hyperplane to M at f(ζ)—that is, if

Re〈f ∗(ζ),p − f(ζ)〉 ≥ ε|p − f(ζ)|2 for all ζ ∈ b) and p ∈M (2.1)

for some ε > 0. Stationary discs with supporting lifts have important extremal
properties, but we do not need them here. Nevertheless, we call such f extremal
and we call the pair (f , f ∗) an extremal pair. Although f is completely deter-
mined by f ∗, we prefer to use the excessive notation (f , f ∗) because it allows us
to describe f ∗ by its fiber coordinates in T ∗(CN). Note that (2.1) implies f ∗(ζ)∈
�∗
f(ζ) for ζ ∈ b).

If M is the boundary of a strictly convex domain D ⊂ CN, then the set of all ex-
tremal discs is smoothly parameterized by the correspondence f ↔ (f(0), f(1))∈
D× bD. The set of all extremal pairs is parameterized by D× bD× R+ because
the lift of an extremal disc is unique up to a positive constant factor; see [L].

In higher codimension there is a local parameterization of the set of extremal
pairs.

Theorem 2.1 [T1]. Let M ⊂ CN be a smooth (resp. real-analytic) strictly
pseudoconvex manifold with generating Levi form defined by (1.1). Then, for every
ε > 0, there exists a δ > 0 such that—for every λ∈ Ck, c ∈ Rk, w0 ∈ Cn, y0 ∈ Rk,
and v ∈ Cn such that ∑

Re(λj ζ + cj )Aj > ε(|λ| + |c|)I
and such that |w0| < δ, |y0| < δ, and |v| < δ—there exists a unique stationary
disc ζ �→ f(ζ) = (z(ζ),w(ζ)) with w(1) = w0, w ′(1) = v, and y(1) = y0 that
admits a lift f ∗ such that f ∗|b) = Re(λζ + c)G∂ρ (here λ and c are handled as
row vectors, and G is a k × k matrix function on b) that is close to the identity
matrix uniquely determined by f ; see [T1]). The pair (f , f ∗) depends smoothly
(resp. analytically) on ζ ∈ )̄ and on all the parameters λ, c, w0, y0, and v. The
pair (f , f ∗) is extremal in a suitable coordinate system depending on ε only.

Let M be a generic manifold in CN defined by (1.1). Let Q be the quadratic man-
ifold obtained from (1.1) by dropping the O-terms. We call M defective at 0 if all
stationary discs for Q are defective. (In other words, if every stationary disc that
possibly has a lift with a pole at 0 also has another lift without the pole; the authors
do not know whether this situation actually can occur.) This definition is equiva-
lent to the one given in [T2]. If the Levi form of M splits into scalar forms, then
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M is not defective. Hence, for fixed ε and sufficiently small δ, all stationary discs
provided by Theorem 2.1 are not defective (see [T1, Prop. 6.8] or [T2, Prop. 8.4]).

Define Łf = d
dθ

∣∣
θ=0f(e

iθ ). Note that if f is holomorphic at 1∈ C then Łf =
Jf ′(1). Let ζ0 ∈ b) and ζ0 �= 1. Let E denote the set of all extremal pairs (f , f ∗)
obtained by Theorem 2.1 such that f is not defective. If M is a strictly convex
hypersurface then E stands for the set of all extremal pairs, in which case E is a
smooth manifold by Lempert’s theory (see [L]). Consider the following evalua-
tion maps:

F : E � (f , f ∗) �→ (f(1), f ∗(1), Łf , Łf ∗)∈ TN ∗(M);
G : E � (f , f ∗) �→ (f(1), f ∗(1), f(ζ0), f

∗(ζ0))∈N ∗(M)×N ∗(M).

Proposition 2.2. The maps F and G are injective.

For the map F, the proposition is proved in [T1, Prop. 3.9]. The proof for G is
similar. We also need the following stronger version.

Proposition 2.2′. The maps F and G are diffeomorphisms onto their images.

Proof. The source and target spaces of both F and G have the same dimension
4N. Hence it suffices to show that F and G are immersions. By an infinitesimal
perturbation (ḟ , ḟ ∗) of an extremal pair (f , f ∗) we mean an element of the tan-
gent space to the finite-dimensional manifold E at (f , f ∗). To show that F is an
immersion, we need to show that ḟ (1) = 0, ḟ ∗(1) = 0, Łf = 0, and Łf ∗ = 0
imply ḟ = 0 and ḟ ∗ = 0.

We realize that (ḟ , ḟ ∗) = d
dt

∣∣
t=0(ft , f

∗
t ), where (ft , f ∗

t ) is a smooth1-parameter
family of extremal pairs with (f0, f ∗

0 ) = (f , f ∗). For small t, all the pairs are close
to (f , f ∗); hence we can choose ε in (2.1) the same for all small t. By (2.1), on
b) we have

Re〈f ∗
0 , ft − f0〉 ≥ ε|ft − f0|2, Re〈f ∗

t , f0 − ft〉 ≥ ε|f0 − ft |2.
Adding the two inequalities yields

Re〈f ∗
t − f ∗

0 , ft − f0〉 ≤ −2ε|ft − f0|2.
Dividing by t 2 and letting t → 0 yields

Re〈ḟ ∗, ḟ 〉 ≤ −2ε|ḟ |2
for ζ ∈ b). The hypotheses imply that ḟ = O(|ζ − 1|2) and ḟ ∗ = O(|ζ − 1|2).
Hence

Re
∫ 2π

0

〈ḟ ∗, ḟ 〉
|ζ − 1|4 dθ ≤ −2ε

∫ 2π

0

|ḟ |2
|ζ − 1|4 dθ,

where ζ = eiθ . Note that for |ζ| = 1 we have dζ = iζ dθ and ζ|ζ − 1|2 =
−(ζ − 1)2. Then∫ 2π

0

〈ḟ ∗, ḟ 〉
|ζ − 1|4 dθ = −i

∫
b)

〈
ζḟ ∗

(ζ − 1)2
,

ḟ

(ζ − 1)2

〉
dζ = 0,
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since the integrand is holomorphic in ). Therefore,∫ 2π

0

|ḟ |2
|ζ − 1|4 dθ = 0

and ḟ = 0. Since ḟ = 0, we have that ḟ ∗|b) is tangent to the fibers ofN ∗(M) and
gives rise to a lift of f. Since ḟ ∗ = O(|ζ −1|2), it follows that f̃ = ζ(ζ −1)−2ḟ ∗
is a lift of f without a pole at 0. Because f is not defective, f̃ = 0; whence
ḟ ∗ = 0 and F is an immersion. The proof that G is an immersion is similar; it
uses the identity ζζ0|ζ − ζ0|2 = −(ζ − ζ0)

2 for |ζ| = |ζ0| = 1. The proof is now
complete.

Define T +N ∗(M) ⊂ TN ∗(M). We put ξ ∈ T +
(p,φ)N

∗(M) if φ ∈�∗
p and π∗ξ ∈Hp,

where π : T ∗(CN) → CN is the natural projection; the Levi cones �∗
p and Hp are

defined in Section 1.

Proposition 2.3. LetM be a strictly convex hypersurface in Cn+1. Then F(E ) =
T +N ∗(M).

Proof. The inclusion F(E ) ⊂ T +N ∗(M) follows by the Hopf lemma. Indeed,
let M bound the domain D defined by ρ < 0, where ρ is a strictly convex func-
tion. Let f be a nonconstant analytic but not necessarily stationary disc attached
to M, and let f(1) = p ∈M. Then the nonconstant subharmonic function ρ  f
in ) is zero on the boundary. By the Hopf lemma, 〈dρ, f ′(1)〉 > 0. This implies
−[f ′(1)] ∈�p, whence Łf = Jf ′(1)∈Hp. If (f , f ∗)∈ E then f ∗(1)∈�∗

p , and the
desired inclusion follows.

The surjectivity of F follows by a simple topological argument. Fix p ∈ M.

Put Ep = {(f , f ∗) ∈ E : f(1) = p}. Then the set Ep is contractible since f is
completely determined by f(0)∈D and f(1) = p and since, for given f , the sup-
porting lift f ∗ is unique up to a positive multiplicative constant (see [L]).

Given (f , f ∗)∈ Ep, we make a substitution by an automorphism of the unit disc
ζ = (τ − τ0)e

iθ0/(1− τ̄0τ) with fixed point 1. Put

g(τ) = f(ζ), g∗(τ ) = f ∗(ζ)
(τ − τ0)(1− τ̄0τ)

τ |1− τ0|2 ,

where we choose the factor so that g∗ has a pole at 0 and g∗(1) = f ∗(1). Then
(g, g∗)∈ Ep, and one can further check that

Łg = αŁf , Łg∗ = Łf ∗ − βf ∗(1), (2.2)

where α,β ∈ R and α + iβ = (1+ τ0)/(1− τ0). Since τ0 ∈) is arbitrary, it fol-
lows that α > 0 and β ∈ R are arbitrary.

Consider the map < : Ep � (f , f ∗) �→ Łf/|Łf | ∈ S+, where S+ = S 2n+1 ∩Hp

is the unit hemisphere inHp. By (2.2), the preimages of the map< are contractible.
Since Ep is contractible, so is <(Ep). It suffices to show that <(Ep) = S+. We
will show that <(Ep) contains an arbitrarily small perturbation of the equator of
the hemisphere S+. Then <(Ep) will have to be all of S+.
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We introduce a coordinate system (z = x + iy,w) ∈ C × Cn such that p = 0
and M has a local equation

x = |w|2 +O(|y|3 + |w|3).
Then Tp(M) is defined by x = 0 and Hp ⊂ Tp(M) is the half-space y < 0. The
stationary disc f constructed by Theorem 2.1 for λ = 0, c = 1, w0 = 0, y0 = 0,
and small v ∈ Cn has the following asymptotic expression (see [T1, Cor. 5.2]):

z(ζ) = O(|v|2), w(ζ) = (ζ − 1)v +O(|v|2).
Then

Łf

|Łf | =
(

0,
v

|v|
)
+O(|v|), |v| = ε

for small ε describes a small perturbation of the equator of the hemisphere S+.
Hence <(Ep) = S+ and the proof is complete.

If M is a product of strictly convex hypersurfaces, then N ∗(M),T +N ∗(M), E , . . .
are the products of the corresponding objects for the components of the product.
Then we immediately derive the following.

Corollary 2.4. Let M be a product of strictly convex hypersurfaces. Then
F(E ) = T +N ∗(M).

3. The Main Result

Theorem 3.1. LetM1 be a real-analytic and strictly pseudoconvex generic mani-
fold, and letM2 be a product of several real-analytic strictly convex hypersurfaces.
Then every biholomorphic map taking an open set in M1 to M2 continues along
any path in M1 as a locally biholomorphic map.

Remark. We require that M2 be a product because we use Corollary 2.4 in the
proof. It would be interesting to find out for what manifolds the conclusion of
Corollary 2.4 is valid.

Proof of Theorem 3.1. The main idea of the proof is that a biholomorphism pre-
serves extremal pairs and so extends along the extremal discs.

Let F be a biholomorphic map defined at p1 ∈ M1 such that F(U) ⊂ M2 for
some open set U ⊂ M1. The map F lifts to the cotangent bundle T ∗(CN) in the
usual way. With some abuse of notation, we use the same letter F for the lifted
map. We choose a coordinate system in which p1 = 0 and M1 is given by (1.1).
Since M2 is a product, the Levi form of M2 splits into scalar positive-definite
forms. Since the biholomorphic map F preserves the Levi forms, it follows that
the Levi form of M1 at p1 = 0 also splits into scalar positive-definite forms and,
after a linear change of coordinates, the equation of M1 takes the form

xj = hj(y,w) = |wj |2 +O(|y|3 + |w|3), wj ∈ Cnj, n1 + · · · + nk = n. (3.1)
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We note that the size of the coordinate chart for which (3.1) holds is independent
of the map F. Indeed, if we know that such an F exists then, by Proposition 1.1,
the Levi form of (the component of ) M1 splits into scalar forms. Then, while ex-
tending F along a path, we can always restrict to finitely many coordinate charts
by the compactness argument.

We denote by Fν and Gν the evaluation maps for Mν (ν = 1, 2) defined in Sec-
tion 2. Although Corollary 2.4 generally fails for M1, there are many extremal
pairs (f , f ∗) such that F1(f , f ∗) ∈ T +N ∗(M1). Indeed, let (f , f ∗) be the ex-
tremal pair constructed by Theorem 2.1 for λ = 0, cj = 1, w0 = 0, y0 = 0, and
small v ∈ Cn. Then the components of f admit the following asymptotic expres-
sion (see [T1, Cor. 5.2]):

z(ζ) = O(|v|2), w(ζ) = (ζ − 1)v +O(|v|2). (3.2)

Furthermore, plugging (3.2) in (3.1) and using the identity |ζ −1|2 =−2 Re(ζ −1)
for |ζ| = 1, we obtain

zj(ζ) = −2(ζ − 1)|vj |2 +O(|v|3), Łzj = −2i|vj |2 +O(|v|3).
Note that the Levi cone H0 of M1 is defined by x = 0, yj < 0. Thus, if all |vj | are
small and comparable, then Łf ∈ H0 and F1(f , f ∗) ∈ T +N ∗(M1). The same is
true for all extremal pairs constructed using parameters λ and c that are close to
these values.

Consider all extremal pairs (f1, f ∗
1 ) forM1 with fixed f1(1) = p1 = 0 and f ∗

1 (1)
such that F1(f1, f ∗

1 )∈ T +N ∗(M1). Denote the set of such pairs by E1.

We define the desired extension of the map F by using G2  F −1
2  F∗  F1  G−1

1 .

More precisely, put ξ = F1(f1, f ∗
1 ). Since F preserves the Levi forms, we

have F∗ξ ∈ T +N ∗(M2). By Corollary 2.4 there exists a unique extremal pair
(f2 , f ∗

2 ) for M2 such that F2(f2 , f ∗
2 ) = F∗ξ. Fix ζ0 ∈ b), ζ0 �= 1. We define

F̃((f1, f ∗
1 )(ζ0)) = (f2 , f ∗

2 )(ζ0). By Proposition 2.2′, the map F̃ is a diffeomor-
phism on the set {(f1, f ∗

1 )(ζ0) : (f1, f ∗
1 ) ∈ E1}. Since all the objects are real ana-

lytic, it follows that F̃ is real analytic on an open set in N ∗(M). Note that the
pair (f1, f ∗

1 ) shrinks into a point as v → 0. This implies that the map F̃ agrees
with F on an open set in N ∗(M), since F preserves extremal pairs. The extension
preserves the fibers of N ∗(M) because F does. Hence, F̃ defines a real-analytic
diffeomorphism on the set {(f1(ζ0) : (f1, f ∗

1 ) ∈ E1} ⊂ M. By varying ζ0 ∈ b),
we extend F̃ as a real-analytic diffeomorphism on the set V = ⋃{(f1(b)\ {1}) :
(f1, f ∗

1 ) ∈ E1} ⊂ M. Since F̃ is real analytic and satisfies the tangential Cauchy–
Riemann equations on an open set in M, we know that F̃ is CR on the whole set
V ⊂ M where it is defined. Then, by real analyticity, F̃ further extends to a bi-
holomorphic map in a neighborhood of V in CN.

Thus we conclude that F extends as a biholomorphic map along the boundaries
of the extremal discs f1. By Proposition 2.2′ (see also [T1, Cor. 5.6]), the direc-
tions of the boundary curves of the discs f1 span the tangent space Tp1(M1). As a
consequence, all points within the same connected component can be reached by
moving along the boundaries of such discs, and the theorem follows.
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