Representations of $N=1$ ADE Quivers via Reflection Functors

Xinyun Zhu

1. Introduction

In 1972, Gabriel [4] published his celebrated theorem about the finite representation type of ADE quivers without relations. Since then, the study of quiver representations has been an important topic because it provides a successful way to solve problems in the representation theory of algebras and Lie groups. This study has recently attracted the attention of physicists (see $[2 ; 3 ; 6]$) owing to its close relation with the study of D-branes. A special type of quiver arising from string theory, which we will call the " $N=1$ ADE quiver", was introduced in [2] (see Definition 2.1 herein). This quiver has a close relation with the usual ADE quiver. The representations of $N=1$ ADE quivers will satisfy the relations

$$
\sum_{i} s_{i j} Q_{j i} Q_{i j}+P_{j}\left(\Phi_{j}\right)=0, \quad Q_{i j} \Phi_{j}=\Phi_{i} Q_{i j}
$$

where $Q_{i j}$ is a linear map attached to an edge and Φ_{i} is a linear map attached to a vertex.

The purpose of this paper is to construct, under certain conditions, a finite-to-one correspondence between the simple representations of an $N=1 \mathrm{ADE}$ quiver and the positive roots of the usual ADE quiver; this matches the physicists' predictions.

The reflection functors used in [1] to reprove Gabriel's theorem provide us with a way to attack this problem. In this paper we first modify the reflection functors of [1] in Definition 2.5, define new functors F_{k} in Definition 3.6, and then apply our modified reflection functors F_{k} to obtain our Main Theorem in Section 3.2. Some related results using different methods were given in [8].

This paper is organized as follows. In Section 2, we give the definition of $N=1$ ADE quivers and their representations, state the Main Theorem, and introduce our modified reflection functors. In Section 3, we apply our modified reflection functors to prove the Main Theorem. In Section 4, we give a correspondence between simple representations and an ADE configuration of curves.

Acknowledgments. The results of this paper form part of my doctoral dissertation. I wish to thank my thesis adviser, Professor Sheldon Katz, for his help and encouragement. It was an honor and a privilege to have been his student, and I

[^0]will be forever grateful for his mathematical assistance and inspiration, moral and financial support, unfailing kindness, and inexhaustible patience.

Professors Victor Ginzburg and Peter Vermeire carefully read this paper and suggested helpful comments to revise it. I would like to thank them for their time. I would also like to thank the referee for useful criticism.

2. Description of $N=1$ ADE Quivers, Statement of the Main Theorem, and Definition of Reflection Functors

2.1. Describing $N=1$ ADE Quivers

To make our presentation intelligible to nonexperts, we briefly recall some definitions and established facts. (Here all vector spaces are over a field k.)

A quiver $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$-without relations-is a directed graph. A representation (V, f) of a quiver Γ is an assignment to each vertex $i \in V_{\Gamma}$ of a vector space $V(i)$ and to each directed edge $i j \in E_{\Gamma}$ of a linear transformation $f_{j i}: V(i) \rightarrow V(j)$.

A morphism $h:(V, f) \rightarrow\left(V^{\prime}, f^{\prime}\right)$ between representations of Γ over k is a collection $\left\{h_{i}: V(i) \rightarrow V^{\prime}(i)\right\}_{i \in V_{\Gamma}}$ of k-linear maps such that, for each edge $i j \in E_{\Gamma}$, the obvious diagram commutes. Compositions of morphisms are defined in the usual way. For a path $p: i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{r}$ in Γ and a representation (V, f), we let f_{p} be the composition of the linear transformations $f_{i_{k+1} i_{k}}: V\left(i_{k}\right) \rightarrow V\left(i_{k+1}\right)$, $1 \leq k<r$. Given vertices i, j in V_{Γ} and paths p_{1}, \ldots, p_{n} from i to j, a relation σ on quiver Γ is a linear combination $\sigma=a_{1} p_{1}+\cdots+a_{n} p_{n}, a_{i} \in k$. If (V, f) is a representation of Γ, then we extend the f-notation by setting $f_{\sigma}=$ $a_{1} f_{p_{1}}+\cdots+a_{n} f_{p_{n}}: V(i) \rightarrow V(j)$. A quiver with relations is a pair (Γ, ρ), where $\rho=\left(\sigma_{t}\right)_{t \in T}$ is a set of relations on Γ; and a representation (V, f) of (Γ, ρ) is a representation (V, f) of Γ for which $f_{\sigma}=0$ for all relations $\sigma \in \rho$. We then define, in the obvious way, subrepresentations (V^{\prime}, f^{\prime}) of (V, f), the sum of representations, and when a representation (V, f) of (Γ, ρ) is indecomposable or simple.

Definition 2.1. Given an ADE Dynkin diagram $\mathcal{D}=\left(V_{\mathcal{D}}, E_{\mathcal{D}}\right)$-an undirected graph—we let the associated quiver $\Gamma_{\mathcal{D}}$ be $\Gamma_{\mathcal{D}}=\left(V_{\Gamma_{\mathcal{D}}}, E_{\Gamma_{\mathcal{D}}}\right)$ with $V_{\Gamma_{\mathcal{D}}}:=V_{\mathcal{D}}$ and

$$
E_{\Gamma_{\mathcal{D}}}=\left\{(i, j),(j, i) \mid\{i, j\} \in E_{\mathcal{D}}\right\} \bigcup\left\{(i, i) \mid i \in V_{\mathcal{D}}\right\}
$$

In other words, this is the standard digraph associated to the graph \mathcal{D}, except that we add a loop at each vertex. To illustrate this, we take the E_{n} case as an example. Recall that the Dynkin diagram for E_{n} is

thus, the associated quivers for $E_{n}(n=6,7,8)$ are

The $N=1$ ADE quivers are just the quivers associated to the displayed graphs but with the following relations. For all vertices i, j with $i \neq j$, the relations have the form

$$
\begin{equation*}
\sum_{i} s_{i j} e_{j i} e_{i j}+P_{j}\left(e_{j}\right)=0, \quad e_{i j} e_{j}=e_{i} e_{i j} \tag{2.1}
\end{equation*}
$$

where

$$
s_{i j}= \begin{cases}0 & \text { if } i \text { and } j \text { are not adjacent } \\ 1 & \text { if } i \text { and } j \text { are adjacent and } i>j \\ -1 & \text { if } i \text { and } j \text { are adjacent and } i<j\end{cases}
$$

and where $P_{j}(x)$ is a certain fixed polynomial associated with vertex j for each j.
If (V, f) is a representation of an $N=1 \mathrm{ADE}$ quiver, then the corresponding structures are

where we have written $Q_{i j}=f_{e_{i j}}$ and $\Phi_{j}=f_{e_{j}}$. Then, for all vertices i, j with $i \neq j$, the relations (2.1) become

$$
\begin{equation*}
\sum_{i} s_{i j} Q_{j i} Q_{i j}+P_{j}\left(\Phi_{j}\right)=0, \quad Q_{i j} \Phi_{j}=\Phi_{i} Q_{i j} \tag{2.2}
\end{equation*}
$$

Remark 2.2. From now on, we use $\left(\Gamma,\left\{P_{j}\right\}\right)$ to denote an $N=1$ ADE quiver satisfying relations (2.1).

The following formulas define an action of the Weyl group on the space of polynomials P_{j}.

Definition 2.3. Let \mathfrak{W}_{k} be the Weyl group of the Dynkin diagram Γ, and let $r_{i} \in \mathfrak{W}_{k}(1 \leq i \leq n)$ be a set of generators of reflections. If j is distinct from i and not adjacent to i, then $r_{i}\left(P_{j}(x)\right)=P_{j}(x)$. If j is adjacent to i and $j \neq i$, then $r_{i}\left(P_{j}(x)\right)=P_{j}(x)+P_{i}(x)$. Finally, $r_{i}\left(P_{i}(x)\right)=-P_{i}(x)$.

Let $\left(\Gamma,\left\{P_{j}\right\}\right)$ be an $N=1$ ADE quiver. Let

$$
\mathcal{A}_{\Gamma}=\left\{\sum_{i} n_{i} P_{i} \mid n_{i} \in \mathbb{Z}, \text { not all } n_{i} \text { zero }\right\},
$$

where the $P_{i}(1 \leq i \leq n)$ are the polynomials in relations (2.2).

2.2. Statement of the Main Theorem

(*) No two elements $\sum n_{i} P_{i}$ and $\sum m_{i} P_{i}$ of the set \mathcal{A}_{Γ} have a common root unless there is a constant c with $m_{i}=c n_{i}$ for all i.

Lemma 2.4. (*) holds for any very general collection of polynomials P_{i} of positive degree.

Proof. Left to the reader.
We prove the following Main Theorem in Section 3.2.
Main Theorem. Let $\left(\Gamma,\left\{P_{j}\right\}\right)$ be an $N=1$ ADE quiver. Let $\mathcal{B}_{\Gamma}=\left\{r_{i}\left(P_{j}(x)\right)\right\}$, where $r_{i} \in \mathfrak{W}_{\Gamma}$ and where $P_{j}\left(j \in V_{\Gamma}\right)$ are the polynomials defined in relation (2.2). Assume that no element in \mathcal{B}_{Γ} has a multiple root. If $(*)$ holds, then $\left(\Gamma,\left\{P_{j}\right\}\right)$ has only finitely many nonisomorphic simple representations.

2.3. Reflection Functors

Suppose we are given an $N=1 \mathrm{ADE}$ quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$ and $k \in V_{\Gamma}$. Then we denote by Γ_{k}^{+}the quiver defined by deleting all arrows starting from k and by Γ_{k}^{-} the quiver defined by deleting all arrows ending at k.

Given a representation V of an $N=1 \operatorname{ADE}$ quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$, we can define a representation of Γ_{k}^{+}, which we still denote as V, by forgetting all maps that have domain $V(k)$. Similarly, we define a representation of Γ_{k}^{-}, which we still denote by V, by forgetting all maps that have range $V(k)$.

The following definition is a modification of that of [1]. Let ($\Gamma,\left\{P_{j}\right\}$) be an $N=1 \mathrm{ADE}$ quiver and let k be a vertex of Γ. Let

$$
\Gamma^{k}=\{i \mid i \text { adjacent to } k\}
$$

Definition 2.5. For a quiver representation W of Γ_{k}^{+}, define a representation $F_{k}^{+}(W)$ of Γ_{k}^{-}by

$$
F_{k}^{+}(W)(i)= \begin{cases}W(i) & \text { if } i \neq k, \tag{2.3}\\ \operatorname{ker} h & \text { if } i=k,\end{cases}
$$

where

$$
h: \bigoplus_{i \in \Gamma^{k}} W(i) \rightarrow W(k)
$$

is defined by

$$
h\left(\left(x_{i}\right)_{i \in \Gamma^{k}}\right)=\sum_{i \in \Gamma^{k}} s_{i k} Q_{k i} x_{i} .
$$

If $i, j \neq k$, we define

$$
Q_{i j}^{\prime}=Q_{i j}: W(j) \rightarrow W(i) .
$$

If $i \in \Gamma^{k}$, define $Q_{i k}^{\prime}: F_{k}^{+}(W)(k) \rightarrow W(i)$ by

$$
\begin{equation*}
Q_{i k}^{\prime}\left(x_{j}\right)_{j \in \Gamma^{k}}=-s_{k i} x_{i} . \tag{2.4}
\end{equation*}
$$

For a quiver representation U of Γ_{k}^{-}, define a representation $F_{k}^{-}(U)$ of Γ_{k}^{+}by

$$
F_{k}^{-}(U)(i)= \begin{cases}U(i) & \text { if } i \neq k, \tag{2.5}\\ \operatorname{coker} g & \text { if } i=k,\end{cases}
$$

where

$$
g: U(k) \rightarrow \bigoplus_{i \in \Gamma^{k}} U(i)
$$

is defined by

$$
g(x)=\left(Q_{i k} x\right)_{i \in \Gamma^{k}} .
$$

Define $Q_{k i}^{\prime}: U(i) \rightarrow F_{k}^{-}(U)(k)$ by the natural composition of

$$
\begin{equation*}
U(i) \rightarrow \bigoplus_{j \in \Gamma^{k}} U(j) \rightarrow F_{k}^{-}(U)(k) . \tag{2.6}
\end{equation*}
$$

Remark 2.6. Notice that, in Definition 2.5, there is no loop associated to the vertex k of the quiver Γ_{k}^{+}or the quiver Γ_{k}^{-}.
Remark 2.7. The definitions of the $F_{k}^{+}(W)$ and $Q_{i k}^{\prime}$ in Definition 2.5 are different from the corresponding definitions in [1], whereas $F_{k}^{-}(U)$ and $Q_{k i}^{\prime}$ in Definition 2.5 are the same as the corresponding definitions in [1].

3. Finite Representations of an $N=1$ ADE Quiver

In this section we give a proof that, in the case of simple and distinct roots, an $N=1 \mathrm{ADE}$ quiver has finitely many nonisomorphic simple representations.

3.1. Applying the Reflection Functors to $N=1$
 ADE Quiver Representations

Lemma 3.1. Let V be a representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$, and let v_{j} be a λ-eigenvector of Φ_{j}. Then $Q_{i j} \Phi_{j} v_{j}$ either is a λ-eigenvector of Φ_{i} or is 0 .

Proof. If v_{j} is an eigenvector of Φ_{j} corresponding to eigenvalue λ, then by (2.2) we have

$$
Q_{i j} \Phi_{j} v_{j}=\Phi_{i} Q_{i j} v_{j},
$$

which implies that

$$
\lambda Q_{i j} v_{j}=\Phi_{i} Q_{i j} v_{j} .
$$

Hence, $Q_{i j} v_{j}$ is either an eigenvector of Φ_{i} corresponding to eigenvalue λ or a 0 -vector.

Lemma 3.2. Let V be a simple representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$. Then there exists $a \lambda$ such that, if $v_{i} \in V(i) \neq 0$, then $\Phi_{i} v_{i}=\lambda v_{i}$.

Proof. Let $\mathcal{A}=\{d \mid V(d) \neq 0\}$. Then \mathcal{A} is connected. Otherwise, V is not simple. Let $a=\min \mathcal{A}$; then Φ_{a} has an eigenvector v_{a} with eigenvalue λ. For $l \in$ \mathcal{A}, let $U(l)$ be the λ-eigenvector space of Φ_{l}. By Lemma 3.1, it is easy to see that $W=\{U(l): l \in \mathcal{A}\}$ is a subrepresentation of V. Since V is simple it follows that $W=V$, which proves the result.

Therefore, to show that we have only finitely many simple representations, it suffices to consider representations V for which there exists a λ such that, if $0 \neq v_{d} \in$ $V(d)$, then $\Phi_{d} v_{d}=\lambda v_{d}$. A representation V with this property will be called a type- $(* *)$ representation.

Lemma 3.3. Let V be a simple representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$. Suppose V is not concentrated at vertex k. Then

$$
\operatorname{dim}\left(F_{k}^{+}(V)\right)_{k}=\sum_{i \in \Gamma^{k}} \operatorname{dim}(V(i))-\operatorname{dim}(V(k))
$$

Proof. We know that $\left(F_{k}^{+}(V)\right)(k)=\operatorname{ker} h$, where $h: \bigoplus_{i \in \Gamma^{k}} V(i) \rightarrow V(k)$ is defined by

$$
h\left(x_{i}\right)_{i \in \Gamma^{k}}=\sum_{i \in \Gamma^{k}} s_{i k} Q_{k i} x_{i} .
$$

Proving the lemma is equivalent to proving that h is surjective.
Suppose $V(k) \neq 0$. If h is not surjective and $h \neq 0$, then we can replace $V(k)$ by $h\left(\bigoplus_{i \in \Gamma^{k}} V(i)\right)$ and obtain a subrepresentation of V. But this contradicts the simplicity of V. If $V(k)=0$, then h is surjective because $h \equiv 0$ in this case.

Lemma 3.4. Let V be a simple representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$, and suppose that V is not concentrated at vertex k. Then

$$
\operatorname{dim}\left(F_{k}^{-}(V)\right)_{k}=\sum_{i \in \Gamma^{k}} \operatorname{dim}(V(i))-\operatorname{dim}(V(k))
$$

Proof. We know that $\left(F_{k}^{-}(V)\right)(k)=$ coker g, where $g: V(k) \rightarrow \bigoplus_{i \in \Gamma^{k}} V(i)$ is defined by $g(x)=\left(Q_{i k} x\right)_{i \in \Gamma^{k}}$. Proving the lemma is equivalent to proving that g is injective.

Suppose $V(k) \neq 0$. If $\operatorname{ker} g \neq 0$, then we can define a simple subrepresentation that is concentrated at vertex k. This contradicts the simplicity of V.

If $V(k)=0$, then g is injective because $g \equiv 0$ in this case.
Lemma 3.5. Let V be a type- $(* *)$ representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$, and suppose that V is not concentrated at the vertex k. If $P_{k}(\lambda) \neq 0$, then there is a natural isomorphism φ between $F_{k}^{+}(V)(k)$ and $F_{k}^{-}(V)(k)$.

Proof. We have

$$
F_{k}^{-}(V)(k)=\operatorname{coker} g
$$

and

$$
F_{k}^{+}(V)(k)=\operatorname{ker} h
$$

Since V is a type- $(* *)$ representation, the relation $\sum_{i \in \Gamma^{k}} s_{i k} Q_{k i} Q_{i k}+P_{k}\left(\Phi_{k}\right)=$ 0 becomes $h \circ g+P_{k}(\lambda) I=0$. Since $P_{k}(\lambda) \neq 0$, it follows that g is injective and h is surjective. Since V is of type $(* *)$ and is not concentrated at k, we obtain

$$
\operatorname{dim} F_{k}^{+}(V)(k)=\operatorname{dim} F_{k}^{-}(V)(k)=\sum_{i \in \Gamma^{k}} \operatorname{dim} V(i)-\operatorname{dim} V(k)
$$

and

0
Since $P_{k}(\lambda) \neq 0$, we have $\operatorname{im} g \cap F_{k}^{+}(V)(k)=\{0\}$. Let $g^{\prime}: \bigoplus_{i \in \Gamma^{k}} V(i) \rightarrow$ $F_{k}^{-}(V)(k)$ be the natural surjective map induced by g, and let $h^{\prime}: F_{k}^{+}(V)(k) \rightarrow$ $\bigoplus_{i \in \Gamma^{k}} V(i)$ be the natural inclusion map induced by h. Then

$$
\varphi=g^{\prime} \circ h^{\prime}: F_{k}^{+}(V)(k) \rightarrow F_{k}^{-}(V)(k)
$$

is a natural isomorphism because $\operatorname{dim} F_{k}^{+}(V)(k)=\operatorname{dim} F_{k}^{-}(V)(k)$ and φ is injective by im $g \cap F_{k}^{+}(V)(k)=\{0\}$.

Definition 3.6. By Lemma 3.5, if $P_{k}(\lambda) \neq 0$ then, for a type- $(* *)$ representation V, we can construct a new representation $F_{k}(V)$ of $\left(\Gamma,\left\{P_{j}\right\}\right)$ as

$$
F_{k}(V)(i)= \begin{cases}V(i) & \text { if } i \neq k \\ F_{k}^{+}(V)(k) & \text { if } i=k\end{cases}
$$

Here we define $Q_{l k}^{\prime}$ as it is defined for $F_{k}^{+}(V)$ and define $Q_{k m}^{\prime}$ as the composition $\operatorname{map} P_{k}(\lambda) \cdot \varphi^{-1} \circ \underline{Q_{k m}^{\prime}}: V(m) \rightarrow F_{k}^{+}(V)(k)$, where $\underline{Q_{k m}^{\prime}}: V(m) \rightarrow F_{k}^{-}(V)(k)$ is the natural map defined in $F_{k}^{-}(V)$ and $\varphi: F_{k}^{+}(V)(k) \rightarrow F_{k}^{-}(V)(k)$ is the isomorphism defined in Lemma 3.5.

Now define

$$
\Phi_{i}^{\prime}: F_{k}(V)(i) \rightarrow F_{k}(V)(i)
$$

by $\Phi_{i}^{\prime}(x)=\lambda x$, where λ is the eigenvalue of Φ_{i} on $V(i)$ that appeared in the representation V of Γ. Abusing notation, we allow Φ_{i} to stand for Φ_{i}^{\prime}.

Remark 3.7. The reflection functor F_{k} is acting only on the type- $(* *)$ representations, not on all representations on the $N=1 \mathrm{ADE}$ quiver ($\Gamma,\left\{P_{j}\right\}$). How to define a reflection functor that acts on all representations of the $N=1$ ADE quiver is still an open problem.

Lemma 3.8. If V is a representation of an $N=1 A D E$ quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$, then

$$
\sum_{i} \operatorname{Tr} P_{i}\left(\Phi_{i}\right)=0
$$

As a result, if V is a type- $(* *)$ representation of an $N=1$ ADE quiver then

$$
\sum_{i} \operatorname{dim}(V(i)) \cdot P_{i}(\lambda)=0
$$

Proof. This follows because $\operatorname{Tr} Q_{i j} Q_{j i}=\operatorname{Tr} Q_{j i} Q_{i j}$ for every pair i and j.
Now take the trace operation to relations (2.2) and then sum the resulting equations. The result follows.

Proposition 3.9. Let V be a simple representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$ that is not concentrated at vertex k. If $P_{k}(\lambda) \neq 0$, then $F_{k}(V)$ satisfies the following new relations:

$$
\begin{equation*}
\sum_{i} s_{i j} Q_{j i}^{\prime} Q_{i j}^{\prime}+r_{k}\left(P_{j}\left(\Phi_{j}\right)\right)=0, \quad Q_{i j}^{\prime} \Phi_{j}=\Phi_{i} Q_{i j}^{\prime} \tag{3.1}
\end{equation*}
$$

Thus, $F_{k}(V)$ is a representation of $\left(\Gamma,\left\{r_{k}\left(P_{j}\right)\right\}\right)$.
Proof. If $i \notin \Gamma^{k}$ and $i \neq k$, where i is a vertex of $\left(\Gamma,\left\{P_{j}\right\}\right)$ such that $V(i) \neq 0$, then there is nothing to prove. For $j \in \Gamma^{k} \cup\{k\}$ and $b \in\left(F_{k}(V)\right)(j)$, we have

$$
Q_{i j}^{\prime} \Phi_{j} b=\lambda Q_{i j}^{\prime} b=\Phi_{i} Q_{i j}^{\prime} b
$$

For $i \in \Gamma^{k}$ and $x \in V(i)$, by Definition 3.6 we know that

$$
Q_{k i}^{\prime} x=P_{k}(\lambda) \cdot \varphi^{-1} \circ \underline{Q_{k i}^{\prime} x}
$$

where $\underline{Q_{k i}^{\prime}} x=\left[\left(x_{j}\right)_{j \in \Gamma^{k}}\right] \in F_{k}^{-}(V)(k)$ for

$$
x_{j}= \begin{cases}0 & \text { if } j \neq i \\ x & \text { if } j=i\end{cases}
$$

After a short computation we see that

$$
Q_{k i}^{\prime} x=\left(y_{j}\right)_{j \in \Gamma^{k}},
$$

where

$$
y_{j}= \begin{cases}P_{k}(\lambda) x+s_{i k} Q_{i k} Q_{k i} x & \text { if } j=i, \\ Q_{j k} s_{i k} Q_{k i} x & \text { if } j \neq i\end{cases}
$$

It follows that

$$
s_{k i} Q_{i k}^{\prime} Q_{k i}^{\prime} x=s_{k i} Q_{i k}^{\prime}\left(y_{j}\right)_{j \in \Gamma^{k}}=-P_{k}(\lambda) x-Q_{i k} s_{i k} Q_{k i} x .
$$

Hence, for $i \in \Gamma^{k}$,

$$
\begin{aligned}
\sum_{j} & s_{j i} Q_{i j}^{\prime} Q_{j i}^{\prime} x+r_{k}\left(P_{i}(\lambda)\right) x \\
& =\sum_{j} s_{j i} Q_{i j}^{\prime} Q_{j i}^{\prime} x+P_{i}(\lambda) x+P_{k}(\lambda) x \\
& =\sum_{j \neq k} s_{j i} Q_{i j} Q_{j i} x+s_{k i} Q_{i k}^{\prime} Q_{k i}^{\prime} x+P_{i}(\lambda) x+P_{k}(\lambda) x \\
& =\sum_{j \neq k} s_{j i} Q_{i j} Q_{j i} x-P_{k}(\lambda) x-Q_{i k} s_{i k} Q_{k i} x+P_{i}(\lambda) x+P_{k}(\lambda) x \\
& =0
\end{aligned}
$$

Let $\left(x_{i}\right)_{i \in \Gamma^{k}} \in F_{k}^{+}(V)(k)$. Then

$$
s_{i k} Q_{k i}^{\prime} Q_{i k}^{\prime}\left(x_{i}\right)_{i \in \Gamma^{k}}=Q_{k i}^{\prime} x_{i}=\left(x_{i_{j}}\right)_{j \in \Gamma^{k}}
$$

where

$$
x_{i_{j}}= \begin{cases}P_{k}(\lambda) x_{i}+Q_{i k} s_{i k} Q_{k i} x_{i} & \text { if } j=i, \\ Q_{j k} s_{i k} Q_{k i} x_{i} & \text { if } j \neq i\end{cases}
$$

Therefore,

$$
\begin{aligned}
& \sum_{i \in \Gamma^{k}} s_{i k} Q_{k i}^{\prime} Q_{i k}^{\prime}\left(x_{i}\right)_{i \in \Gamma^{k}}+r_{k}\left(P_{k}(\lambda)\right)\left(x_{i}\right)_{i \in \Gamma^{k}} \\
& \quad=\sum_{i \in \Gamma^{k}} s_{i k} Q_{k i}^{\prime} Q_{i k}^{\prime}\left(x_{i}\right)_{i \in \Gamma^{k}}-P_{k}(\lambda)\left(x_{i}\right)_{i \in \Gamma^{k}} \\
& \quad=\sum_{i \in \Gamma^{k}}\left(x_{i_{j}}\right)_{j \in \Gamma^{k}}-P_{k}(\lambda)\left(x_{i}\right)_{i \in \Gamma^{k}} \\
& \quad=0
\end{aligned}
$$

By Definition 2.3 and Proposition 3.9, we have the following result.
Corollary 3.10. Let V be a simple representation of an $N=1$ ADE quiver ($\Gamma,\left\{P_{j}\right\}$) that is not concentrated at vertex k. Then

$$
\sum \operatorname{dim}\left(F_{k}(V)(i)\right) r_{k}\left(P_{i}(x)\right)=\sum \operatorname{dim} V(i) P_{i}(x)
$$

Lemma 3.11. If V is a simple representation of an $N=1$ ADE quiver ($\left.\Gamma,\left\{P_{j}\right\}\right)$ that is not concentrated at vertex k and if $P_{k}(\lambda) \neq 0$, then $F_{k} F_{k}(V) \cong V$. Consequently, $F_{k}(V)$ is a simple representation.

Proof. We know that $Q_{k i}^{\prime}: V(i) \rightarrow F_{k}(V)(k)$ is defined by

$$
Q_{k i}^{\prime} x_{i}=P_{k}(\lambda) \varphi^{-1} \underline{Q_{k i}} x_{i},
$$

where $\underline{Q_{k i}}: V(i) \rightarrow F_{k}^{-}(V)(k)$ is the composition of $V(i) \rightarrow \bigoplus_{j \in \Gamma^{k}} V(j)$ and $\bigoplus_{j \in \Gamma^{k}} V(j) \rightarrow F_{k}^{-}(V)(k)$ (see Definition 3.6). We also know that

$$
F_{k} F_{k}(V)(k)=\left\{\left(x_{j}\right) \in \bigoplus_{j \in \Gamma^{k}} V(j) \mid \sum_{j \in \Gamma^{k}} s_{j k} Q_{k j}^{\prime} x_{j}=0\right\}
$$

Hence

$$
\sum_{j \in \Gamma^{k}} s_{j k} Q_{k j}^{\prime} x_{j}=P_{k}(\lambda) \varphi^{-1} \sum_{j \in \Gamma^{k}} s_{j k} \underline{Q_{k j}} x_{j} .
$$

Since $P_{k}(\lambda) \neq 0$ and φ is an isomorphism, we have

$$
F_{k} F_{k}(V)(k)=\left\{\left(-s_{k j} Q_{j k} x\right)_{j \in \Gamma^{k}} \mid x \in V(k)\right\} .
$$

Let $g: V \rightarrow F_{k} F_{k}(V)$ be defined as follows:

$$
g_{i}= \begin{cases}i: V(i) \rightarrow F_{k} F_{k}(V)(i)=V(i) & \text { if } i \neq k, \\ \left(-s_{k j} Q_{j k}\right)_{j \in \Gamma^{k}} & \text { if } i=k\end{cases}
$$

here $i: V(i) \rightarrow F_{k} F_{k}(V)(i)=V(i)$ is the identity map. Then it is clear that (3.2) is commutative:

Let's check the commutativity of (3.3):

Let $\left(Q_{k i}^{\prime \prime} x_{i}\right)_{j}$ (resp. $\left.\left(Q_{k i}^{\prime} x_{i}\right)_{j}\right)$ denote the j th coordinate of $Q_{k i}^{\prime \prime} x_{i}$ (resp. $\left.Q_{k i}^{\prime} x_{i}\right)$. We know that

$$
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{j}= \begin{cases}-P_{k}(\lambda) x_{i}+Q_{i k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i} & \text { if } j=i \\ Q_{j k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i} & \text { if } j \neq i\end{cases}
$$

and

$$
\left(Q_{k i}^{\prime} x_{i}\right)_{j}= \begin{cases}P_{k}(\lambda) x_{i}+Q_{i k} s_{i k} Q_{k i} x_{i} & \text { if } j=i \\ Q_{j k} s_{i k} Q_{k i} x_{i} & \text { if } j \neq i\end{cases}
$$

Let $i>k$. Then we have

$$
\begin{aligned}
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{i} & =-P_{k}(\lambda) x_{i}+Q_{i k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i} \\
& =-P_{k}(\lambda) x_{i}+P_{k}(\lambda) x_{i}+Q_{i k} s_{i k} Q_{k i} x_{i} \\
& =Q_{i k} s_{i k} Q_{k i} x_{i}=Q_{i k} Q_{k i} x_{i} \\
& =-s_{k i} Q_{i k} Q_{k i} x_{i} .
\end{aligned}
$$

If $i>k$ and $j>k$, then

$$
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{j}=Q_{j k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i}=Q_{j k} s_{i k} Q_{k i} x_{i}=Q_{j k} Q_{k i} x_{i}=-s_{k j} Q_{j k} Q_{k i} x_{i}
$$

if $i>k$ and $j<k$, then

$$
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{j}=Q_{j k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i}=Q_{j k}^{\prime} Q_{k i}^{\prime} x_{i}=-Q_{j k} Q_{k i} x_{i}=-s_{k j} Q_{j k} Q_{k i} x_{i}
$$

Now let $i<k$. Then we have

$$
\begin{aligned}
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{i} & =-P_{k}(\lambda) x_{i}+Q_{i k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i} \\
& =-P_{k}(\lambda) x_{i}-Q_{i k}^{\prime} Q_{k i}^{\prime} x_{i} \\
& =-P_{k}(\lambda) x_{i}+\left(P_{k}(\lambda) x_{i}+Q_{i k} s_{i k} Q_{k i} x_{i}\right) \\
& =Q_{i k} s_{i k} Q_{k i} x_{i}=-Q_{i k} Q_{k i} x_{i} \\
& =-s_{k i} Q_{i k} Q_{k i} x_{i}
\end{aligned}
$$

If $i<k$ and $j>k$, then

$$
\begin{aligned}
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{j} & =Q_{j k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i}=-Q_{j k}^{\prime} Q_{k i}^{\prime} x_{i} \\
& =-Q_{j k} s_{i k} Q_{k i} x_{i}=Q_{j k} Q_{k i} x_{i}=-s_{k j} Q_{j k} Q_{k i} x_{i}
\end{aligned}
$$

if $i<k$ and $j<k$, then

$$
\begin{aligned}
\left(Q_{k i}^{\prime \prime} x_{i}\right)_{j} & =Q_{j k}^{\prime} s_{i k} Q_{k i}^{\prime} x_{i}=-Q_{j k}^{\prime} Q_{k i}^{\prime} x_{i} \\
& =Q_{j k} s_{i k} Q_{k i} x_{i}=-Q_{j k} Q_{k i} x_{i}=-s_{k j} Q_{j k} Q_{k i} x_{i}
\end{aligned}
$$

Therefore, diagram (3.3) is commutative.
Diagram (3.4) is commutative because λ is a common eigenvalue of $V(k)$ and $F_{k} F_{k}(V)(k)$:

If $g_{k}(x)=0$ for an $x \in V(k)$, then $Q_{j k} x=0$ for all $j \in \Gamma^{k}$. By the proof of Lemma 3.4, it follows that $x=0$. Hence g_{k} is injective. Since $V(k)$ and $F_{k} F_{k}(V)(k)$ have the same dimension, g_{k} must be an isomorphism. We know that $g_{i}=$ id whenever $i \neq k$, so $g: V \rightarrow F_{k} F_{k}(V)$ is also an isomorphism.

We next prove the latter part of the lemma. We claim that there is no simple subrepresentation of $F_{k}(V)$ that is concentrated at vertex k. By way of contradiction, suppose there does exist such a simple representation $W \subset F_{k}(V)$ concentrated at vertex k. Then, for $\left(x_{i}\right)_{i \in \Gamma^{k}} \in W$, since $Q_{j k}^{\prime}\left(x_{i}\right)_{i \in \Gamma^{k}}=-s_{k j} x_{j}=0$, it would follow that $x_{j}=0$ for all $j \in \Gamma^{k}$ and hence $\left(x_{i}\right)_{i \in \Gamma^{k}}=0$.

Since the natural map $\bigoplus_{i \in \Gamma^{k}} V(i) \rightarrow F_{k}^{-}(V)(k)$ is surjective, $\varphi: F_{k}(V)(k)=$ $F_{k}^{+}(V)(k) \rightarrow F_{k}^{-}(V)(k)$ is an isomorphism, and $P_{k}(\lambda) \neq 0$, we conclude that $\left\{Q_{k i}^{\prime} V(i)\right\}_{i \in \Gamma^{k}}$ generates $F_{k}(V)(k)$. As a result, there is no subrepresentation $W \subset F_{k}(V)$ with $\operatorname{dim} W(i)=\operatorname{dim} V(i)$ for all $i \in \Gamma^{k}$ and $i \neq k$ and with $\operatorname{dim} W(k)<\operatorname{dim} F_{k}(V)(k)$.

Suppose there exists a simple subrepresentation $W \subset F_{k}(V)$ that is not concentrated at vertex k. We thus obtain a proper subrepresentation $F_{k}(W) \subset F_{k} F_{k}(V) \cong$ V. Since V is a simple representation, this cannot occur.

Corollary 3.12. Assume that $(*)$ holds. If V is a simple representation, then either $F_{k}(V)$ is simple or $V \cong L_{k}$, where L_{k} is a simple representation concentrated at vertex k.

Proof. Assume that V is not concentrated at vertex k. Since V is simple it follows that, by Lemma 3.3 and Lemma 3.4, we can apply F_{k} to V. Then $F_{k}(V)$ is simple by the latter part of Lemma 3.11.

3.2. A Proof of the Main Theorem

Let Γ be a quiver. Following [1], for a representation V we define $\operatorname{dim}(V)=$ $(\operatorname{dim} V(i))_{i \in V_{\Gamma}}$. Let $\mathscr{C}_{\Gamma}=\left\{x=\left(x_{\alpha}\right) \mid x_{\alpha} \in \mathbb{Q}, \alpha \in V_{\Gamma}\right\}$, where \mathbb{Q} denotes the set of rational numbers. We call a vector $x=\left(x_{\alpha}\right)$ positive (written $x>0$) if $x \neq 0$ and $x_{\alpha} \geq 0$ for all $\alpha \in V_{\Gamma}$. For each $\beta \in V_{\Gamma}$, denote by σ_{β} the linear transformation in \mathscr{C}_{Γ} defined by the formulas $\left(\sigma_{\beta} x\right)_{\gamma}=x_{\gamma}$ for $\gamma \neq \beta$ and $\left(\sigma_{\beta} x\right)_{\beta}=$ $-x_{\beta}+\sum_{l \in \Gamma^{\beta}} x_{l}$, where $l \in \Gamma^{\beta}$ is the set of vertices adjacent to β.

For each vertex $\alpha \in V_{\Gamma}$ we denoted by Γ_{α} the set of edges containing α. Let Λ be an orientation of the graph Γ. We denote by $\sigma_{\alpha} \Lambda$ the orientation obtained from Λ by changing the directions of all edges $l \in \Gamma_{\alpha}$. Following [1], we say that a vertex i of a quiver ($\Gamma,\left\{P_{j}\right\}$) with orientation Λ is (-)-accessible (resp. (+)-accessible) if, for any edge e having i as a vertex, the final vertex $f(e)$ of e satisfies $f(e) \neq i$ (resp. the initial vertex $i(e)$ of e satisfies $i(e) \neq i)$. We say that a sequence of vertices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ is (+)-accessible with respect to Λ if α_{1} is (+)-accessible with respect to Λ, α_{2} is $(+)$-accessible with respect to $\sigma_{\alpha_{1}} \Lambda, \alpha_{3}$ is (+)-accessible with respect to $\sigma_{\alpha_{2}} \sigma_{\alpha_{1}} \Lambda$, and so on. We define a (- -)-accessible sequence similarly.

Definition 3.13. Let Γ be a graph without loops. We denote by B the quadratic form on the space \mathscr{C}_{Γ} defined by the formula $B(x)=\sum x_{\alpha}^{2}-\sum_{l \in \mathcal{E}_{\Gamma}} x_{r_{1}(l)} x_{r_{2}(l)}$, where $r_{1}(l)$ and $r_{2}(l)$ are the ends of the edge l. We denote by $\langle\cdot, \cdot\rangle$ the corresponding symmetric bilinear form.

Lemma 3.14 [1, Lemma 2.3]. Suppose that the form B for the graph Γ is positive definite. Let $c=\sigma_{n} \cdots \sigma_{2} \sigma_{1}$. If $x \in \mathscr{C}_{\Gamma}$ and $x \neq 0$ then, for some i, the vector $c^{i} x$ is not positive.

We are now ready to give a proof of our Main Theorem as follows.
Proof of Main Theorem. Let V be a simple representation of an $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$, and let $\mathcal{A}=\{i \mid V(i) \neq 0\}$. We can assume that \mathcal{A} is connected, since otherwise V would be decomposable. We apply the forgetful functors to V and obtain the following (+)-accessible (resp. (-)-accessible) diagram (no loop):

(For the type-A Dynkin diagram case, $V(l)=0$.)

Let $c=\sigma_{n} \cdots \sigma_{2} \sigma_{1}$. By [1], there exists a k such that $c^{k}(\operatorname{dim} V) \ngtr 0$. By $(*)$ and Corollary 3.10, we know that $\sum_{i} \operatorname{dim} V(i) \cdot P_{i}(x)$ is the only element in \mathcal{A}_{Γ} that vanishes at λ. By Corollary 3.12 and Proposition 3.9, this implies the existence of vertices $\beta_{1}, \ldots, \beta_{l}$ and a simple representation $L_{\beta_{k+1}}$ of $\left(\Gamma,\left\{Q_{j}\right\}\right)$ that satisfies the new relations described in Proposition 3.9 and is concentrated at a vertex of Γ such that

$$
V=F_{\beta_{1}} \cdots F_{\beta_{k}}\left(L_{\beta_{k+1}}\right)
$$

Here V corresponds to the positive root

$$
\operatorname{dim} V=\sigma_{\beta_{1}} \cdots \sigma_{\beta_{k}}\left(\overline{\beta_{k+1}}\right)
$$

where $\overline{\beta_{k+1}}=\left(\overline{\beta_{k+1}}(i)\right)$ and

$$
\overline{\beta_{k+1}}(i)= \begin{cases}0 & \text { if } i \neq k+1 \\ 1 & \text { if } i=k+1\end{cases}
$$

From this it follows that $\sum_{i} \operatorname{dim} V(i) \cdot P_{i}(x) \in \mathcal{B}_{\Gamma}$. Because the usual ADE quiver has only finitely many positive roots, $N=1 \mathrm{ADE}$ quivers have finite many simple representations. This finishes the proof of the theorem.

The Main Theorem implies the following corollary.
Corollary 3.15. Let $\left(\Gamma,\left\{P_{j}\right\}\right)$ be an $N=1$ ADE quiver. Let $\mathcal{B}_{\Gamma}=\left\{r_{i}\left(P_{j}(x)\right) \mid\right.$ $\left.r_{i} \in \mathfrak{W}_{\Gamma}\right\}$, where \mathfrak{W}_{Γ} is the Weyl group of Γ and P_{j} is the polynomial defined on relation (2.2). Assume that each element in \mathcal{B}_{Γ} has simple roots. If ($*$) holds, then there is a finite-to-one correspondence between simple representations of the $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$ and the positive roots of an ADE Dynkin diagram.

Proof. We know that \mathcal{B}_{Γ} has only finitely many elements. Each element of \mathcal{B}_{Γ} that is actually a polynomial has only finitely many simple roots. By our Main Theorem, each root of an element in \mathcal{B}_{Γ} corresponds with a simple representation. Hence, the desired result follows.

3.3. Further Discussions

In [9] the author proved the following theorem without using reflection functors.
Theorem 3.16. Let $\mathcal{A}=\left\{r P_{i}(x) \mid r \in \mathfrak{W}_{A_{n}}\right\}$, where the $P_{i}(x)$ are the polynomials in relation (2.2) and $\mathfrak{W}_{A_{n}}$ is the Weyl group of A_{n}. If no two positive elements in \mathcal{A} have a common root and if none of the polynomials in \mathcal{A} are identically zero, then the $N=1 A_{n}$ quiver is of finite representation type, which means that there are only finitely many indecomposable representations.

One consequence of this theorem is the following result.
Corollary 3.17. Let \mathcal{A} be defined as in Theorem 3.16. If no two positive elements in \mathcal{A} have a common root and if none of the polynomials in \mathcal{A} have multiple roots, then any indecomposable representations of the $N=1 A_{n}$ quiver are simple representations.

I do not know whether Theorem 3.16 and Corollary 3.17 are still correct if $\mathfrak{W}_{A_{n}}$ is replaced by $\mathfrak{W}_{D_{n}}$ or $\mathfrak{W}_{E_{n}}$.

4. A Correspondence between Simple Representations and an ADE Configuration of Curves

Let X be an ADE fibration with base \mathbb{C} and let Y be the small resolution of X. Let $\pi: Y \rightarrow X$ be the blowup map. An ADE configuration of curves in Y is a 1-dimensional connected projective scheme $C \subset Y$ such that
(1) there exists a surface $\bar{S} \subset Y, C \subset \bar{S}$;
(2) letting $S=\pi(\bar{S})$, then $\bar{S} \rightarrow S$ is a resolution of ADE singularities with exceptional scheme C.
We need the following proposition, which is essentially part 3 of Theorem 1 in [5].

Proposition 4.1. Let $\left\{e_{i}\right\}$ be the simple roots of Γ. The irreducible components of the discriminant divisor $\mathfrak{D} \subset \operatorname{Res}(\Gamma)$ are in one-to-one correspondence with the positive roots of Γ. Under the identification of $\operatorname{Res}(\Gamma)$ with the complex root space U, the component \mathfrak{D}_{v} corresponding to the positive root $v=\sum_{i=1}^{n} a_{i} e_{i}$ is $v^{\perp} \subset U$, that is, the hyperplane perpendicular to v.

Moreover, \mathfrak{D}_{v} corresponds exactly to those deformations of Z_{0} in \mathcal{Z} to which the curve

$$
C_{v}:=\bigcup_{i=1}^{n} a_{i} C_{e_{i}}
$$

lifts. For a generic point $t \in \mathfrak{D}_{v}$, the corresponding surface \mathcal{Z}_{t} has a single smooth -2 -curve in the class $\sum_{i=1}^{n} a_{i}\left[C_{e_{i}}\right]$. Hence there is a small neighborhood B of t such that the restriction of \mathcal{Z} to B is isomorphic to a product of \mathbb{C}^{n-1} with the semi-universal family over $\operatorname{Res}\left(A_{1}\right)$.

The following example gives a concrete correspondence between the ADE configuration of curves in Y and the simple representations of an $N=1$ ADE quiver in the A_{2} case.

Example 4.2. Let X be defined by

$$
A_{2}: x y+\left(z+t_{1}(t)\right)\left(z+t_{2}(t)\right)\left(z+t_{3}(t)\right)=0
$$

with

$$
t_{1}(t)+t_{2}(t)+t_{3}(t)=0
$$

In Table 1, "Curve" means an ADE configuration of curves in the exceptional set of the fibration. We use "dim V " to denote the dimension vector of an indecomposable representation of the $N=1 \mathrm{ADE}$ quiver.

Table 1 can be explained in the following way. If $t_{1}(\lambda)=t_{2}(\lambda) \neq t_{3}(\lambda)$ for some λ, then by Proposition 4.1 there exists an ADE configuration of curves $C \subset$ Y. By [2], we know that $P_{1}(\lambda)=t_{1}(\lambda)-t_{2}(\lambda)=0$. Thus, by our Main Theorem, there exists a simple representation V of an $N=1$ ADE quiver with $\operatorname{dim} V=$ $(1,0)$ that corresponds to C.

The other cases are similar, so we omit them.

Table 1

Condition	Singularity	Curve	$\operatorname{dim} V$
$t_{1}(\lambda)=t_{2}(\lambda) \neq t_{3}(\lambda)$	A_{1}		
$t_{1}(\lambda) \neq t_{2}(\lambda)=t_{3}(\lambda)$	A_{1}		
$t_{1}(\lambda)=t_{3}(\lambda) \neq t_{2}(\lambda)$	A_{2}		
$t_{1}(\lambda) \neq t_{2}(\lambda) \neq t_{3}(\lambda)$	-	-	-

This example is generalized in the following theorem.
Theorem 4.3. Let X be an ADE fibration corresponding to Γ with base \mathbb{C}, and let Y be a small resolution of X. Let $\mathcal{B}_{\Gamma}=\left\{r_{i}\left(P_{j}(x)\right) \mid r_{i} \in \mathfrak{W}_{\Gamma}\right\}$, where \mathfrak{W}_{Γ} is the Weyl group of Γ and P_{j} is the polynomial defined in relation (2.2). Assume that no element in \mathcal{B}_{Γ} has multiple roots and assume that $(*)$ holds. Then there exists a one-to-one correspondence between the simple representations of the $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$ and the ADE configuration of curves in Y.

Proof. By [7] and [5], we have the commutative diagram

where \mathbb{C} denotes the set of complex numbers and \mathcal{Y} denotes the \mathbb{C}^{*}-equivariant simultaneous resolution $\mathcal{Y} \rightarrow \mathcal{X}$ inducing $Y_{0} \rightarrow X_{0}$. For a simple representation V of the $N=1$ ADE quiver ($\Gamma,\left\{P_{j}\right\}$), we have

$$
\begin{equation*}
\sum \operatorname{dim} V(i) \cdot P_{i}(\lambda)=0 \tag{4.1}
\end{equation*}
$$

for some λ. The dimension vector $(\operatorname{dim} V(i))_{i \in V_{\Gamma}}$ will correspond to a positive root ρ. By [2], we can express $P_{i}(x), i=1, \ldots, n$, in terms of $t_{i}, i=1, \ldots, n$. By Proposition 3.1 or part 3 of Theorem 1 in [5, p. 467], (4.1) will give an equation for ρ^{\perp}. Hence $f(\lambda)=\left(t_{i}(\lambda)\right)_{i \in V_{\Gamma}} \in \rho^{\perp}$. It follows from Proposition 4.1 that there exists an ADE configuration of curves $C_{\rho} \subset \pi^{-1}(\lambda) \subset Y$.

Conversely, for an ADE configuration of curves $C \subset Y$ we have $\varphi \circ \pi(C)=$ $\lambda \in \mathbb{C}$. (Since π is projective, $\varphi \circ \pi(C)$ is projective in \mathbb{C} and it follows that $\varphi \circ \pi(C)$ is a finite subset of \mathbb{C}. Since C is connected, $\varphi \circ \pi(C)$ is connected in \mathbb{C}; hence $\varphi \circ \pi$ is a point in \mathbb{C}.) Moreover, $\pi(C)$ is a point in X. (By [5], we know that \mathcal{X} is affine; hence $\pi(C)$ is a point in X.) By Proposition 4.1, $f(\lambda) \in \rho^{\perp}$ for some positive root ρ. Since we assume that each element in \mathcal{B}_{Γ} has simple roots and that $(*)$ holds, C corresponds to a unique positive root ρ. We can express ρ as $\rho=\sum a_{i} \cdot \rho_{i}$, where ρ_{i} is a simple positive root. From our Main Theorem, we can apply the reflection functors to construct a simple representation V of the $N=1$ ADE quiver $\left(\Gamma,\left\{P_{j}\right\}\right)$ that corresponds to the positive root ρ. This finishes the proof of Theorem 4.3.

References

[1] L. N. Bernstein, I. M. Gelfand, and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspekhi. Mat. Nauk 28 (1973), 17-323.
[2] F. Cachazo, S. Katz, and C. Vafa, Geometric transitions and $\mathcal{N}=1$ quiver theories, e-print, 2001, hep-th/0108120.
[3] D. Cremades, L. E. Ibanez, and F. Marchesano, Standard model at intersecting D5-branes: Lowering the string scale, Nuclear Phys. B 643 (2002), 93-130.
[4] P. Gabriel, Unzerlegbare darstellungen I, Manuscripta Math. 6 (1972), 71-103; correction, 309.
[5] S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), 449-530.
[6] C. Kokorelis, Exact standard model structures from intersecting D5-branes, Nuclear Phys. B 677 (2004), 115-163.
[7] H. Pinkham, Factorization of birational maps in dimension 3, Singularities, part 2 (Arcata, 1981), Proc. Sympos. Pure Math., 40, pp. 343-371, Amer. Math. Soc., Providence, RI, 1983.
[8] B. Szendrői, Sheaves on fibered threefolds and quiver sheaves, e-print, 2005, math.AG/0506301.
[9] X. Zhu, Finite representations of a quiver arising from string theory and their correspondence with semi-stable sheaves, Ph.D. thesis, Oklahoma State Univ., Stillwater, 2005.

Department of Mathematics
Central Michigan University
Mount Pleasant, MI 48859
zhulx@cmich.edu

[^0]: Received August 5, 2005. Revision received May 9, 2006.

