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Representations of N = 1 ADE Quivers
via Reflection Functors

Xinyun Zhu

1. Introduction

In 1972, Gabriel [4] published his celebrated theorem about the finite representa-
tion type of ADE quivers without relations. Since then, the study of quiver rep-
resentations has been an important topic because it provides a successful way to
solve problems in the representation theory of algebras and Lie groups. This study
has recently attracted the attention of physicists (see [2; 3; 6]) owing to its close
relation with the study of D-branes. A special type of quiver arising from string
theory, which we will call the “N = 1 ADE quiver”, was introduced in [2] (see
Definition 2.1 herein). This quiver has a close relation with the usual ADE quiver.
The representations of N = 1 ADE quivers will satisfy the relations∑

i

sijQjiQij + Pj(�j ) = 0, Qij�j = �iQij ,

whereQij is a linear map attached to an edge and �i is a linear map attached to a
vertex.

The purpose of this paper is to construct, under certain conditions, a finite-to-one
correspondence between the simple representations of an N = 1 ADE quiver and
the positive roots of the usual ADE quiver; this matches the physicists’predictions.

The reflection functors used in [1] to reprove Gabriel’s theorem provide us with
a way to attack this problem. In this paper we first modify the reflection functors
of [1] in Definition 2.5, define new functors Fk in Definition 3.6, and then apply
our modified reflection functors Fk to obtain our Main Theorem in Section 3.2.
Some related results using different methods were given in [8].

This paper is organized as follows. In Section 2, we give the definition ofN = 1
ADE quivers and their representations, state the Main Theorem, and introduce our
modified reflection functors. In Section 3, we apply our modified reflection func-
tors to prove the Main Theorem. In Section 4, we give a correspondence between
simple representations and an ADE configuration of curves.
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2. Description of N = 1 ADE Quivers, Statement of the
Main Theorem, and Definition of Reflection Functors

2.1. Describing N = 1 ADE Quivers

To make our presentation intelligible to nonexperts, we briefly recall some defini-
tions and established facts. (Here all vector spaces are over a field k.)

A quiver 
 = (V
 ,E
)—without relations—is a directed graph. A repre-
sentation (V, f ) of a quiver 
 is an assignment to each vertex i ∈ V
 of a vec-
tor space V(i) and to each directed edge ij ∈ E
 of a linear transformation
fji : V(i)→ V(j).

A morphism h : (V, f )→ (V ′, f ′) between representations of 
 over k is a col-
lection {hi : V(i)→ V ′(i)}i∈V
 of k-linear maps such that, for each edge ij ∈E
 ,
the obvious diagram commutes. Compositions of morphisms are defined in the
usual way. For a path p : i1 → i2 → · · · → ir in
 and a representation (V, f ), we
let fp be the composition of the linear transformations fik+1ik : V(ik) → V(ik+1),
1 ≤ k < r. Given vertices i, j in V
 and paths p1, . . . ,pn from i to j, a rela-
tion σ on quiver 
 is a linear combination σ = a1p1 + · · · + anpn, ai ∈ k. If
(V, f ) is a representation of 
, then we extend the f -notation by setting fσ =
a1fp1 +· · ·+anfpn : V(i)→ V(j). A quiver with relations is a pair (
, ρ), where
ρ = (σt )t∈T is a set of relations on
; and a representation (V, f ) of (
, ρ) is a rep-
resentation (V, f ) of 
 for which fσ = 0 for all relations σ ∈ ρ. We then define,
in the obvious way, subrepresentations (V ′, f ′) of (V, f ), the sum of representa-
tions, and when a representation (V, f ) of (
, ρ) is indecomposable or simple.

Definition 2.1. Given an ADE Dynkin diagram D = (VD,ED)—an undirected
graph—we let the associated quiver
D be
D = (V
D ,E
D )withV
D := VD and

E
D = {(i, j), (j, i) | {i, j} ∈ED}
⋃

{(i, i) | i ∈VD}.
In other words, this is the standard digraph associated to the graph D, except that
we add a loop at each vertex. To illustrate this, we take theEn case as an example.
Recall that the Dynkin diagram for En is

n

En : 1 2 3 · · · (n− 1);
thus, the associated quivers for En (n = 6, 7, 8) are
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En : 1

e1

�� e21
��

2

e2

��

e12

��

e32
��

3

e3

�� e43
��

en3

��

e23

�� 4
e34

��

e4

��

· · · n− 2

en−2

�� en−1,n−2
��
n− 1

en−1

��

en−2,n−1

��

n

en

��

e3n

��

The N = 1 ADE quivers are just the quivers associated to the displayed graphs
but with the following relations. For all vertices i, j with i 
= j, the relations have
the form ∑

i

sij ejieij + Pj(ej ) = 0, eij ej = eieij , (2.1)

where

sij =




0 if i and j are not adjacent,

1 if i and j are adjacent and i > j,

−1 if i and j are adjacent and i < j,

and where Pj(x) is a certain fixed polynomial associated with vertex j for each j.
If (V, f ) is a representation of an N = 1 ADE quiver, then the corresponding

structures are

En : V(1)

�1

�� Q21 		
V(2)

�2

��

Q12





Q32 		
V(3)

�3

�� Q43 		

Qn3

��

Q23



 V(4)
Q34





�4

��

· · · V(n− 2)

�n−2

�� Qn−1,n−2
		
V(n− 1)

�n−1

��

Qn−2,n−1





V(n)

�n

��

Q3n





where we have written Qij = feij and �j = fej . Then, for all vertices i, j with
i 
= j, the relations (2.1) become∑

i

sijQjiQij + Pj(�j ) = 0, Qij�j = �iQij . (2.2)

Remark 2.2. From now on, we use (
, {Pj}) to denote an N = 1 ADE quiver
satisfying relations (2.1).

The following formulas define an action of the Weyl group on the space of poly-
nomials Pj .

Definition 2.3. Let Wk be the Weyl group of the Dynkin diagram 
, and let
ri ∈ Wk (1 ≤ i ≤ n) be a set of generators of reflections. If j is distinct from i
and not adjacent to i, then ri(Pj(x)) = Pj(x). If j is adjacent to i and j 
= i, then
ri(Pj(x)) = Pj(x)+ Pi(x). Finally, ri(Pi(x)) = −Pi(x).



674 Xinyun Zhu

Let (
, {Pj}) be an N = 1 ADE quiver. Let

A
 =
{∑
i

niPi | ni ∈ Z , not all ni zero

}
,

where the Pi (1 ≤ i ≤ n) are the polynomials in relations (2.2).

2.2. Statement of the Main Theorem

(∗) No two elements
∑
niPi and

∑
miPi of the set A
 have a common root un-

less there is a constant c with mi = cni for all i.

Lemma 2.4. (∗) holds for any very general collection of polynomials Pi of pos-
itive degree.

Proof. Left to the reader.

We prove the following Main Theorem in Section 3.2.

Main Theorem. Let (
, {Pj}) be an N = 1 ADE quiver. Let B
 = {ri(Pj(x))},
where ri ∈ W
 and wherePj (j ∈V
) are the polynomials defined in relation (2.2).
Assume that no element in B
 has a multiple root. If (∗) holds, then (
, {Pj}) has
only finitely many nonisomorphic simple representations.

2.3. Reflection Functors

Suppose we are given an N = 1 ADE quiver (
, {Pj}) and k ∈ V
. Then we de-
note by 
+

k the quiver defined by deleting all arrows starting from k and by 
−
k

the quiver defined by deleting all arrows ending at k.
Given a representation V of an N = 1 ADE quiver (
, {Pj}), we can define a

representation of 
+
k , which we still denote as V, by forgetting all maps that have

domain V(k). Similarly, we define a representation of 
−
k , which we still denote

by V, by forgetting all maps that have range V(k).
The following definition is a modification of that of [1]. Let (
, {Pj}) be an

N = 1 ADE quiver and let k be a vertex of 
. Let


k = {i | i adjacent to k}.
Definition 2.5. For a quiver representation W of 
+

k , define a representation
F +
k (W ) of 
−

k by

F +
k (W )(i) =

{
W(i) if i 
= k,
kerh if i = k, (2.3)

where
h :

⊕
i∈
k

W(i)→ W(k)

is defined by
h((xi)i∈
k ) =

∑
i∈
k

sikQki xi .

If i, j 
= k, we define
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Q′
ij = Qij : W(j)→ W(i).

If i ∈
k, defineQ′
ik : F +

k (W )(k)→ W(i) by

Q′
ik(xj )j∈
k = −ski xi . (2.4)

For a quiver representation U of 
−
k , define a representation F −

k (U) of 
+
k by

F −
k (U)(i) =

{
U(i) if i 
= k,
coker g if i = k, (2.5)

where
g : U(k)→

⊕
i∈
k

U(i)

is defined by
g(x) = (Qik x)i∈
k .

DefineQ′
ki : U(i)→ F −

k (U)(k) by the natural composition of

U(i)→
⊕
j∈
k

U(j)→ F −
k (U)(k). (2.6)

Remark 2.6. Notice that, in Definition 2.5, there is no loop associated to the
vertex k of the quiver 
+

k or the quiver 
−
k .

Remark 2.7. The definitions of the F +
k (W ) andQ′

ik in Definition 2.5 are differ-
ent from the corresponding definitions in [1], whereas F −

k (U) and Q′
ki in Defini-

tion 2.5 are the same as the corresponding definitions in [1].

3. Finite Representations of an N = 1 ADE Quiver

In this section we give a proof that, in the case of simple and distinct roots, an
N = 1 ADE quiver has finitely many nonisomorphic simple representations.

3.1. Applying the Reflection Functors to N = 1
ADE Quiver Representations

Lemma 3.1. Let V be a representation of an N = 1 ADE quiver (
, {Pj}), and
let vj be a λ-eigenvector of �j . Then Qij�jvj either is a λ-eigenvector of �i or
is 0.

Proof. If vj is an eigenvector of �j corresponding to eigenvalue λ, then by (2.2)
we have

Qij�jvj = �iQijvj ,
which implies that

λQijvj = �iQijvj .
Hence, Qijvj is either an eigenvector of �i corresponding to eigenvalue λ or a
0-vector.

Lemma 3.2. LetV be a simple representation of anN = 1 ADE quiver (
, {Pj}).
Then there exists a λ such that, if vi ∈V(i) 
= 0, then �ivi = λvi.
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Proof. Let A = {d | V(d ) 
= 0}. Then A is connected. Otherwise, V is not sim-
ple. Let a = min A; then �a has an eigenvector va with eigenvalue λ. For l ∈
A , let U(l) be the λ-eigenvector space of�l. By Lemma 3.1, it is easy to see that
W = {U(l) : l ∈ A} is a subrepresentation of V. Since V is simple it follows that
W = V, which proves the result.

Therefore, to show that we have only finitely many simple representations, it suf-
fices to consider representationsV for which there exists a λ such that, if 0 
= vd ∈
V(d ), then �dvd = λvd. A representation V with this property will be called a
type-(∗∗) representation.

Lemma 3.3. Let V be a simple representation of anN = 1 ADE quiver (
, {Pj}).
Suppose V is not concentrated at vertex k. Then

dim(F +
k (V ))k =

∑
i∈
k

dim(V(i))− dim(V(k)).

Proof. We know that (F +
k (V ))(k) = kerh, where h :

⊕
i∈
k V(i)→ V(k) is de-

fined by

h(xi)i∈
k =
∑
i∈
k

sikQki xi .

Proving the lemma is equivalent to proving that h is surjective.
Suppose V(k) 
= 0. If h is not surjective and h 
= 0, then we can replace V(k)

by h
(⊕

i∈
k V(i)
)

and obtain a subrepresentation of V. But this contradicts the
simplicity of V. If V(k) = 0, then h is surjective because h ≡ 0 in this case.

Lemma 3.4. Let V be a simple representation of anN = 1 ADE quiver (
, {Pj}),
and suppose that V is not concentrated at vertex k. Then

dim(F −
k (V ))k =

∑
i∈
k

dim(V(i))− dim(V(k)).

Proof. We know that (F −
k (V ))(k) = coker g, where g : V(k) → ⊕

i∈
k V(i) is
defined by g(x) = (Qik x)i∈
k . Proving the lemma is equivalent to proving that g
is injective.

Suppose V(k) 
= 0. If ker g 
= 0, then we can define a simple subrepresentation
that is concentrated at vertex k. This contradicts the simplicity of V.

If V(k) = 0, then g is injective because g ≡ 0 in this case.

Lemma 3.5. Let V be a type-(∗∗) representation of an N = 1 ADE quiver
(
, {Pj}), and suppose that V is not concentrated at the vertex k. If Pk(λ) 
= 0,
then there is a natural isomorphism ϕ between F +

k (V )(k) and F −
k (V )(k).

Proof. We have

F −
k (V )(k) = coker g

and
F +
k (V )(k) = kerh.
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Since V is a type-(∗∗) representation, the relation
∑
i∈
k sikQkiQik + Pk(�k) =

0 becomes h � g+Pk(λ)I = 0. Since Pk(λ) 
= 0, it follows that g is injective and
h is surjective. Since V is of type (∗∗) and is not concentrated at k, we obtain

dimF +
k (V )(k) = dimF −

k (V )(k) =
∑
i∈
k

dimV(i)− dimV(k)

and

0

��

F +
k (V )(k)

h′
��

ϕ

������������

0 		 V(k)

−Pk(λ)
������������

g
		
⊕
i∈
k V(i)

h

��

g ′
		 F −
k (V )(k)

		 0.

V(k)

��

0

Since Pk(λ) 
= 0, we have im g ∩ F +
k (V )(k) = {0}. Let g ′ :

⊕
i∈
k V(i) →

F −
k (V )(k) be the natural surjective map induced by g, and let h′ : F +

k (V )(k) →⊕
i∈
k V(i) be the natural inclusion map induced by h. Then

ϕ = g ′ � h′ : F +
k (V )(k)→ F −

k (V )(k)

is a natural isomorphism because dimF +
k (V )(k) = dimF −

k (V )(k) and ϕ is
injective by im g ∩ F +

k (V )(k) = {0}.
Definition 3.6. By Lemma 3.5, if Pk(λ) 
= 0 then, for a type-(∗∗) representa-
tion V, we can construct a new representation Fk(V ) of (
, {Pj}) as

Fk(V )(i) =
{
V(i) if i 
= k,
F +
k (V )(k) if i = k.

Here we defineQ′
lk as it is defined for F +

k (V ) and defineQ′
km as the composition

map Pk(λ) · ϕ−1 �Q′
km : V(m) → F +

k (V )(k), where Q′
km : V(m)→ F −

k (V )(k)

is the natural map defined in F −
k (V ) and ϕ : F +

k (V )(k)→ F −
k (V )(k) is the iso-

morphism defined in Lemma 3.5.
Now define

�′
i : Fk(V )(i)→ Fk(V )(i)

by �′
i(x) = λx, where λ is the eigenvalue of �i on V(i) that appeared in the rep-

resentation V of 
. Abusing notation, we allow �i to stand for �′
i .
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Remark 3.7. The reflection functor Fk is acting only on the type-(∗∗) represen-
tations, not on all representations on the N = 1 ADE quiver (
, {Pj}). How to
define a reflection functor that acts on all representations of theN = 1ADE quiver
is still an open problem.

Lemma 3.8. If V is a representation of an N = 1 ADE quiver (
, {Pj}), then∑
i

TrPi(�i) = 0.

As a result, if V is a type-(∗∗) representation of an N = 1 ADE quiver then∑
i

dim(V(i)) · Pi(λ) = 0.

Proof. This follows because TrQijQji = TrQjiQij for every pair i and j.
Now take the trace operation to relations (2.2) and then sum the resulting equa-

tions. The result follows.

Proposition 3.9. Let V be a simple representation of an N = 1 ADE quiver
(
, {Pj}) that is not concentrated at vertex k. If Pk(λ) 
= 0, then Fk(V ) satisfies
the following new relations:∑

i

sijQ
′
jiQ

′
ij + rk(Pj(�j )) = 0, Q′

ij�j = �iQ′
ij . (3.1)

Thus, Fk(V ) is a representation of (
, {rk(Pj )}).
Proof. If i /∈ 
k and i 
= k, where i is a vertex of (
, {Pj}) such that V(i) 
= 0,
then there is nothing to prove. For j ∈
k ∪ {k} and b ∈ (Fk(V ))(j), we have

Q′
ij�jb = λQ′

ij b = �iQ′
ij b.

For i ∈
k and x ∈V(i), by Definition 3.6 we know that

Q′
ki x = Pk(λ) · ϕ−1 �Q′

ki x,

whereQ′
ki x = [(xj )j∈
k ] ∈F −

k (V )(k) for

xj =
{

0 if j 
= i,
x if j = i.

After a short computation we see that

Q′
ki x = (yj )j∈
k ,

where

yj =
{
Pk(λ)x + sikQikQki x if j = i,
Qjk sikQki x if j 
= i.

It follows that

skiQ
′
ikQ

′
ki x = skiQ′

ik(yj )j∈
k = −Pk(λ)x −Qik sikQki x.
Hence, for i ∈
k,
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∑
j

sjiQ
′
ijQ

′
ji x + rk(Pi(λ))x

=
∑
j

sjiQ
′
ijQ

′
ji x + Pi(λ)x + Pk(λ)x

=
∑
j 
=k
sjiQijQji x + skiQ′

ikQ
′
ki x + Pi(λ)x + Pk(λ)x

=
∑
j 
=k
sjiQijQji x − Pk(λ)x −Qik sikQki x + Pi(λ)x + Pk(λ)x

= 0.

Let (xi)i∈
k ∈F +
k (V )(k). Then

sikQ
′
kiQ

′
ik(xi)i∈
k = Q′

ki xi = (xij )j∈
k ,
where

xij =
{
Pk(λ)xi +Qik sikQki xi if j = i,
Qjk sikQki xi if j 
= i.

Therefore, ∑
i∈
k

sikQ
′
kiQ

′
ik(xi)i∈
k + rk(Pk(λ))(xi)i∈
k

=
∑
i∈
k

sikQ
′
kiQ

′
ik(xi)i∈
k − Pk(λ)(xi)i∈
k

=
∑
i∈
k
(xij )j∈
k − Pk(λ)(xi)i∈
k

= 0.

By Definition 2.3 and Proposition 3.9, we have the following result.

Corollary 3.10. Let V be a simple representation of an N = 1 ADE quiver
(
, {Pj}) that is not concentrated at vertex k. Then∑

dim(Fk(V )(i))rk(Pi(x)) =
∑

dimV(i)Pi(x).

Lemma 3.11. If V is a simple representation of an N = 1 ADE quiver (
, {Pj})
that is not concentrated at vertex k and if Pk(λ) 
= 0, then FkFk(V ) ∼= V. Con-
sequently, Fk(V ) is a simple representation.

Proof. We know thatQ′
ki : V(i)→ Fk(V )(k) is defined by

Q′
ki xi = Pk(λ)ϕ−1Qki xi,

where Qki : V(i) → F −
k (V )(k) is the composition of V(i) → ⊕

j∈
k V(j) and⊕
j∈
k V(j)→ F −

k (V )(k) (see Definition 3.6). We also know that

FkFk(V )(k) =
{
(xj )∈

⊕
j∈
k

V(j)

∣∣∣ ∑
j∈
k

sjkQ
′
kj xj = 0

}
.
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Hence ∑
j∈
k

sjkQ
′
kj xj = Pk(λ)ϕ−1

∑
j∈
k

sjkQkj xj .

Since Pk(λ) 
= 0 and ϕ is an isomorphism, we have

FkFk(V )(k) = {(−skjQjk x)j∈
k | x ∈V(k)}.
Let g : V → FkFk(V ) be defined as follows:

gi =
{
i : V(i)→ FkFk(V )(i) = V(i) if i 
= k,
(−skjQjk)j∈
k if i = k;

here i : V(i)→ FkFk(V )(i) = V(i) is the identity map. Then it is clear that (3.2)
is commutative:

V(k)
Qik 		

gk

��

V(i)

gi

��

FkFk(V )(k)
Q′′
ik 		 V(i).

(3.2)

Let’s check the commutativity of (3.3):

V(i)
Qki 		

gi

��

V(k)

gk

��

V(i)
Q′′
ki 		 FkFk(V )(k).

(3.3)

Let (Q′′
ki xi)j (resp. (Q′

ki xi)j ) denote the j th coordinate of Q′′
ki xi (resp. Q′

ki xi).

We know that

(Q′′
ki xi)j =

{ −Pk(λ)xi +Q′
ik sikQ

′
ki xi if j = i,

Q′
jk sikQ

′
ki xi if j 
= i

and

(Q′
ki xi)j =

{
Pk(λ)xi +Qik sikQki xi if j = i,
Qjk sikQki xi if j 
= i.

Let i > k. Then we have

(Q′′
ki xi)i = −Pk(λ)xi +Q′

ik sikQ
′
ki xi

= −Pk(λ)xi + Pk(λ)xi +Qik sikQki xi
= Qik sikQki xi = QikQki xi
= −skiQikQki xi .

If i > k and j > k, then

(Q′′
ki xi)j = Q′

jk sikQ
′
ki xi = Qjk sikQki xi = QjkQki xi = −skjQjkQki xi;

if i > k and j < k, then

(Q′′
ki xi)j = Q′

jk sikQ
′
ki xi = Q′

jkQ
′
ki xi = −QjkQki xi = −skjQjkQki xi .
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Now let i < k. Then we have

(Q′′
ki xi)i = −Pk(λ)xi +Q′

ik sikQ
′
ki xi

= −Pk(λ)xi −Q′
ikQ

′
ki xi

= −Pk(λ)xi + (Pk(λ)xi +Qik sikQki xi)
= Qik sikQki xi = −QikQki xi
= −skiQikQki xi .

If i < k and j > k, then

(Q′′
ki xi)j = Q′

jk sikQ
′
ki xi = −Q′

jkQ
′
ki xi

= −Qjk sikQki xi = QjkQki xi = −skjQjkQki xi;
if i < k and j < k, then

(Q′′
ki xi)j = Q′

jk sikQ
′
ki xi = −Q′

jkQ
′
ki xi

= Qjk sikQki xi = −QjkQki xi = −skjQjkQki xi .
Therefore, diagram (3.3) is commutative.

Diagram (3.4) is commutative because λ is a common eigenvalue of V(k) and
FkFk(V )(k):

V(k)

gk

��

λ 		 V(k)

gk

��

FkFk(V )(k)
λ 		 FkFk(V )(k).

(3.4)

If gk(x) = 0 for an x ∈ V(k), then Qjkx = 0 for all j ∈ 
k. By the proof
of Lemma 3.4, it follows that x = 0. Hence gk is injective. Since V(k) and
FkFk(V )(k) have the same dimension, gk must be an isomorphism. We know that
gi = id whenever i 
= k, so g : V → FkFk(V ) is also an isomorphism.

We next prove the latter part of the lemma. We claim that there is no simple sub-
representation of Fk(V ) that is concentrated at vertex k. By way of contradiction,
suppose there does exist such a simple representationW ⊂ Fk(V ) concentrated
at vertex k. Then, for (xi)i∈
k ∈W, since Q′

jk(xi)i∈
k = −skj xj = 0, it would
follow that xj = 0 for all j ∈
k and hence (xi)i∈
k = 0.

Since the natural map
⊕
i∈
k V(i)→ F −

k (V )(k) is surjective, ϕ : Fk(V )(k) =
F +
k (V )(k) → F −

k (V )(k) is an isomorphism, and Pk(λ) 
= 0, we conclude
that {Q′

kiV (i)}i∈
k generates Fk(V )(k). As a result, there is no subrepresenta-
tion W ⊂ Fk(V ) with dimW(i) = dimV(i) for all i ∈ 
k and i 
= k and with
dimW(k) < dimFk(V )(k).

Suppose there exists a simple subrepresentationW ⊂ Fk(V ) that is not concen-
trated at vertex k.We thus obtain a proper subrepresentationFk(W ) ⊂ FkFk(V ) ∼=
V. Since V is a simple representation, this cannot occur.

Corollary 3.12. Assume that (∗) holds. If V is a simple representation, then
either Fk(V ) is simple or V ∼= Lk , where Lk is a simple representation concen-
trated at vertex k.
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Proof. Assume thatV is not concentrated at vertex k. SinceV is simple it follows
that, by Lemma 3.3 and Lemma 3.4, we can apply Fk toV. Then Fk(V ) is simple
by the latter part of Lemma 3.11.

3.2. A Proof of the Main Theorem

Let 
 be a quiver. Following [1], for a representation V we define dim(V ) =
(dimV(i))i∈V
 . Let C
 = {x = (xα) | xα ∈ Q, α ∈ V
}, where Q denotes the
set of rational numbers. We call a vector x = (xα) positive (written x > 0) if
x 
= 0 and xα ≥ 0 for all α ∈V
. For each β ∈V
 , denote by σβ the linear trans-
formation in C
 defined by the formulas (σβ x)γ = xγ for γ 
= β and (σβ x)β =
−xβ + ∑

l∈
β xl , where l ∈
β is the set of vertices adjacent to β.
For each vertex α ∈V
 we denoted by
α the set of edges containing α. Let0 be

an orientation of the graph 
. We denote by σα0 the orientation obtained from0
by changing the directions of all edges l ∈
α. Following [1], we say that a vertex
i of a quiver (
, {Pj}) with orientation 0 is (−)-accessible (resp. (+)-accessible)
if, for any edge e having i as a vertex, the final vertex f(e) of e satisfies f(e) 
= i
(resp. the initial vertex i(e) of e satisfies i(e) 
= i).We say that a sequence of ver-
tices α1,α2 , . . . ,αk is (+)-accessible with respect to0 if α1 is (+)-accessible with
respect to0, α2 is (+)-accessible with respect to σα10, α3 is (+)-accessible with
respect to σα2σα10, and so on. We define a (−)-accessible sequence similarly.

Definition 3.13. Let 
 be a graph without loops. We denote by B the quadratic
form on the space C
 defined by the formula B(x) = ∑

x 2
α − ∑

l∈E
 xr1(l ) xr2(l ),
where r1(l ) and r2(l ) are the ends of the edge l. We denote by 〈·, ·〉 the corre-
sponding symmetric bilinear form.

Lemma 3.14 [1, Lemma 2.3]. Suppose that the form B for the graph 
 is posi-
tive definite. Let c = σn · · · σ2σ1. If x ∈ C
 and x 
= 0 then, for some i, the vector
cix is not positive.

We are now ready to give a proof of our Main Theorem as follows.

Proof of Main Theorem. LetV be a simple representation of anN = 1ADE quiver
(
, {Pj}), and let A = {i | V(i) 
= 0}. We can assume that A is connected, since
otherwise V would be decomposable. We apply the forgetful functors to V and
obtain the following (+)-accessible (resp. (−)-accessible) diagram (no loop):

V(1) · · ·

 V(k)

 · · ·

 V(n)



V(l)





V(1) 		 · · · 		 V(k) 		

��

· · · 		 V(n)

V(l).
(For the type-A Dynkin diagram case, V(l) = 0.)
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Let c = σn · · · σ2σ1. By [1], there exists a k such that c k(dimV ) ≯ 0. By (∗) and
Corollary 3.10, we know that

∑
i dimV(i)·Pi(x) is the only element inA
 that van-

ishes at λ. By Corollary 3.12 and Proposition 3.9, this implies the existence of ver-
tices β1, . . . ,βl and a simple representationLβk+1 of (
, {Qj}) that satisfies the new
relations described in Proposition 3.9 and is concentrated at a vertex of 
 such that

V = Fβ1 · · ·Fβk(Lβk+1).

Here V corresponds to the positive root

dimV = σβ1 · · · σβk(βk+1),

where βk+1 = (βk+1(i)) and

βk+1(i) =
{

0 if i 
= k + 1,

1 if i = k + 1.

From this it follows that
∑
i dimV(i) ·Pi(x)∈ B
. Because the usual ADE quiver

has only finitely many positive roots, N = 1 ADE quivers have finite many sim-
ple representations. This finishes the proof of the theorem.

The Main Theorem implies the following corollary.

Corollary 3.15. Let (
, {Pj}) be anN = 1 ADE quiver. Let B
 = {ri(Pj(x)) |
ri ∈ W
}, where W
 is the Weyl group of 
 and Pj is the polynomial defined
on relation (2.2). Assume that each element in B
 has simple roots. If (∗) holds,
then there is a finite-to-one correspondence between simple representations of the
N = 1 ADE quiver (
, {Pj}) and the positive roots of an ADE Dynkin diagram.

Proof. We know that B
 has only finitely many elements. Each element of B

that is actually a polynomial has only finitely many simple roots. By our Main
Theorem, each root of an element in B
 corresponds with a simple representation.
Hence, the desired result follows.

3.3. Further Discussions

In [9] the author proved the following theorem without using reflection functors.

Theorem 3.16. Let A = {rPi(x) | r ∈ WAn}, where the Pi(x) are the polynomi-
als in relation (2.2) and WAn is the Weyl group of An. If no two positive elements
in A have a common root and if none of the polynomials in A are identically zero,
then the N = 1An quiver is of finite representation type, which means that there
are only finitely many indecomposable representations.

One consequence of this theorem is the following result.

Corollary 3.17. Let A be defined as in Theorem 3.16. If no two positive ele-
ments in A have a common root and if none of the polynomials in A have multiple
roots, then any indecomposable representations of the N = 1An quiver are sim-
ple representations.

I do not know whether Theorem 3.16 and Corollary 3.17 are still correct if WAn is
replaced by WDn or WEn.
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4. A Correspondence between Simple Representations
and an ADE Configuration of Curves

Let X be an ADE fibration with base C and let Y be the small resolution of X.
Let π : Y → X be the blowup map. An ADE configuration of curves in Y is a
1-dimensional connected projective scheme C ⊂ Y such that

(1) there exists a surface S̄ ⊂ Y, C ⊂ S̄;
(2) letting S = π(S̄ ), then S̄ → S is a resolution of ADE singularities with ex-

ceptional scheme C.

We need the following proposition, which is essentially part 3 of Theorem 1
in [5].

Proposition 4.1. Let {ei} be the simple roots of 
. The irreducible components
of the discriminant divisor D ⊂ Res(
) are in one-to-one correspondence with
the positive roots of 
. Under the identification of Res(
) with the complex root
space U, the component Dv corresponding to the positive root v = ∑n

i=1 aiei is
v⊥ ⊂ U, that is, the hyperplane perpendicular to v.

Moreover, Dv corresponds exactly to those deformations of Z0 in Z to which
the curve

Cv :=
n⋃
i=1

aiCei

lifts. For a generic point t ∈ Dv , the corresponding surface Zt has a single smooth
−2-curve in the class

∑n
i=1 ai[Cei ]. Hence there is a small neighborhood B of t

such that the restriction of Z to B is isomorphic to a product of Cn−1 with the
semi-universal family over Res(A1).

The following example gives a concrete correspondence between the ADE config-
uration of curves in Y and the simple representations of an N = 1 ADE quiver in
the A2 case.

Example 4.2. Let X be defined by

A2 : xy + (z+ t1(t))(z+ t2(t))(z+ t3(t)) = 0

with
t1(t)+ t2(t)+ t3(t) = 0.

In Table 1, “Curve” means an ADE configuration of curves in the exceptional set
of the fibration. We use “dimV ” to denote the dimension vector of an indecom-
posable representation of the N = 1 ADE quiver.

Table 1 can be explained in the following way. If t1(λ) = t2(λ) 
= t3(λ) for
some λ, then by Proposition 4.1 there exists an ADE configuration of curves C ⊂
Y. By [2], we know that P1(λ) = t1(λ) − t2(λ) = 0. Thus, by our Main Theo-
rem, there exists a simple representationV of anN = 1ADE quiver with dimV =
(1, 0) that corresponds to C.

The other cases are similar, so we omit them.
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Table 1

Condition Singularity Curve dimV

t1(λ) = t2(λ) 
= t3(λ) A1 P
1

�������

1 0
• •

t1(λ) 
= t2(λ) = t3(λ) A1 P
1

�������

0 1
• •

t1(λ) = t3(λ) 
= t2(λ) A2

P
1

����������������
P

1

����������������

1 1
• •

t1(λ) 
= t2(λ) 
= t3(λ) — — —

This example is generalized in the following theorem.

Theorem 4.3. Let X be an ADE fibration corresponding to 
 with base C, and
let Y be a small resolution ofX. Let B
 = {ri(Pj(x)) | ri ∈ W
}, where W
 is the
Weyl group of 
 and Pj is the polynomial defined in relation (2.2). Assume that
no element in B
 has multiple roots and assume that (∗) holds. Then there exists a
one-to-one correspondence between the simple representations of theN = 1 ADE
quiver (
, {Pj}) and the ADE configuration of curves in Y.

Proof. By [7] and [5], we have the commutative diagram

Y 		

π

��

Y

��

X 		

ϕ

��

X

��

C
f

		 Cn ,

where C denotes the set of complex numbers and Y denotes the C∗-equivariant
simultaneous resolution Y → X inducing Y0 → X0. For a simple representation
V of the N = 1 ADE quiver (
, {Pj}), we have

∑
dimV(i) · Pi(λ) = 0 (4.1)
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for some λ. The dimension vector (dimV(i))i∈V
 will correspond to a positive
root ρ. By [2], we can express Pi(x), i = 1, . . . , n, in terms of ti, i = 1, . . . , n. By
Proposition 3.1 or part 3 of Theorem 1 in [5, p. 467], (4.1) will give an equation
for ρ⊥. Hence f(λ) = (ti(λ))i∈V
 ∈ ρ⊥. It follows from Proposition 4.1 that there
exists an ADE configuration of curves Cρ ⊂ π−1(λ) ⊂ Y.

Conversely, for an ADE configuration of curves C ⊂ Y we have ϕ � π(C) =
λ ∈ C. (Since π is projective, ϕ � π(C) is projective in C and it follows that
ϕ �π(C) is a finite subset of C. Since C is connected, ϕ �π(C) is connected in C;
hence ϕ � π is a point in C.) Moreover, π(C) is a point in X. (By [5], we know
that X is affine; hence π(C) is a point in X.) By Proposition 4.1, f(λ) ∈ ρ⊥ for
some positive root ρ. Since we assume that each element in B
 has simple roots
and that (∗) holds, C corresponds to a unique positive root ρ. We can express ρ
as ρ = ∑

ai · ρi, where ρi is a simple positive root. From our Main Theorem,
we can apply the reflection functors to construct a simple representation V of the
N = 1 ADE quiver (
, {Pj}) that corresponds to the positive root ρ. This finishes
the proof of Theorem 4.3.
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