Michigan Math. J. 54 (2006)

Representations of N = 1 ADE Quivers
via Reflection Functors

XINYUN ZHU

1. Introduction

In 1972, Gabriel [4] published his celebrated theorem about the finite representa-
tion type of ADE quivers without relations. Since then, the study of quiver rep-
resentations has been an important topic because it provides a successful way to
solve problems in the representation theory of algebras and Lie groups. This study
has recently attracted the attention of physicists (see [2; 3; 6]) owing to its close
relation with the study of D-branes. A special type of quiver arising from string
theory, which we will call the “N = 1 ADE quiver”, was introduced in [2] (see
Definition 2.1 herein). This quiver has a close relation with the usual ADE quiver.
The representations of N = 1 ADE quivers will satisfy the relations

Z 5ijQ;iQij + Pj(®;) =0, Qij®; = ©;Qij,

where Q;; is a linear map attached to an edge and ®; is a linear map attached to a
vertex.

The purpose of this paper is to construct, under certain conditions, a finite-to-one
correspondence between the simple representations of an N = 1 ADE quiver and
the positive roots of the usual ADE quiver; this matches the physicists’ predictions.

The reflection functors used in [1] to reprove Gabriel’s theorem provide us with
a way to attack this problem. In this paper we first modify the reflection functors
of [1] in Definition 2.5, define new functors Fj in Definition 3.6, and then apply
our modified reflection functors F; to obtain our Main Theorem in Section 3.2.
Some related results using different methods were given in [8].

This paper is organized as follows. In Section 2, we give the definitionof N =1
ADE quivers and their representations, state the Main Theorem, and introduce our
modified reflection functors. In Section 3, we apply our modified reflection func-
tors to prove the Main Theorem. In Section 4, we give a correspondence between
simple representations and an ADE configuration of curves.
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2. Description of N =1ADE Quivers, Statement of the
Main Theorem, and Definition of Reflection Functors

2.1. Describing N = 1 ADE Quivers

To make our presentation intelligible to nonexperts, we briefly recall some defini-
tions and established facts. (Here all vector spaces are over a field k.)

A quiver T' = (Vr, Er)—without relations—is a directed graph. A repre-
sentation (V, f) of a quiver I' is an assignment to each vertex i € Vr of a vec-
tor space V(i) and to each directed edge ij € Er of a linear transformation
fi V@) = V().

A morphismh: (V, f) — (V’, f') between representations of I" over k is a col-
lection {h;: V(i) — V'(i)}icv; of k-linear maps such that, for each edge ij € Er,,
the obvious diagram commutes. Compositions of morphisms are defined in the
usual way. Forapath p: iy — i, — --- — i, in " and arepresentation (V, f), we
let f,, be the composition of the linear transformations f;, i, : V(ix) — V(ik41),
1 < k < r. Given vertices i, j in Vr and paths py,..., p, from i to j, a rela-
tion o on quiver I' is a linear combination ¢ = a;p; + --- + a,pn, a; € k. If
(V, f) is a representation of I', then we extend the f-notation by setting f, =
arfp,+--+anfp,: V(i) = V(j). A quiver with relations is a pair (T, p), where
o = (0y):cr 1s aset of relations on I'; and a representation (V, f) of (T, p) is arep-
resentation (V, f) of " for which f, = O for all relations o € p. We then define,
in the obvious way, subrepresentations (V', f') of (V, f), the sum of representa-
tions, and when a representation (V, f) of (T, p) is indecomposable or simple.

DEerFINITION 2.1.  Given an ADE Dynkin diagram D = (Vp, Ep)—an undirected
graph—we let the associated quiver I'p be I'p = (Vr,, Erp,) with Vi 1= Vp and

Erp, ={(i, /), (i) | {i» j} € Ep}( J1G,i) | i € Vp).

In other words, this is the standard digraph associated to the graph D, except that
we add a loop at each vertex. To illustrate this, we take the E, case as an example.
Recall that the Dynkin diagram for E,, is

n

E,: 1 2 3 (n—=1);

thus, the associated quivers for E,, (n = 6,7, 8) are
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The N = 1 ADE quivers are just the quivers associated to the displayed graphs
but with the following relations. For all vertices i, j with i # j, the relations have
the form

Z sijejie;j + Pj(e;) =0, ejjej = ejejj, 2.1
where l
0 if i and j are not adjacent,
sij =14 1 if i and j are adjacent and i > j,
—1 ifi and j are adjacent and i < j,
and where P;(x) is a certain fixed polynomial associated with vertex j for each j.

If (V, f) is a representation of an N = 1 ADE quiver, then the corresponding
structures are

[oP) Dy [ (o]

[oN [oF}
m 02 q 032 m 043 m m On—1,n—2 m
E, V), VR, V3, V@ V-2, " Vn-1

— —— —— —
On 023 034 On-2,n-1
QSnT JQn:ﬁ
V(n)
J
q>n

where we have written Q;; = fe,; and ®; = f,;. Then, for all vertices i, j with
i # j, the relations (2.1) become

Z 5ijQji Qij + Pj(®;) =0, Qij®j = 0iQjj. 2.2)

REMARK 2.2.  From now on, we use (I, { P;}) to denote an N = 1 ADE quiver
satisfying relations (2.1).

The following formulas define an action of the Weyl group on the space of poly-
nomials P;.

DEFINITION 2.3.  Let 20, be the Weyl group of the Dynkin diagram I, and let
ri € W, (1 < i < n) be a set of generators of reflections. If j is distinct from i
and not adjacent to i, then r;(P;(x)) = P;(x). If j is adjacent to i and j # i, then
ri(Pj(x)) = Pj(x) + P;(x). Finally, r;(P;(x)) = —P;(x).
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Let (I, {P;}) be an N = 1 ADE quiver. Let

Ar = {Z n;P; | n; € Z, not all n; zero},
where the P; (1 <i < n) are the polynomials in relations (2.2).

2.2. Statement of the Main Theorem

(*) No two elements Y n; P; and Y m; P; of the set Ar have a common root un-
less there is a constant ¢ with m; = cn; for all i.

LEMMA 2.4. (%) holds for any very general collection of polynomials P; of pos-
itive degree.

Proof. Left to the reader. UJ
We prove the following Main Theorem in Section 3.2.

MAIN THEOREM.  Let (I',{P;}) be an N =1 ADE quiver. Let Br = {r;(P;(x))},
wherer; € 20r andwhere P; (j € Vr) are the polynomials defined in relation (2.2).
Assume that no element in Br has a multiple root. If (x) holds, then (T, { P;}) has
only finitely many nonisomorphic simple representations.

2.3. Reflection Functors

Suppose we are given an N = 1 ADE quiver (I, {P;}) and k € V. Then we de-
note by I'," the quiver defined by deleting all arrows starting from k and by I,
the quiver defined by deleting all arrows ending at k.

Given a representation V of an N = 1 ADE quiver (I, {P;}), we can define a
representation of T';', which we still denote as V, by forgetting all maps that have
domain V (k). Similarly, we define a representation of I',", which we still denote
by V, by forgetting all maps that have range V (k).

The following definition is a modification of that of [1]. Let (I, {P;}) be an
N = 1 ADE quiver and let k be a vertex of I". Let

k=i adjacent to k}.

DEFINITION 2.5.  For a quiver representation W of I';', define a representation
Fk+(W) of I, by

. W) if i #k,
REW@) = { kerh if i =k, 23)
where
h: @ W) — Wk
ierk
is defined by

h((xiere) = Y s Qi Xi-
ierk

Ifi, j # k, we define
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Qi = Qij: W(j) — W().
If i € T'¥, define 0 Fk+(W)(k) — W(i) by
Qi (Xj)jers = —Ski Xi. 2.4)
For a quiver representation U of I, define a representation F,” (U) of I'," by

_ o U(i) if [ #k,
Fe @ = { cokerg if i =k, 25)
where
g: Uk) > @ U)
ierk
is defined by
g(x) = (Qikx)jer-

Define Q;,: U(i) — F_ (U)(k) by the natural composition of
UGi) - @ U — F W) Kh). (2.6)

jerk

REMARK 2.6. Notice that, in Definition 2.5, there is no loop associated to the
vertex k of the quiver I';" or the quiver I, .

REMARK 2.7. The definitions of the F; k+(W) and Q/, in Definition 2.5 are differ-
ent from the corresponding definitions in [1], whereas F,” (U) and Q;; in Defini-
tion 2.5 are the same as the corresponding definitions in [1].

3. Finite Representations of an N =1 ADE Quiver

In this section we give a proof that, in the case of simple and distinct roots, an
N = 1 ADE quiver has finitely many nonisomorphic simple representations.

3.1. Applying the Reflection Functorsto N = 1
ADE Quiver Representations

LEMMA 3.1.  Let V be a representation of an N = 1 ADE quiver (T, {P;}), and
let v; be a A-eigenvector of ®@;. Then Q;; ®;v; either is a A-eigenvector of ®; or
is 0.

Proof. If v; is an eigenvector of ®; corresponding to eigenvalue A, then by (2.2)
we have

Qij®jv; = ®;Qijvj,
which implies that

rQijvj = @;Qjjv;.
Hence, Q;;v; is either an eigenvector of ®; corresponding to eigenvalue A or a
0-vector. O

LEMMA 3.2.  LetV be a simple representation of an N = 1 ADE quiver (T, { P;}).
Then there exists a A such that, if v; € V(i) # 0, then ®;,v; = Av;.
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Proof. Let A ={d | V(d) # 0}. Then A is connected. Otherwise, V is not sim-
ple. Let a = min A; then &, has an eigenvector v, with eigenvalue A. For [ €
A, let U(!) be the A-eigenvector space of ®;. By Lemma 3.1, it is easy to see that
W ={U(l) : | € A} is a subrepresentation of V. Since V is simple it follows that
W =V, which proves the result. O

Therefore, to show that we have only finitely many simple representations, it suf-
fices to consider representations V for which there exists a A such that, if 0 # v, €
V(d), then ®;v; = Avy. A representation V with this property will be called a
type-(x*) representation.

LEMMA 3.3.  Let V be a simple representation of an N = 1 ADE quiver (T, { P;}).
Suppose V is not concentrated at vertex k. Then

dim(FH (V) = Z dim(V (i)) — dim(V(k)).

ierk

Proof. We know that (Fk+(V))(k) = kerh, where h : @ierk V(i) — V(k)is de-
fined by
h(x)iere = ) s QuiXi.
ielk

Proving the lemma is equivalent to proving that % is surjective.

Suppose V (k) # 0. If A is not surjective and & # 0, then we can replace V (k)
by h(@D;cr« V(i) and obtain a subrepresentation of V. But this contradicts the
simplicity of V. If V (k) = 0, then 4 is surjective because 4 = 0 in this case. [J

LEMMA 3.4.  Let 'V be a simple representation of an N = 1 ADE quiver (I, { P;}),
and suppose that V is not concentrated at vertex k. Then

dim(F (V) = Y dim(V(i)) — dim(V (k).

ielk

Proof. We know that (F,” (V))(k) = coker g, where g: V(k) — @ierk V(i) is
defined by g(x) = (QixXx);cr+. Proving the lemma is equivalent to proving that g
is injective.

Suppose V (k) # 0. If ker g # 0, then we can define a simple subrepresentation
that is concentrated at vertex k. This contradicts the simplicity of V.

If V(k) = 0, then g is injective because g = 0 in this case. U

LEMMA 3.5. Let V be a type-(xx) representation of an N = 1 ADE quiver
(I, {P;}), and suppose that V is not concentrated at the vertex k. If Py(L) # 0,
then there is a natural isomorphism ¢ between F,:”(V)(k) and F_ (V) (k).

Proof. We have

F, (V)(k) = coker g
and

F,:’(V)(k) = kerh.
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Since V is a type-(s3*) representation, the relation Zierk SikQri Qir + Pr(dy) =
0 becomes h o g+ Pr(A)I = 0. Since Pr(A) # 0, it follows that g is injective and
h is surjective. Since V is of type (x*) and is not concentrated at k, we obtain

dim FF(V)(k) = dim F_ (V)(k) = Z dim V(i) — dim V (k)
ierk

and

h/\

0 —— V() — @, V) —5s E-(V)(K) —— 0.

h

V(k)

0

Since Pr(2) # 0, we have img N FH(V)(k) = {0}. Let g': P, V(i) —
F,” (V) (k) be the natural surjective map induced by g, and let /': F,f(V)(k) —
D, cr« V(i) be the natural inclusion map induced by /. Then

=g oh's K (V)(k) — F_(V)(k)

is a natural isomorphism because dim Fk+(V)(k) = dim F, (V)(k) and ¢ is
injective by im g N F,:“(V)(k) = {0}.

DEFINITION 3.6. By Lemma 3.5, if P;(A) # O then, for a type-(x:) representa-
tion V, we can construct a new representation Fy (V') of (I, {P;}) as

V(i) if i £k,

B0 = { Fr(v)(k) if i =k.

Here we define Q) as it is defined for F, ,:“(V) and define Q;,, as the composition
map Py(A) - 97" 0 Q;,,: V(m) — FF(V)(k), where O, V(m) — F_ (V) (k)
is the natural map defined in ;7 (V) and ¢: F,:r(V)(k) — F(V)(k) is the iso-
morphism defined in Lemma 3.5.

Now define

@ F(V)(i) — F(V)(0)

by ®!(x) = ix, where A is the eigenvalue of ®; on V(i) that appeared in the rep-
resentation V of I'. Abusing notation, we allow ®; to stand for ®;.
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REMARK 3.7. The reflection functor Fj is acting only on the type-(s3*) represen-
tations, not on all representations on the N = 1 ADE quiver (I, {P;}). How to
define a reflection functor that acts on all representations of the N = 1 ADE quiver
is still an open problem.

LEmMA 3.8.  If V is a representation of an N = 1 ADE quiver (I', { P;}), then

> T Pi(®;) = 0.
i
As a result, if V is a type-(xx) representation of an N = 1 ADE quiver then

Z dim(V(i)) - Pi(A) = 0.

Proof. This follows because Tr Q;;Q;; = Tr Q;; Q;; for every pair i and j.
Now take the trace operation to relations (2.2) and then sum the resulting equa-
tions. The result follows. ]

PrROPOSITION 3.9. Let V be a simple representation of an N = 1 ADE quiver
(I, {P;}) that is not concentrated at vertex k. If Pi(A) # 0, then Fi (V) satisfies
the following new relations:

> 55004 + r(Pi(®)) =0,  Q}®; = B;0};. (€R))
Thus, Fi (V) is a representation of (I, {ry(P))}).

Proof. If i ¢ T¥ and i # k, where i is a vertex of (T, {P;}) such that V(i) # 0,
then there is nothing to prove. For j € r“ui{k}andbe (Fr(V))(j), we have
Q;®;b = Q)b = ©;Q};b.
For i € I'¥ and x € V (i), by Definition 3.6 we know that
Qiix = Pe(V) - 97" o O,
where Q;x = [(x})jer«] € F (V)(k) for
{ 0 if j #1,
Xj = e .
x if j=i.
After a short computation we see that

Q//c,-x = (yj)je[‘ks

where o
{ Pe)x + su Qi Qrix  if j =1,
)j =

QjkSik Qri x if j#I
It follows that
5 Qi QX = ki Qi (V)jert = —Pr(M)x — Qi six Qi x.

Hence, for i € T'X,
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D 5iiQ}Qjix + re(Pi(0))x
J
=Y 5;i0[,0):x + Pi()x + Pr(M)x
J

=Y 5i0ijQjix + 510} Qi x + Pi(A)x + P (0)x
J#k
= Zsiniijix — Pr(M)x — QusikQrix + Pi(AM)x + Pr(M)x
J#k
=0.
Let (x;);crx € F,"(V)(k). Then

Sik Qi Qi (X)) jerk = Qi Xi = (Xi))jert,

where e .
_ { Pe(M)x; + QuesiQrixi  if j =1,

t Qi Sik Qi xi it j#1i.
Therefore,
D 50 Qi (xi)iert + re(Pe()) (xi)iert
ielk
= Z $ik Qi Qix (X jers — PrA) (Xi)jer+
ierk
= D (ijert = PO (it
ielk

=0. O
By Definition 2.3 and Proposition 3.9, we have the following result.

CoOROLLARY 3.10. Let V be a simple representation of an N = 1 ADE quiver
(I, { P;}) that is not concentrated at vertex k. Then

> dim(F(V)()re(Pi(x)) = Y dim V(i) Pi(x).

LeEMMA 3.11.  If V is a simple representation of an N = 1 ADE quiver (I, { P;})
that is not concentrated at vertex k and if Py(A) # 0, then F . Fi (V) = V. Con-
sequently, F (V) is a simple representation.

Proof. We know that Q;,: V(i) — Fr(V)(k) is defined by
Qpixi = P~ Quixi,

where Qi@ V(i) — F(V)(k) is the composition of V(i) — @jel"k V(j) and

@jerk V(j) — F,; (V)(k) (see Definition 3.6). We also know that

F B (V)(k) = {(x_,-) € @ V() ‘ Z ik Oy Xj = 0}.

jerk jerk
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Hence

D sikQix = PO)e™ Y 5 Qujx;.

jerk jerk
Since P (%) # 0 and ¢ is an isomorphism, we have
Fi F (V)(k) = {(=s; Qjx X)jer+ | x € V(K)}.
Letg: V — FFi (V) be defined as follows:
it V(@) — FF(V)@)=V(3§) if i #k,

' { (—$kj Qji)jert if i =k;
herei: V(i) = FyF(V)(i) = V(i) is the identity map. Then it is clear that (3.2)
is commutative:

vk —2% 5 vi)

lgk Jgi (3.2)
Q//

FiF(V) (k) —= V().
Let’s check the commutativity of (3.3):

Vi) —2 5 vk

lgi Jgk (3.3)

V(i) s BEY)®).

Let (Qy:x;); (resp. (Qy;x;);) denote the jth coordinate of Q};x; (resp. Q;; x;).
We know that

(Q//X‘)' _ { _Pk()\’)-xl + Qi/ks[leiixl' lf j = i,
ki) —

Qi 5ik Qi Xi if j#£i

and o
/ Pr(M)xi + QuesuQrixi it j =1,

(Qkixi)j = o .

Ok Sik Qki Xi if j#i.

Leti > k. Then we have
(Qlixi)i = —PeM)x; + Q) six Oy, Xi
= —PcM)xi + P x; + Qi sik Ori Xi
= QukSik OkiXi = Qik Qi Xi
= =5k Qik Qki Xi -
Ifi > kand j > k, then
(QLixi)j = Q_,{ksikQ;iixi = Qisik Qrixi = Qi Qrixi = — ki Qjk Qi Xi3
ifi > kand j < k, then
(Quixi)j = QusikQpixi = Q0 Xi = —QuOrixi = —5k; Qi Qi Xi-
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Now leti < k. Then we have
(Qfixi)i = —Pe)xi + Qi si Qi xi
= —Pr(M)xi — Q40 xi
= —Pr(M)xi + (PcA)xi + Qi sik Qi Xi)
= QusikQrixi = — Qi Qi Xi
= =5k Qik Ori Xi -
Ifi <kandj > k, then
(Qrixi)j = Qs Qpixi = — Q) O Xi

= — Qs Orixi = Qi OQrixi = —Skj Ok Oki Xi;
ifi < kand j < k, then

(Q1ix)j = Qusik Qi xi = — QO Xi
= QirsikQrixi = —QuQriXi = —Sk; Qjx Qi Xi.

Therefore, diagram (3.3) is commutative.
Diagram (3.4) is commutative because A is a common eigenvalue of V (k) and
FF (V) (k):
V(k) ——— V(k)

lgk lgk (3.4)

FF (V)(k) —2— FF(V)(k).

If gr(x) = O for an x € V(k), then Qpx = O forall j € r*. By the proof
of Lemma 3.4, it follows that x = 0. Hence g, is injective. Since V(k) and
Fy F. (V) (k) have the same dimension, g; must be an isomorphism. We know that
g; = id wheneveri # k,so g: V — F;Fi(V) is also an isomorphism.

We next prove the latter part of the lemma. We claim that there is no simple sub-
representation of Fy (V') that is concentrated at vertex k. By way of contradiction,
suppose there does exist such a simple representation W C F; (V) concentrated
at vertex k. Then, for (x;);cr+ € W, since Q;k(xi)ierk = —s3;x; = 0, it would
follow that x; = O for all j € I'® and hence (x;);crt = 0.

Since the natural map @, .« V(i) — F, (V) (k) is surjective, ¢ : Fi(V)(k) =
F,j(V)(k) — F, (V)(k) is an isomorphism, and Pi(A) # 0, we conclude
that {Q;,V(i)},cr« generates F(V)(k). As a result, there is no subrepresenta-
tion W C Fi(V) with dimW(i) = dim V(i) for all i € I'* and i # k and with
dim W(k) < dim Fi (V) (k).

Suppose there exists a simple subrepresentation W C F; (V) that is not concen-
trated at vertex k. We thus obtain a proper subrepresentation Fy (W) C Fy Fi (V) =
V. Since V is a simple representation, this cannot occur. UJ

COROLLARY 3.12.  Assume that (x) holds. If V is a simple representation, then
either Fi (V) is simple or V = Ly, where Ly is a simple representation concen-
trated at vertex k.
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Proof. Assume that V is not concentrated at vertex k. Since V is simple it follows
that, by Lemma 3.3 and Lemma 3.4, we can apply Fj to V. Then F; (V') is simple
by the latter part of Lemma 3.11. U

3.2. A Proof of the Main Theorem

Let I" be a quiver. Following [1], for a representation V we define dim(V) =
(dimV(i))iev,. Let 60 = {x = (x4) | xo € Q, @ € Vr}, where Q denotes the
set of rational numbers. We call a vector x = (x,) positive (written x > 0) if
x # 0and x, > 0 for all & € Vr. For each 8 € Vr, denote by og the linear trans-
formation in 4T defined by the formulas (03x), = x, for y # B and (ogx)g =
—xp 4+ Y_,crs X1, where [ € T'? is the set of vertices adjacent to .

For each vertex « € Vr we denoted by I, the set of edges containing . Let A be
an orientation of the graph I'. We denote by o, A the orientation obtained from A
by changing the directions of all edges [ € I',. Following [1], we say that a vertex
i of a quiver (I, { P;}) with orientation A is (—)-accessible (resp. (+)-accessible)
if, for any edge e having i as a vertex, the final vertex f(e) of e satisfies f(e) # i
(resp. the initial vertex i(e) of e satisfies i(e) # i). We say that a sequence of ver-
tices oy, @2, ..., ok 1S (4)-accessible with respect to A if o is (+4)-accessible with
respect to A, o, is (4)-accessible with respect to o, A, a3 is (4)-accessible with
respect to 0,04, A, and so on. We define a (—)-accessible sequence similarly.

DEFINITION 3.13.  Let I" be a graph without loops. We denote by B the quadratic
form on the space 6+ defined by the formula B(x) = > x2 — D teer Xri) Xra)s
where r{(l) and r,(l) are the ends of the edge /. We denote by (-, -) the corre-
sponding symmetric bilinear form.

LeEmMA 3.14 [1, Lemma 2.3].  Suppose that the form B for the graph T is posi-
tive definite. Let c = o, - - - 0,01. If x € 6T and x # 0 then, for some i, the vector
c'x is not positive.

We are now ready to give a proof of our Main Theorem as follows.

Proof of Main Theorem. LetV be a simple representation of an N = 1 ADE quiver
(I {P;}),and let A = {i | V(i) # 0}. We can assume that A is connected, since
otherwise V would be decomposable. We apply the forgetful functors to V and
obtain the following (+)-accessible (resp. (—)-accessible) diagram (no loop):

V() . V(k) . V(n)

T

V()

V() - V(k) - V(n)

|

V().
(For the type-A Dynkin diagram case, V(I) = 0.)
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Letc = o0, - - - 0201. By [1], there exists a k such that c¥(dim V) # 0. By (%) and
Corollary 3.10, we know that ) _; dim V(i) P;(x) is the only element in A that van-
ishes at A. By Corollary 3.12 and Proposition 3.9, this implies the existence of ver-
tices B1, ..., B; and a simple representation Ly, ., of (I, {Q;}) that satisfies the new
relations described in Proposition 3.9 and is concentrated at a vertex of I" such that

V = Fp - Fg(Lg,).
Here V corresponds to the positive root
dimV = op, - - - 05, (Ber1)s
where Biy1 = (Brv1(i)) and
0 if i #k+1,

ﬂ“‘”:{l if i =kl
From this it follows that ) _, dim V(i) - P;(x) € Br. Because the usual ADE quiver

has only finitely many positive roots, N = 1 ADE quivers have finite many sim-
ple representations. This finishes the proof of the theorem. O

The Main Theorem implies the following corollary.

CorOLLARY 3.15.  Let (I',{P;}) be an N = 1 ADE quiver. Let Br = {ri(P;(x)) |
r; € 2Wr}, where Wr is the Weyl group of T' and P; is the polynomial defined
on relation (2.2). Assume that each element in Br has simple roots. If (x) holds,
then there is a finite-to-one correspondence between simple representations of the
N =1ADE quiver (I',{P;}) and the positive roots of an ADE Dynkin diagram.

Proof. We know that B has only finitely many elements. Each element of Bp
that is actually a polynomial has only finitely many simple roots. By our Main
Theorem, each root of an element in B corresponds with a simple representation.
Hence, the desired result follows. O

3.3. Further Discussions

In [9] the author proved the following theorem without using reflection functors.

THEOREM 3.16. Let A = (rPi(x) | r € 2y, }, where the P;(x) are the polynomi-
als in relation (2.2) and 2y, is the Weyl group of A,. If no two positive elements
in A have a common root and if none of the polynomials in A are identically zero,
then the N = 1 A, quiver is of finite representation type, which means that there
are only finitely many indecomposable representations.

One consequence of this theorem is the following result.

COROLLARY 3.17. Let A be defined as in Theorem 3.16. If no two positive ele-
ments in A have a common root and if none of the polynomials in A have multiple
roots, then any indecomposable representations of the N = 1 A,, quiver are sim-
ple representations.

I do not know whether Theorem 3.16 and Corollary 3.17 are still correct if 20y, is
replaced by 20p, or 2, .
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4. A Correspondence between Simple Representations
and an ADE Configuration of Curves

Let X be an ADE fibration with base C and let Y be the small resolution of X.
Let w: Y — X be the blowup map. An ADE configuration of curves in Y is a
1-dimensional connected projective scheme C C Y such that

(1) there exists a surface S cY.CcC S;
(2) letting S = 7 (S), then S — S is a resolution of ADE singularities with ex-
ceptional scheme C.

We need the following proposition, which is essentially part 3 of Theorem 1
in [5].

PrOPOSITION 4.1.  Let {e;} be the simple roots of T'. The irreducible components
of the discriminant divisor ® C Res(I") are in one-to-one correspondence with
the positive roots of T'. Under the identification of Res(I") with the complex root
space U, the component ©, corresponding to the positive root v ="y |_, a;e; is
vt C U, that is, the hyperplane perpendicular to v.

Moreover, ®,, corresponds exactly to those deformations of Zy in Z to which

the curve
n
¢, :=JaiC,,
i=1

lifts. For a generic pointt € ©,, the corresponding surface Z, has a single smooth
—2-curve in the class Z?:l ai[C,, 1. Hence there is a small neighborhood B of t
such that the restriction of Z to B is isomorphic to a product of C"~! with the
semi-universal family over Res(A1).

The following example gives a concrete correspondence between the ADE config-
uration of curves in Y and the simple representations of an N = 1 ADE quiver in
the A, case.

ExampPLE 4.2. Let X be defined by

Ay ixy + (z+ 1) (z+ 1) (z+13(t) =0
with
t(t) +t2(t) + 13(¢) = 0.

In Table 1, “Curve” means an ADE configuration of curves in the exceptional set
of the fibration. We use “dim V” to denote the dimension vector of an indecom-
posable representation of the N = 1 ADE quiver.

Table 1 can be explained in the following way. If #;(X) = #,(A) # t3(X) for
some X, then by Proposition 4.1 there exists an ADE configuration of curves C C
Y. By [2], we know that P;(A) = #;(X) — t2(A) = 0. Thus, by our Main Theo-
rem, there exists a simple representation V of an N = 1 ADE quiver withdimV =
(1,0) that corresponds to C.

The other cases are similar, so we omit them.
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Table 1

Condition Singularity Curve dimV

Hh(A) =1() #13(0) A V 1 0
. .
nA) # () =) A V 0 1
. .

H) =10) # () Ay

Pl

H) # () #13(0) — — —

This example is generalized in the following theorem.

THEOREM 4.3. Let X be an ADE fibration corresponding to I with base C, and
let Y be a small resolution of X. Let Br = {r;(Pj(x)) | r; € 2Wr}, where Wr is the
Weyl group of T and P; is the polynomial defined in relation (2.2). Assume that
no element in Br has multiple roots and assume that (x) holds. Then there exists a
one-to-one correspondence between the simple representations of the N = 1 ADE
quiver (I',{P;}) and the ADE configuration of curves in Y.

Proof. By [7] and [5], we have the commutative diagram

|

|
|

O X <

L} (cn,

where C denotes the set of complex numbers and ) denotes the C*-equivariant
simultaneous resolution ) — X inducing Yy — Xj. For a simple representation
V of the N = 1 ADE quiver (T, {P;}), we have

> dim V(i) - Pi(h) =0 4.1
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for some A. The dimension vector (dim V (i));cv, Will correspond to a positive
root p. By [2], we can express P;(x),i =1,...,n,interms of ¢;,i = 1,...,n. By
Proposition 3.1 or part 3 of Theorem 1 in [5, p. 467], (4.1) will give an equation
for pt. Hence f(A) = (¢;(X))icvy € p*. It follows from Proposition 4.1 that there
exists an ADE configuration of curves C, C ') cvy

Conversely, for an ADE configuration of curves C C Y we have ¢ o 7(C) =
A € C. (Since 7 is projective, ¢ o m(C) is projective in C and it follows that
@ om(C) is a finite subset of C. Since C is connected, ¢ o 7 (C) is connected in C;
hence ¢ o 7 is a point in C.) Moreover, 7 (C) is a point in X. (By [5], we know
that X' is affine; hence 7 (C) is a point in X.) By Proposition 4.1, f(1) € p* for
some positive root p. Since we assume that each element in B has simple roots
and that (x) holds, C corresponds to a unique positive root p. We can express p
as p = y_a; - p;, where p; is a simple positive root. From our Main Theorem,
we can apply the reflection functors to construct a simple representation V' of the
N = 1ADE quiver (T, { P;}) that corresponds to the positive root p. This finishes
the proof of Theorem 4.3. O
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