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Parameterizing Conjugacy Classes
of Maximal Unramified Tori

via Bruhat–Tits Theory

Stephen DeBacker

0. Introduction

The main result of this paper is a uniform parameterization of the set of conjugacy
classes of maximal unramified tori in a reductive p-adic group. This classification
matches conjugacy classes of maximal unramified tori with certain equivalence
classes that arise naturally from Bruhat–Tits theory. The motivation for this re-
sult comes from harmonic analysis; specifically, from J.-L. Waldspurger’s papers
[16; 17]. Using the parameterization scheme discussed in this paper, David Kazh-
dan and I [6] have been able to generalize some of the results of [17] in a uniform
manner.

The Main Result. Let k denote a field with nontrivial discrete valuation ν.We
assume that k is complete with perfect residue field f. Let k̄ denote a fixed alge-
braic closure of k and let K denote the maximal unramified extension of k in k̄.
LetG denote the group of k-rational points of a reductive linear algebraic k-group
G and let G◦ denote the group of k-rational points of the identity component G◦
of G. Let B(G) denote the (enlarged) Bruhat–Tits building of G◦.

A subgroup ofG is called an unramified torus when it is the group of k-rational
points of a k-torus in G◦ that splits over an unramified extension of k. In this
paper we classify G-conjugacy classes of maximal unramified tori in G in terms
of equivalence classes of pairs (GF , T). Here F is a facet in the building, GF is the
connected reductive f-group associated to F, and T is an f-minisotropic maximal
torus in GF . (The torus T is called f-minisotropic when the maximal f-split torus
in T coincides with the maximal f-split torus in the center of GF .)

In more detail: Let I t denote the set of pairs (F, T) where F is a facet in B(G)
and T is a maximal f-torus in GF . In Section 3.2 we define on I t an equivalence
relation, denoted ∼. In Section 3.3 we associate to each element (F, T) ∈ I t a
G-conjugacy class C(F, T) of maximal unramified tori in G. The set I t is too
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large, so we restrict our attention to the subset Im of minisotropic pairs in I t. A
pair (F, T) ∈ I t is said to be minisotropic when T is an f-minisotropic maximal
torus of G.

We now state Theorem 3.4.1, the main result of this paper. Let CT denote the
set of G-conjugacy classes of maximal unramified tori in G.

Theorem. There is a bijective correspondence between Im/∼ and CT given by
the map that sends (F, T) to C(F, T).

If k is p-adic and if G is connected and k-split, then this result can be derived from
some work of Gérardin [8]. If k is p-adic and G is unramified, then Waldspurger
[16] stated a variant of this result as a hypothesis.

We remark that if f is algebraically closed, then CT and Im/∼ both have one ele-
ment. In this case, Im consists of those pairs (F, T) where F is an alcove in B(G)
and T is a maximal torus in GF , and the element of CT is the G-conjugacy class
of the group of k-rational points of a maximal k-split torus in G.

By Lemma 2.1.1, a maximal unramified torus in G is the group of k-rational
points of a maximal K-split k-torus in G. From a theorem of Steinberg (see e.g.
[14, Chap. II, Sec. 3.3 and Chap. III, Sec. 2.3]), G◦ is quasi-split over K. Thus,
the centralizer inG◦ of a maximal unramified torus ofG is the group of k-rational
points of a maximal k-torus in G. Since this correspondence is one-to-one, our
theorem also provides a classification of theG-conjugacy classes of maximal tori
of G that arise in this way.

Additional Results. In Section 4 we use the foregoing result to give an ex-
plicit description of the set of G-conjugacy classes in certain stable conjugacy
classes. More precisely: Suppose that f is quasi-finite and that G is connected and
K-split. If (F, T) ∈ Im and T ∈ C(F, T), then for γ ∈ T with CG(γ ) = T we
describe the set of G-conjugacy classes in

G(k̄)γ ∩G.
Finally, in Section 5 we present a generalization of the main result. Let C denote

the set ofG-conjugacy classes of pairs (H, x), whereH is a maximal-rank unram-
ified subgroup (see Section 1.3) inG and x is a hyperspecial point in B red(H ), the
reduced Bruhat–Tits building of H. When G is K-split, we classify the elements
of C in terms of equivalence classes of pairs (F, H). Here F is a facet in B(G), and
H is an f-cuspidal (see Section 5.1) maximal-rank connected reductive subgroup
in GF .

Additional Comments. The main result (Theorem 3.4.1) was circulated as a
preprint in 2001. I later realized that the main result could be generalized to in-
clude Theorem 5.3.6. The next version of the paper (not circulated) gave a proof
of Theorem 5.3.6 and presented Theorem 3.4.1 as a corollary; unfortunately, some
generality and transparency were lost. Consequently, in this version I have chosen
to separate the proofs (and another result, Theorem 4.5.1, has been added).
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1. Notation

In addition to the notation discussed in the introduction, we shall require the
following.

1.1. Basic Notation

Let F denote the residue field of K. Note that F is an algebraic closure of f. Let
� = Gal(K/k), which we also identify with Gal(F/f).

We denote by DG◦ the group of k-rational points of the derived group DG◦ of
G◦. When we talk about a torus inG, we mean the group of k-rational points of a
k-torus in G◦.

In order to avoid a proliferation of superscripts, we adopt the following con-
vention. We shall call a subgroup of G a parabolic subgroup of G when it is a
parabolic subgroup of G◦; we adopt a similar convention with respect to tori and
Levi subgroups.

If g,h ∈G, then gh = ghg−1. If S ⊂ G, then gS = {gh | h ∈ S}. If a group L
acts on a set S, then SL denotes the set of L-fixed points of S.

1.2. Apartments, Buildings, and Associated Notation

Let B(G) = B(G, k) denote the (enlarged) Bruhat–Tits building of G◦. We iden-
tify B(G) with the �-fixed points of B(G,K), the Bruhat–Tits building of G◦(K).
Let B red(G) = B red(G, k) = B(DG◦, k) denote the reduced Bruhat–Tits building
ofG◦. According to [12] (see also [3, 4.2.16]) we have a decomposition B(G, k) =
B red(G, k)× B(ZG, k), where ZG denotes the center of G.

For a Levi k-subgroup M of a parabolic k-subgroup of G, we identify B(M, k)
in B(G, k). There is not a canonical way to do this, but every natural embedding
of B(M, k) in B(G, k) has the same image [3, 4.2.18].

For� ⊂ B(G), we let stabG(�) denote the stabilizer of� inG and let FixG(�)
denote the pointwise stabilizer of �.

Given a maximal k-split torus S of G, we have the torus S = S(k) inG and the
corresponding apartment A(S) = A(S, k) in B(G). Let T be a maximal K-split
k-torus of G containing S [3, Cor. 5.1.12]. We identify A(S, k) with A(T,K)�.
For � ⊂ A(S), let A(A(S),�) denote the smallest affine subspace of A(S) con-
taining �.

If ψ is an affine root of G with respect to k, S, and ν, then ψ̇ denotes the root
of G with respect to k and S that is the gradient of ψ. We let Uψ̇ denote the corre-
sponding root subgroup of G.
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Suppose x ∈ B(G). We will denote the parahoric subgroup of G◦ attached to x
byGx and denote its pro-unipotent radical byG+

x . Note that bothGx andG+
x de-

pend only on the facet of B(G) to which x belongs. If F is a facet in B(G) and if
x ∈ F, then we define GF = Gx and G+

F = G+
x . Recall that Gx is a subgroup of

stabG◦(x). For a facet F in B(G), the quotient GF/G
+
F is the group of f-rational

points of a connected reductive f-group GF .
We denote the parahoric subgroup of G◦(K) corresponding to x ∈ B(G,K)

by G(K)x , and we denote the pro-unipotent radical of G(K)x by G(K)+x . The
subgroups G(K)x and G(K)+x depend only on the facet of B(G,K) to which x
belongs. If F is a facet in B(G,K) and if x ∈F, then we define G(K)F = G(K)x
and G(K)+F = G(K)+x . For a facet F in B(G,K), the quotient G(K)F/G(K)+F is
the group of F-rational points of a connected reductive F-group GF .

Suppose F is a �-invariant facet in B(G,K). In this case, F ′ = F� is a facet
in B(G). Moreover, we have GF ′ = (G(K)F )�, G+

F ′ = (G(K)+F )�, and GF =
GF ′ ×f F. Sometimes, we will abuse notation and denote byGF (resp.G+

F , G(K)F ′ ,
and G(K)+F ′) the group GF ′ (resp. G+

F ′ , G(K)F , and G(K)+F ).

1.3. Unramified Groups

An algebraic group H is called an unramified group if H is a connected reductive k-
group and there exists a hyperspecial vertex in B red(H(k)).We recall that a vertex
x ∈ B red(H(k)) is said to be hyperspecial provided that H isK-split (i.e., if H con-
tains aK-split maximal torus) and x is a �-invariant special vertex in B red(H,K).

In this paragraph, suppose f is finite. Then there is a standard definition of the
term unramified group, namely: the group H is unramified provided that H is con-
nected, reductive, k-quasi-split, and K-split. By [15, 1.10.2], if H is unramified
in this sense, then it is unramified in our sense. We show the converse as fol-
lows: Since H is K-split, we may choose a K-split maximal k-torus T of H that
contains a maximal k-split torus of H. If x is a hyperspecial vertex (in the apart-
ment corresponding to T) in B red(H, k), then, since f is finite, we may choose a
Borel f-subgroup in Hx whose group of F-rational points contains the image of
T(K)∩ H(K)x in Hx(F). Since x is hyperspecial and H isK-split, this will deter-
mine a�-stable set of simple roots for H with respect to T. Thus, H is k-quasi-split.

We shall also call H(k), the group of k-rational points of H, an unramified group
whenever H is unramified.

2. Tori over k and f

In this section we show how to move between tori over f and tori over k.

2.1. Maximal Unramified Tori

We recall that a subgroup T of G is an unramified torus when T is the group of
k-rational points of a k-torus T of G that splits over an unramified extension of k.
We shall call a torus T as above an unramified torus of G. The following result
will be used throughout the remainder of the paper.



Parameterizing Conjugacy Classes of Maximal Unramified Tori 161

Lemma 2.1.1. Suppose T is a torus in G. Then the following statements are
equivalent.

(1) T is defined over k and T(k) is a maximal unramified torus of G.
(2) T is a maximal K-split k-torus of G.
(3) T is a maximal K-split torus of G and T is defined over k.

Proof. By definition, (1) and (2) are equivalent. Moreover, (3) implies (2).
We now show that (2) implies (3). Suppose T is a maximal K-split k-torus of

G and let M = CG◦(T). Then M is a Levi k-subgroup of a parabolic K-subgroup
of G. Let S ′ be a maximal k-split torus in M. From [3, Cor. 5.1.12], there exists a
maximal K-split torus S of M such that S ′ ⊂ S and S is defined over k. Note that
S is also a maximal K-split torus in G. Since S ⊂ M, we have T ⊂ S. Since S
and T are K-split k-tori and T is maximal in G with respect to this property, we
must have T = S.

2.2. From Maximal Unramified Tori over k to Tori over f

Suppose T is a maximal unramified torus inG. Let T denote the maximalK-split
k-torus in G such that T = T(k). Define

T(K)c := {t ∈ T(K) | ν(χ(t)) = 0 for all χ ∈ X∗(T)}.
By [15, Sec. 3.6.1] there is a natural embedding of B(T ) in B(G); namely,

B(T ) = B(T,K)� = A(T,K)�

= (B(G,K)T(K)c )� = B(G,K)T(K)c��

⊂ B(G).
We shall always think of B(T ) as being embedded in B(G) in this way. We now
collect some facts about B(T ).
Lemma 2.2.1. Suppose T is a maximal K-split k-torus of G. Let T denote the
group of k-rational points of T.

(1) B(T ) is a nonempty, closed, convex subset of B(G). Moreover, B(T ) is the
union of the facets in B(G) that meet it.

(2) There is a maximal k-split torus S in G such that B(T ) is an affine subspace
of A(S, k).

(3) For all G-facets F in B(T ), there exists (F, T) ∈ I t such that the image of
T(K) ∩ G(K)F in GF (F) is T(F). Moreover, if F is a maximal G-facet in
B(T ), then (F, T)∈ Im. (We order facets with respect to closure.)

(4) If F1 and F2 are maximal G-facets in B(T ), then, for all apartments A in
B(G) containing F1 and F2, we have A(A ,F1) = A(A ,F2).

Proof. (1) Since B(T ) is the Bruhat–Tits building of T , the first half of the state-
ment follows from the work of Bruhat and Tits [2; 3].

For any �-invariant facet F of B(G,K), we have that F� = F ∩ B(G) is a
facet of B(G). Consequently, for any �-invariant G(K)-facet F of B(T,K) ⊂
B(G,K), we have that F� is a G-facet of B(G) that is contained in B(T ).
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(2) By [1, Prop. 8.15] we can write T = Ts · Ta , where Ts denotes the maxi-
mal k-split torus in T and where Ta is the maximal k-anisotropic subtorus of T.
Let M = CG◦(Ts). Then T ⊂ M and M is a Levi k-subgroup of a parabolic
k-subgroup of G. LetM denote the group of k-rational points of M.We have that
the image of B(T ) in B red(M) is a point, call it xT . Let S be a maximal k-split
torus in M, and hence in G, such that the apartment of S in B red(M) contains xT .
Since Ts ⊂ S, it follows that B(T ) ⊂ A(S, k).

(3) Suppose that F is a G-facet in B(T ). Let T be the maximal f-torus in GF
whose group of F-points is the image of T(K) ∩ G(K)F in GF (F). We have
(F, T)∈ I t.

Now suppose that F is a maximal G-facet in B(T ). Choose T ≤ GF as in the
previous paragraph. Let Ts be the maximal k-split torus in T and let Ts denote the
f-split torus in GF whose group of F-rational points is the image of Ts(K)∩G(K)F
in GF (F).We have that Ts is the maximal f-split torus in T. If we embed B(Ts ,K)
in B(T,K) ⊂ B(G,K) in the natural way, then B(Ts(k)) = B(T ). As in the
proof of part (2), we may choose a maximal k-split torus S of G such that B(T ) ⊂
A(S, k) and Ts ⊂ S. Since F is a maximal G-facet in B(T ), it follows that an
affine root of G with respect to S, k, and ν is zero on B(Ts(k)) = B(T ) if and only
if it is zero on F. Hence Ts is the maximal f-split torus in the center of GF . Thus
(F, T)∈ Im.

(4) Let A be an apartment in B(G) containing F1 and F2. Since F1 is maximal
in B(T ) and since B(T ) is convex, we conclude that F2 ⊂ A(A ,F1). Similarly,
we have F1 ⊂ A(A ,F2). Thus A(A ,F1) = A(A ,F2).

Lemma 2.2.1 gives us a way to associate to a maximal unramified torus inG a pair
(F, T) ∈ Im. We now address the question: If two maximal unramified tori in G
can give rise to the same pair (F, T), what can we say about the two tori?

Lemma 2.2.2. Suppose T1 and T2 are maximal K-split k-tori of G. If F
is a �-invariant G(K)-facet in A(T1,K) ∩ A(T2,K) and if the images of
T1(K) ∩ G(K)F and T2(K) ∩ G(K)F in GF (F) coincide, then T1 and T2 are
G+
F -conjugate.

Proof. Let T denote the maximal torus in GF whose group of F-rational points is
the image of T1(K) ∩ G(K)F in GF (F). Note that T is defined over f.

Let Z1 denote the centralizer of T1 in G◦. The group Z1 is a Levi k-subgroup of
a parabolic K-subgroup (it is also a maximal torus) of G. Note that B(Z1,K) =
A(T1,K), and so, for all G(K)-facets F in A(T1,K), we have Z1(K)

+
F =

Z1(K) ∩ G(K)+F .
There exists an h∈ G(K)F such that hT1 = T2. Let h̄ denote the image of h in

GF (F). By hypothesis, h̄T = T; thus, h̄ ∈ (NGFT)(F). Consequently, by looking
at the affine Bruhat decomposition, we see that there exist an n ∈ (NG◦T1)(K) ∩
G(K)F and a g ∈ G(K)+F such that h = gn. We have T2 = hT1 = gT1.

For γ ∈�, let cg(γ ) := g−1γ (g); cg is a 1-cocycle. We will show that cg(γ )∈
Z1(K)

+
F for all γ ∈ �. Fix γ ∈ �. Since F is �-stable and g ∈ G(K)+F , we

have cg(γ ) ∈ G(K)+F . Since cg(γ )T1 = T1, we have cg(γ ) ∈ NG◦(T1)(K). Thus
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A(T1,K) is cg(γ )-stable. If C is an alcove in A(T1,K) such that F ⊂ C̄, then
cg(γ ) fixes C pointwise and therefore cg(γ ) fixes A(T1,K). Thus, we conclude
that cg(γ )∈ Z1(K)

+
F .

Since H1(�, Z1(K)
+
F ) is trivial [18, Prop. 2.2], there exists a z ∈ Z1(K)

+
F such

that gz is fixed by �. We have gzT1 = T2 and gz∈ (G(K)+F )� = G+
F .

2.3. From Tori over f to Tori over k

Suppose (F, T) ∈ I t. Let F ′ be the G(K)-facet in B(G,K) whose set of �-fixed
points is F. In the final paragraph of the proof of [3, Prop. 5.1.10], Bruhat and Tits
use [7, Exp. XI, Cor. 4.2] to prove the following.

Lemma 2.3.1. If (F, T) ∈ I t, then there exists a maximal K-split torus T of G
such that T is defined over k, the apartment A(T,K) contains F, and the image
of T(K) ∩ G(K)F in GF (F) is T(F).

2.4. An Aside on k-Minisotropic Maximal Tori

When f is finite, it is of some interest to know that a k-minisotropic torus exists in
G. (A k-torus T is said to be k-minisotropic when the maximal k-split torus in T
coincides with the maximal k-split torus in the center of G.)

We begin with a lemma that establishes the existence of f-minisotropic tori when
f is finite.

Lemma 2.4.1. Suppose f is a finite field. If G is a connected reductive f-group,
then G contains an f-minisotropic maximal torus.

Proof (Gopal Prasad). Without loss of generality, we may assume that G is abso-
lutely almost simple. Let S denote a maximal f-split torus of G.

Suppose first that G is f-split, that is, S is a maximal torus in G. Choose n ∈
NG(S)(f) such that the image of n in the Weyl group NG(S)/S is a Coxeter ele-
ment. By Lang’s theorem, there exists a g ∈ G(F) such that n = g−1σ(g). (Here
σ denotes the action of the Frobenius automorphism of F over f on G(F).) The
torus gS is an f-anisotropic maximal torus in G.

Now suppose that G is not f-split. Since f is finite, G is f-quasi-split and so
Z = CG(S) is a maximal f-torus. Let A denote the maximal f-anisotropic subtorus
of Z and let H = CG(A). Note that S ≤ H. We shall show that Hder, the derived
group of H, is f-split. Thus, by the previous paragraph, the group Hder contains an
f-anisotropic maximal torus A′. Since the dimension of AA′ is equal to that of Z,
the f-torus AA′ is an f-anisotropic maximal torus in G.

In order to show that Hder is f-split, we first show that S is a subgroup of Hder. If
α is a long root in&(G, S) (the set of roots of G with respect to S), then the associ-
ated root group Uα in G is one-dimensional and so commutes with the f-anisotropic
torus A. Thus, Uα ≤ Hder. Since the Q-vector space spanned by the set of long
roots in&(G, S) coincides with the Q-vector space spanned by the set&(G, S), we
conclude that S ≤ Hder.
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Since AS = Z is a maximal torus of G and since A is contained in the center of
H, it follows that S is a maximal torus of Hder. Hence, Hder is f-split.

Suppose (F, T) ∈ Im with F a minimal facet in B(G); by Lemma 2.4.1, such a
pair must exist when f is finite. Let T be a maximal K-split k-torus associated to
(F, T) as in Lemma 2.3.1. Since F is a minimal facet, the maximal f-split torus in
the center of GF has the same dimension as the maximal k-split torus in the cen-
ter of G. Hence, since the maximal k-split torus in T has the same dimension as
the maximal f-split torus in T, we conclude that T is k-minisotropic. Since G is
K-quasi-split, Z = CG(T) is a maximal k-torus. Since Z/T is K-anisotropic, it
is k-anisotropic. Thus Z is a k-minisotropic maximal torus. Consequently, when
f is finite, we have established that a k-minisotropic maximal torus of G exists.

3. A Parameterization of Conjugacy Classes
of Maximal Unramified Tori

In this section, we present a parameterization of CT via Bruhat–Tits theory.

3.1. Strong Associativity

Following [10; 11], in [5, Sec. 3.3] the concept of strong associativity is developed.
We recall the definition and some of its consequences.

Definition 3.1.1. Two G-facets F1 and F2 of B(G) are strongly associated if,
for all apartments A containing F1 and F2,

A(A ,F1) = A(A ,F2).

Remark 3.1.2. Two facets F1,F2 of B(G) are strongly associated if and only if
there exists an apartment A containingF1 andF2 such thatA(A ,F1) = A(A ,F2);
see [5, Lemma 3.3.3].

Remark 3.1.3. Suppose F1 and F2 are strongly associated facets in B(G). Then
there is an identification of GF1 with GF2 (see e.g. [5, Lemma 3.5.1]). Namely, the
natural �-equivariant map

G(K)F1 ∩ G(K)F2 → GFi(F)

is surjective with kernel

G(K)+F1
∩ G(K)F2 = G(K)F1 ∩ G(K)+F2

= G(K)+F1
∩ G(K)+F2

.

Since the kernel of the map has trivial Galois cohomology, the map induces a sur-
jective map on �-fixed points.

Definition 3.1.4. If F1 and F2 are strongly associated facets in B(G), then we
denote the natural identification of GF1 and GF2 introduced in the preceding remark
by GF1

id= GF2 .
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3.2. An Equivalence Relation on I t

We first consider the action of G on I t. Suppose g ∈ G and (F, T) ∈ I t. By
Lemma 2.3.1 there exists a maximal K-split torus T of G such that T is defined
over k, the apartment A(T,K) contains F, and the image of T(K) ∩ G(K)F in
GF (F) is T(F). Define

g(F, T) := (gF, gT),

where gT is the maximal f-torus in GgF whose group of F-rational points coincides
with the image of gT(K) ∩ G(K)gF in GgF (F). By Lemma 2.2.2, this definition
is independent of the torus T we choose to represent T.

We are now prepared to introduce a relation on I t.

Definition 3.2.1. Suppose (F1, T1) and (F2, T2) are two elements of I t.We will
write (F1, T1) ∼ (F2, T2) provided that there exist an apartment A in B(G) and
g ∈G such that

• ∅ �= A(A ,F1) = A(A , gF2) and
• T1

id= gT2 in GF1

id= GgF2 .

Lemma 3.2.2. The relation ∼ on I t is an equivalence relation.

Proof. We will verify that the relation is transitive. The proofs that the relation is
reflexive and symmetric are easier and are left to the reader.

Suppose (Fi , Ti )∈I t for i=1, 2, 3. Suppose (F1, T1)∼ (F2, T2) and (F2, T2)∼
(F3, T3). We want to show (F1, T1) ∼ (F3, T3).

There exist g2, g3 ∈G and apartments A12 and A23 in B(G) such that

• ∅ �= A(A12,F1) = A(A12, g2F2),
• ∅ �= A(A23,F2) = A(A23, g3F3)

and

• T1
id= g2T2 in GF1

id= Gg2F2 ,
• T2

id= g3T3 in GF2

id= Gg3F3 .

Since g2F2 ⊂ A12 ∩g2A23, there exists an element h∈Gg2F2 such that hg2A23 =
A12. We have

∅ �= A(A12,F1) = A(A12, g2F2) = A(hg2A23,hg2F2)

= hg2A(A23,F2) = hg2A(A23, g3F3)

= A(A12,hg2g3F3).

Moreover, GF1 ∩ Gg2F2 ∩ Ghg2g3F3 surjects, under the natural map, onto GF1(f)
(resp., onto Gg2F2(f) and Ghg2g3F3(f)). Hence there exists an h′ ∈ GF1 ∩ Gg2F2 ∩
Ghg2g3F3 such that

T1
id= g2T2

id= h′hg2T2
id= h′hg2g3T3 in GF1

id= Gg2F2

id= Gg2F2

id= Ghg2g3F3 .
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3.3. A Map from I t/∼ to CT
By Lemmas 2.2.2 and 2.3.1, the following definition makes sense.

Definition 3.3.1. Suppose (F, T)∈ I t. Let T be any maximalK-split torus in G
such that T is defined over k, the apartment A(T,K) contains F, and the image of
T(K) ∩ G(K)F in GF (F) is T(F). Define C(F, T) ∈ CT by setting C(F, T) equal
to the G-conjugacy class of T(k).

Remark 3.3.2. If g ∈G and (F, T)∈ I t, then C(F, T) = C(gF, gT).

Lemma 3.3.3. The map from I t to CT that sends (F, T) ∈ I t to C(F, T) induces
a well-defined map from I t/∼ to CT .
Proof. Suppose (F1, T1) and (F2, T2) are two elements of I t. We need to show
that if (F1, T1) ∼ (F2, T2), then C(F1, T1) = C(F2, T2).

Since (F1, T1) ∼ (F2, T2), there exist a g ∈G and an apartment A in B(G) such
that

∅ �= A(A ,F1) = A(A , gF2)

and
T1

id= gT2 in GF1

id= GgF2 .

By Remark 3.3.2, we can assume that g = 1.
By Lemma 2.3.1 there exists a maximalK-split k-torus T2 of G such that F2 ⊂

A(T2,K) and the image of T2(K)∩G(K)F2 in GF2(F) coincides with T2(F). Note
that C(F2, T2) is theG-conjugacy class of T2(k). It follows from Lemma 2.2.1(2)
that we can choose h ∈ GF2 such that B(hT2, k) ⊂ A. Since ∅ �= A(A ,F1) =
A(A ,F2) ⊂ B(hT2, k), we conclude that F1 ⊂ B(hT2, k).

Let T′ denote the maximal f-torus in GF1 such that the image of hT2(K)∩G(K)F1

in GF1(F) coincides with T′(F). We have

T′ id= hT2 in GF1

id= GF2

and
T1

id= T2 in GF1

id= GF2 .

Hence there exists an h′ ∈GF1 ∩GF2 such that

h′
T1

id= h′
T2

id= hT2
id= T′ in GF1

id= GF2

id= GF2

id= GF1 .

In other words, h
′
T1 = T′ in GF1 . We conclude from Lemma 2.2.2 that C(F1, T1)

is the G-conjugacy class of (h
′ )−1hT2(k); that is, C(F1, T1) = C(F2, T2).

3.4. A Bijective Correspondence

We now prove the main result of this paper.

Theorem 3.4.1. There is a bijective correspondence between Im/∼ and CT given
by the map sending (F, T) to C(F, T).
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Proof. By Lemma 3.3.3, this map is well-defined; by Lemma 2.2.1(3) and Lemma
2.2.2, the map is surjective. It remains to show that the map is injective.

Suppose (F1, T1) and (F2, T2) are pairs in Im such that C(F1, T1) = C(F2, T2).

We need to show that (F1, T1) ∼ (F2, T2).

For i = 1, 2, by Lemma 2.3.1 we can choose a maximalK-split k-torus Ti of G
such that theG-conjugacy class of Ti(k) is C(Fi , Ti ), the apartment A(Ti ,K) con-
tains Fi , and the image of Ti(K) ∩ G(K)F in GFi(F) is Ti(F). Since C(F1, T1) =
C(F2, T2), there exists a g ∈ G such that gT2 = T1. Let T = gT2 = T1 and let
T = T(k).

Observe that both F1 and gF2 lie in A(T,K)� = B(T ). Because (F1, T1) is a
minisotropic pair, F1 is a maximal G-facet in B(T ). Similarly, gF2 is a maximal
G-facet in B(T ). By Lemma 2.2.1(4), the facets F1 and gF2 are strongly associ-
ated. Since the image of T(K)∩ G(K)F1 ∩ G(K)gF2 in GF1(F) (resp., in GgF2(F))
is T1(F) (resp., gT2(F)), it follows that

T1
id= gT2 in GF1

id= GgF2 .

4. Conjugacy Classes in Stable Conjugacy Classes
of Unramified Strongly Regular Elements

In this section we assume that f is quasi-finite and that G isK-split and connected.
We recall that f is quasi-finite provided that f is perfect and � is isomorphic to Ẑ.

Suppose that γ is a strongly regular semisimple element of G (i.e., a regular
semisimple element of G whose centralizer is connected) such that CG(γ ) is a
maximal unramified torus of G. In this section, we provide an explicit descrip-
tion of the set of G-conjugacy classes in the stable conjugacy class of γ. When f
is finite, this description is useful for harmonic analysis.

4.1. Some Fixed Notation for Section 4

Fix a maximal k-split torus S of G and let Z be a maximal K-split k-torus of G
containing S [3, Cor. 5.1.12]. LetW denote the Weyl group NG(Z)(K)/Z(K).

Choose a topological generator σ ∈ � for �. Since σ preserves Z, it acts on
W. Two elements w1,w2 ∈W are σ -conjugate if there exists a w ′ ∈W such that
w ′−1w1σ(w

′) = w2. This defines an equivalence relation onW , and the partitions
associated to this equivalence relation are called σ -conjugacy classes.

4.2. Conjugacy Classes of Maximal Tori over Quasi-finite Fields

For finite fields, Carter [4, Sec. 3.3] establishes a natural bijection between the
set of conjugacy classes of maximal tori in a finite group of Lie type and the set
of Frobenius conjugacy classes in its absolute Weyl group. For the field C((t))

of Laurent series over the complex numbers in an indeterminate t , Kazhdan and
Lusztig [9, Sec. 1] show that the analogue of Carter’s result holds for C((t))-split
groups. Since finite fields and Laurent series over an algebraically closed field
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of characteristic 0 are what Serre [14, XIII, Sec. 2] describes as “the only ‘non-
pathological’” examples of quasi-finite fields, it is natural to ask if there is a uni-
form proof of this result. In this section, we answer this question in the affirmative.

Let G denote a connected reductive f-group. By [14, XIII, Props. 3 and 5] we
have that f is of dimension ≤ 1. Thus, by Steinberg’s theorem (see e.g. [13, III,
Sec. 2.3]), H1(f, G) is trivial and G is f-quasi-split.

Fix a maximal f-split torus T of G. Since G is f-quasi-split, it follows that Z, the
centralizer of T in G, is a maximal f-torus. We let N denote the normalizer of T in
G and identify its absolute Weyl group with W := N/Z . As before, we partition
W into σ -conjugacy classes.

Lemma 4.2.1. Suppose that f is quasi-finite. Then there is a natural bijective cor-
respondence between the set of G(f)-conjugacy classes of maximal f-tori in G and
the set of σ -conjugacy classes in W.

Proof (Mark Reeder). Let X denote the f-variety consisting of all maximal tori in
G. By the conjugacy of maximal tori we have the exact sequence

0 → N → G → X → 0,

where the second-to-last map sends g to gZ . By [13, I, Prop. 36] we have the exact
sequence (as pointed sets)

0 → N� → G(f)→ X� → H1(f, N)→ H1(f, G).

Since H1(f, G) is trivial, we conclude that the set of G(f)-conjugacy classes of
maximal f-tori in G is parameterized by H1(f, N). From [13, III, Sec. 2.4, Cor. 3]
it follows that the canonical map from H1(f, N) to H1(f, W) is bijective.

Because W is finite and σ is a topological generator for �, for each w ∈ W the
map

σm �→ w · σ(w) · · · σ (m−1)(w)

defines a 1-cocycle cw. Moreover, for w,w ′ in W we have that cw is cohomolo-
gous to cw ′ if and only ifw andw ′ lie in the same σ -conjugacy class. We conclude
that the map w �→ cw from the set of σ -conjugacy classes in W to H1(f, W) is
bijective.

Remark 4.2.2. Suppose g1, g2 ∈ G(F) such that g1Z and g2Z are maximal f-tori.
The foregoing argument shows us that the maximal f-tori g1Z and g2Z are G(f)-
conjugate if and only if the projections of g−1

1 σ(g1)∈ N and g−1
2 σ(g2)∈ N into W

lie in the same σ -conjugacy class. Moreover, for each σ -conjugacy class in W,
there is a g ∈ G(F) for which the image in W of g−1σ(g)∈ N lies in the class and
gZ is a maximal f-torus.

4.3. A Parameterization of Stable Conjugacy Classes
of Maximal Unramified Tori

We say that two maximal k-tori T1 and T2 of G are stably conjugate when there
exists a g ∈ G(k̄) such that T1(k) = g(T2(k)). This is equivalent to saying that
there exist a g ∈ G(k̄) and a strongly regular t ∈ T2(k) such that gt ∈ T1(k).
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The statement of the following lemma was suggested to me by Robert Kottwitz,
and its proof proceeds very much like Carter’s proof [4, Sec. 3.3] of the classifi-
cation of the set of conjugacy classes of maximal tori in a finite group of Lie type.

Lemma 4.3.1. Suppose that f is quasi-finite and that G isK-split and connected.
Then there is a natural injective map from the set of stable conjugacy classes of
maximal unramified tori inG to the set of σ -conjugacy classes inW. If G is also
k-quasi-split, then this map is surjective.

Proof. Suppose that Ti (i = 1, 2) is a maximal unramified torus in G. By Hilbert’s
Theorem 90, if t1 ∈ T1(k) and t2 ∈ T2(k) are strongly regular elements that are
conjugate by an element of G(k̄), then t1 and t2 are conjugate by an element of
G(K). Consequently, two maximal unramified tori T1 and T2 of G are stably con-
jugate if and only if there exists a g ∈ G(K) such that T1(k) = g(T2(k)).

Since there is a single G(K)-conjugacy class of maximal K-split tori in G, all
maximal unramified tori of G are G(K)-conjugate to Z. If g ∈ G(K) and gZ
is a maximal unramified torus in G, then gZ = σ(gZ) = σ(g)Z. Consequently,
g−1σ(g) ∈ NG(Z)(K). Note that if g, g ′ ∈ G(K) such that gZ = g ′

Z and gZ
is defined over k, then there exists an n ∈ NG(Z)(K) such that g = g ′n and so
g−1σ(g) = n−1g ′−1σ(g ′)σ(n). In this way, we obtain a well-defined map ω from
maximal unramified tori in G to the set of σ -conjugacy classes in W : ω(gZ) is
the σ -conjugacy class of g−1σ(g)Z(K).

Suppose g, g ′ ∈ G(K).We first show that if gZ and g
′
Z are two stably conjugate

maximal unramified tori in G, then ω(gZ) = ω(g ′
Z). Since gZ and g

′
Z are stably

conjugate, there exist an h∈ G(K) and a strongly regular t ∈ Z(K) such that gt ∈
(gZ)(k) and hgt ∈ (g ′

Z)(k). This implies that h−1σ(h) ∈ (gZ)(K) = (σ(g)Z)(K).
Since

(hg)−1σ(hg)Z(K) = g−1 · (h−1σ(h)) · σ(g)Z(K)
= (g−1σ(g)) · σ(g)−1 · (h−1σ(h)) · σ(g)Z(K)
= g−1σ(g)Z(K),

we conclude that ω(gZ) = ω(hgZ). Since hgZ = g ′
Z, from the previous para-

graph we have ω(hgZ) = ω(g ′
Z). Consequently, ω(gZ) = ω(g ′

Z).
Therefore, we have a map from the set of stable conjugacy classes of maximal

unramified tori of G to the set of σ -conjugacy classes in W. We now show that
this map is injective. Suppose g, g ′ ∈ G(K) such that gZ and g

′
Z are maximal un-

ramified tori in G and ω(gZ) = ω(g ′
Z). By replacing g ′ with g ′n for some n ∈

NG(Z)(K), we may assume that

g−1σ(g)∈ g ′−1σ(g ′)Z(K). (4.1)

Fix a strongly regular element t ∈ (gZ)(k). It will be enough to show that g
′g−1
t ∈

(g
′
Z)(k). Thus, it is enough to show

g ′g−1
t = σ(g ′ )σ(g)−1

t. (4.2)
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However, (4.2) is valid if and only if

g−1
t = (g ′−1σ(g ′ ))σ(g)−1

t.

Since σ(g)
−1
t ∈ Z(K), it follows from (4.1) that the map is injective.

Finally, we must show that the map is surjective whenG is an unramified group.
Let x be a hyperspecial point in the apartment corresponding to S in B red(G) and
let Z be the maximal F-split f-torus in Gx corresponding to Z. Note thatW is nat-
urally isomorphic to NGx(Z)(F)/Z(F). By Remark 4.2.2, for every σ -conjugacy
class O in W there exists a g̃ ∈ Gx(F) such that g̃Z is a maximal f-torus in Gx
and the image of g̃−1σ(g̃) in W lies in O. As in Lemma 2.3.1, we can lift g̃Z to
a maximal unramified torus T ′ in G with x ∈ B(T ′, k) = A(T ′,K)�. Since x ∈
A(T ′,K) ∩ A(Z,K), there exists a g ∈ G(K)x such that T ′ = gZ. Let ḡ denote
the image of g in Gx(F). We have ḡZ = g̃Z and so (by Remark 4.2.2) the image
of ḡ−1σ(ḡ), and hence that of g−1σ(g), lies in O.

For (Fi , Ti )∈ Im (i = 1, 2), the proof of Lemma 4.3.1 yields a simple criterion for
determining whether C(F1, T1) and C(F2, T2) lie in the same stable conjugacy class.
Without loss of generality, we assume that F1,F2 ⊂ A(S, k). Let Zi denote the
maximal f-torus in GFi corresponding to Z. Let WFi := NGFi

(Zi )(F)/Zi(F) and let
OFi(Ti ) be theσ -conjugacy class in WFi parameterizing the GFi(f)-conjugacy class
of Ti(f). Set O(Ti ) equal to the σ -conjugacy class in W that contains the image
under the projection fromNG(Z)(K) ontoW of the lift of OFi(Ti ) intoNG(Z)(K).
Observe that we have a natural embedding of WFi inW and of OFi(Ti ) in O(Ti ).

Corollary 4.3.2. Suppose that f is quasi-finite and that G is K-split and
connected. In the notation introduced previously, we then have: C(F1, T1) and
C(F2, T2) lie in the same stable conjugacy class if and only if O(T1) = O(T2).

4.4. Stable Conjugacy Classes in an Unramified Maximal Torus

Suppose γ ∈G is a strongly regular semisimple element such that T = CG(γ ) is
a maximal unramified torus of G. Set

STγ := G(k̄)γ ∩ T ;
this is a finite set. For s, s ′ ∈ STγ , we write s ≈ s ′ when there is a g ∈ G such
that gs = s ′; this defines an equivalence relation on STγ . In this section we give an
explicit description of

STγ /≈.
Definition 4.4.1. Suppose that F is aG-facet in A(S, k). LetW(F ) denote the
image inW of the stabilizer (not the fixator) inNG(Z)(K) ofA(A(Z,K),F ). For
w ∈W, we define the subgroups

Ww�σ := {w ′ ∈W | w(σ(w ′)) = w ′}
and
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W(F )w�σ := W(F ) ∩Ww�σ
ofW.

Lemma 4.4.2. Suppose that f is quasi-finite and that G isK-split and connected.
Choose (F, T) ∈ Im such that F ⊂ A(S, k) and fix T ∈ C(F, T). For a strongly
regular element γ ∈ T , we have that STγ /≈ is in (natural) bijective correspon-
dence with the coset space

WwT�σ/W(F )wT�σ .

Here wT is any element of OF (T) ⊂ O(T) ⊂ W (notation introduced prior to
Corollary 4.3.2).

Remark 4.4.3. If the image of F in B red(G) is a hyperspecial vertex, then it fol-
lows thatW(F ) = W and so

G(k̄)γ ∩ T = Gγ ∩ T .
Proof of Lemma 4.4.2. If we replace wT ∈ OF (T) with a σ -conjugate, say w ′

T =
w ′−1wTσ(w

′) for some w ′ ∈WF ≤ W , then

w ′
Ww ′

T�σ = WwT�σ
and similarly

w ′
W(F )w ′

T�σ = W(F )wT�σ .

Thus, it is enough to show that the bijection works for a single element of OF (T).
Let T denote the maximal unramified torus of G for which T = T(k). From

Hilbert’s Theorem 90, we have

G(k̄)γ ∩ T = G(K)γ ∩ T .
Therefore, the map n �→ n−1

γ from NG(T)(K) to T(K) induces a bijective corre-
spondence between the coset space

(NG(T)(K)/T(K))�/(NG(T )/T )

and STγ /≈. (Here we think of NG(T )/T as a subgroup of (NG(T)(K)/T(K))�

via the injection induced from the natural embedding of NG(T ) in NG(T)(K).)
Let MF be the Levi subgroup of G generated by Z(k) and the root groups

Uψ̇ for affine roots ψ of G (with respect to S, k, and ν) that are constant on F.
Let MF denote the Levi k-subgroup of a parabolic k-subgroup for which MF =
MF (k). We have MF (K)F/MF (K)

+
F = G(K)F/G(K)+F . Consequently, the pair

(F, T) occurs in the analogue of Im for MF and we may assume that T ⊂ MF .

By Lemma 2.2.1(2) and (3) we may also assume that B(T ) = A(A(S, k),F ) ⊂
A(S, k) = A(Z,K)� ⊂ A(Z,K). Since

B(T ) = A(T,K)� ⊂ A(T,K) ∩ A(Z,K),

there exists an mT ∈ MF (K)F such that T = mTZ. Set nT := (m−1
T σ(mT)) ∈

NG(Z)(K) and let wT denote the image of nT in W. In the notation introduced
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prior to Corollary 4.3.2, we have wT ∈ OF (T). Note that both mT and nT lie in
G(K)y for all y ∈ B(T ) = A(A(Z,K),F ).

To finish, we show that the group isomorphism n → m−1
T n from NG(T)(K) to

NG(Z)(K) induces group isomorphisms

(NG(T)(K)/T(K))� ∼=WwT�σ
and

NG(T )/T ∼=W(F )wT�σ .

We first show that (NG(T)(K)/T(K))� is isomorphic to WwT�σ . Choose w ∈
W and let n∈NG(Z)(K) be a representative for w. It is enough to show that

w = wTσ(w) if and only if (mTn)−1σ(mTn)∈ T(K). (4.3)

Observe that w = wTσ(w) if and only if σ(w)−1(w
−1
T w) = 1. This last equality is

equivalent to σ(n)−1(n
−1
T n)∈ Z(K), which happens if and only if (mTn)−1σ(mTn)∈

T(K).
We now show that NG(T )/T is isomorphic to W(F )wT�σ . Because the map

induced from m−1
T -conjugation carries NG(T )/T into W(F )wT�σ , it is enough to

show that, for each w ∈W(F )wT�σ , there is an n′ ∈NG(T ) such that

(m
−1
T n′)Z(K) = w.

Fix w ∈ W(F )wT�σ . Since w ∈ W(F ), there is an n ∈ NG(Z)(K) such that
the image of n inW is w and such that n, and hence mTn ∈NG(T)(K), stabilizes
B(T ). Fix y ∈ B(T ). We have

(mTn) · y = σ((mTn) · y) = σ(mTn) · y.
Hence (mTn)−1σ(mTn) ∈ FixG(K)(y). Since w ∈WwT�σ , from (4.3) it follows that
(mTn)−1σ(mTn)∈ T(K). Therefore,

(mTn)−1σ(mTn)∈ FixG(K)(y) ∩ T(K) = T(K)y.

Since H1(�, T(K)+y ) and H1(�, T) are both trivial, by [13, I, Prop. 43] we con-
clude that H1(�, T(K)y) is trivial. Consequently, there exists a t ∈ T(K)y such
that (mTn)t ∈NG(T ). Let n′ = (mTn)t.

4.5. The Result

The proof of the following theorem is immediate from the results of Sections 4.3
and 4.4.

Theorem 4.5.1. Suppose that f is quasi-finite and that G is K-split and con-
nected. Choose (F ′, T′) ∈ Im such that F ′ ⊂ A(S, k) and fix T ′ ∈ C(F ′, T′). For
a strongly regular element γ ∈ T ′, the set of G-conjugacy classes in

G(k̄)γ ∩G
is parameterized by the set of pairs

{Ē, w̄}.
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Here Ē ∈ Im/∼ is represented by some (F, T)∈ Im withF ⊂ A(S, k) and O(T) =
O(T′). If we fix wT ∈ OF (T), then w̄ runs over the cosets inWwT�σ/W(F )wT�σ .

5. A Parameterization of Maximal-Rank
Unramified Subgroups of G

We return to our original assumptions on f and G (i.e., those of Sections 1–3).
This section presents a generalization of the material in Sections 2–3. As a by-

product of the way in which this paper was written, the material presented next
borrows heavily from the presentation there.

5.1. Definitions

We recall that an algebraic group H is called an unramified group provided that H
is a connected reductive K-split k-group and B red(H, k) contains a hyperspecial
vertex. We also call H = H(k) an unramified group.

Let I denote the set of pairs (F, H) where F is a facet in B(G) and H is a
maximal-rank connected reductive f-subgroup in GF . Note that Im ⊂ I t ⊂ I. We
also consider the subset I c ⊂ I of cuspidal pairs in I ; a pair (F, H)∈ I is said to be
cuspidal when the maximal f-split torus in the center of H coincides with the max-
imal f-split torus in the center of GF . (Equivalently, (F, H) is a cuspidal pair if and
only if H lies in no proper parabolic f-subgroup of GF .) Observe that Im = I c ∩ I t.

5.2. Maximal-Rank Subgroups over k and f

In this section we show how to move between maximal-rank unramified k-sub-
groups of G and maximal-rank connected reductive subgroups over f. The follow-
ing lemma is an immediate consequence of Lemma 2.1.1.

Lemma 5.2.1. Suppose that H is a maximal-rank connected reductive K-split
k-subgroup of G. Then every maximal K-split k-torus in H is a maximal K-split
torus in G.

5.2.A. From Maximal-Rank Unramified Subgroups of G to
Connected Reductive f-Groups

Suppose that H is a maximal-rank unramified subgroup of G.We identify B(H,K)
with its image in B(G,K). (As usual, there does not exist a canonical embedding
of B(H,K) in B(G,K), but the image of any natural embedding is independent
of the embedding [3, 4.2.18].) We therefore have

B(H ) = B(H,K)� ⊂ B(G,K)� = B(G).
We now collect some facts about B(H ).
Lemma 5.2.2. Suppose that H is a maximal-rank unramified subgroup of G. Let
H denote the group of k-rational points of H.

(1) B(H ) is a nonempty, closed, convex subset of B(G). Moreover, B(H ) is the
union of the G-facets in B(G) that meet it.
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(2) For all G-facets F in B(H ), there exists (F, H) ∈ I such that the image of
H(K) ∩ G(K)F in GF (F) is H(F). Moreover, if F is a maximal G-facet in
the preimage in B(H ) of a facet in B red(H ), then (F, H)∈ I c.

(3) If F1 and F2 are maximal G-facets in the preimage in B(H ) of a facet in
B red(H ), then, for all apartments A in B(G) containing F1 and F2, we have
A(A ,F1) = A(A ,F2).

Proof. (1) The proof here is identical to that of Lemma 2.2.1(1).
(2) Suppose that F is a G-facet in B(H ). Let H be the maximal-rank con-

nected reductive f-subgroup in GF whose group of F-rational points is the image
of H(K) ∩ G(K)F in GF (F). We have (F, H)∈ I.

Now suppose that F is a maximal G-facet in the preimage in B(H ) of a facet
in B red(H ). Choose a subgroup H in GF as in the previous paragraph.

Let S ′ be a maximal k-split torus in H such that F ⊂ B(S ′, k) ⊂ B(H, k) and
let S be a maximal k-split torus in G such that S ′ ⊂ S. Let ZH denote the maxi-
mal k-split torus in the center of H and let ZH ⊂ GF denote the f-split torus whose
group of F-rational points coincides with the image of ZH(K)∩G(K)F in GF (F).
We have ZH ⊂ S ′ ⊂ S. Since F is a maximalG-facet in the preimage in B(H ) =
B red(H )×B(ZH, k) of a facet in B red(H ), it follows that, for all affine roots ψ of
G with respect to S, k, and ν, ifψ is constant on F, thenψ is constant on B(ZH, k).
Therefore, ZH is contained in the center of GF and so H cannot lie in a proper par-
abolic f-subgroup of GF .

(3) This is clear.

Remark 5.2.3. In the notation used in the proof of part (2), we have that the torus
ZH is the maximal f-split torus in the center of GF exactly when F is a maximal
G-facet in the preimage in B(H ) of a vertex in B red(H ).

Given H a maximal-rank unramified subgroup in G and x ∈ B red(H ) a hyper-
special vertex, Lemma 5.2.2 gives us a way to associate to the pair (H, x) a pair
(F, H) in I c.

5.2.B. From Subgroups over f to Unramified Subgroups over k

Lemma 5.2.4. Suppose G is K-split and suppose that H1 and H2 are maximal-
rank unramified subgroups of G. Suppose F is a �-invariant G(K)-facet in
B(H1,K) ∩ B(H2,K) that projects to a �-fixed special vertex in B red(Hi ,K)
for i ∈ {1, 2}. If the images of H1(K) ∩ G(K)F and H2(K) ∩ G(K)F in GF (F)
coincide, then H1 and H2 are G+

F -conjugate.

Proof. Let H denote the maximal-rank reductive subgroup in GF whose group of
F-rational points is the image of H1(K)∩G(K)F in GF (F). Note that H is defined
over f. Let T be a maximal f-torus in H that contains a maximal f-split torus of H.
Let&(H, T) denote the F-root system of H with respect to T. As in Lemma 2.3.1,
we choose a maximal K-split k-torus Ti in Hi lifting T. Observe that, since G
is K-split and the image of F in B red(Hi , k) is hyperspecial, it follows that Hi is
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completely determined by &(H, T) and Ti . By Lemma 2.2.2 we now conclude
that H1 and H2 are G+

F -conjugate.

Lemma 5.2.5. Suppose G is K-split. Suppose that F is a facet in B(G) and that
H is a maximal-rank connected reductive f-subgroup of GF . Then there exists a
maximal-rank unramified subgroup H in G such that :

(1) the facet F belongs to B(H, k);
(2) the image of H(K) ∩ G(K)F in GF (F) is the group of F-rational points of

H; and
(3) the image of F in B red(H, k) is a hyperspecial vertex, xF .

Proof. Let T be a maximal f-torus in H (and hence in GF ) that contains a maximal
f-split torus of H. Let&(H, T) denote the F-root system of H with respect to T. As
in Lemma 2.3.1, let T be a lift of T to a maximalK-split k-torus T in G. We think
of &(H, T) as a subset of &(G, T), the root system of G with respect to T; note
that &(H, T) is a closed root system of &(G, T). Let H be the K-split full-rank
subgroup of G whose group of K-rational points is generated by T(K) and the
root groups in G(K) corresponding to elements of&(H, T). Observe that H is de-
fined over k and that (by construction) the image of F ⊂ B(H,K) in B red(H,K)
is a �-fixed special vertex. The lemma follows.

Remark 5.2.6. If, in the statement of Lemma 5.2.5, H is also assumed to be
f-cuspidal, then F is a maximal G-facet in the preimage in B(H, k) of xF .

5.3. A Parameterization of Maximal-Rank Unramified Subgroups

Suppose G isK-split. Recall that C denotes the set ofG-conjugacy classes of pairs
(H, x), where H is a maximal-rank unramified subgroup in G and x is a hyper-
special point in B red(H ). In this section we present a parameterization of C via
Bruhat–Tits theory.

5.3.A. An Equivalence Relation on I
Suppose g ∈G and (F, H) ∈ I. By Lemma 5.2.5 there exists a maximal-rank un-
ramified subgroup H of G such that the building of B(H ) contains F, the image
of H(K) ∩ G(K)F in GF (F) is H(F), and the image of F in B red(H ) is a hyper-
special vertex. Define

g(F, H) := (gF, gH),

where gH is the maximal-rank connected reductive f-group in GgF whose group
of F-rational points coincides with the image of gH(K)∩ G(K)gF in GgF (F). By
Lemma 5.2.4, the definition of gH is independent of the unramified subgroup H of
G that we choose to represent H.

Definition 5.3.1. Suppose (F1, H1) and (F2, H2) are two elements of I.We will
write (F1, H1) ∼ (F2, H2) provided that there exist an apartment A in B(G) and a
g ∈G such that
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• ∅ �= A(A ,F1) = A(A , gF2) and
• H1

id= gH2 in GF1

id= GgF2 .

The proof of the following lemma is nearly identical to the proof of Lemma 3.2.2.

Lemma 5.3.2. Suppose G isK-split. Then the relation ∼ on I is an equivalence
relation.

5.3.B. A Map from I/∼ to C
By Lemmas 5.2.4 and 5.2.5, the following definition makes sense.

Definition 5.3.3. Suppose (F, H) ∈ I. Let H be any maximal-rank unram-
ified subgroup of G such that the building B(H,K) contains F, the image of
H(K) ∩ G(K)F in GF (F) is H(F), and the image of F in B red(H, k) is a hyper-
special vertex xF . Define C(F, H)∈ C by setting C(F, H) equal to theG-conjugacy
class of the pair (H(k), xF ).

Remark 5.3.4. If g ∈G and (F, H)∈ I , then C(F, H) = C(gF, gH).

Lemma 5.3.5. Suppose G isK-split. Then the map from I to C that sends (F, H)∈
I to C(F, H) induces a well-defined map from I/∼ to C.
Proof. Suppose (F1, H1) and (F2, H2) are two elements of I. We need to show
that if (F1, H1) ∼ (F2, H2), then C(F1, H1) = C(F2, H2).

Since (F1, H1) ∼ (F2, H2), there exist a g ∈ G and an apartment A in B(G)
such that

∅ �= A(A ,F1) = A(A , gF2)

and
H1

id= gH2 in GF1

id= GgF2 .

By Remark 5.3.4, we can assume that g = 1.
By Lemma 5.2.5, there exists a maximal-rank unramified subgroup H2 of G

such that F2 ⊂ B(H2,K), the image of H2(K) ∩ G(K)F2 in GF2(F) coincides
with H2(F), and the image ofF2 in B red(H, k) is hyperspecial. Note that C(F2, H2)

is theG-conjugacy class of (H2(k), xF2), where xF2 is the image ofF2 in B red(H ).

Let T2 be a maximal f-torus in H2. By Lemma 2.3.1, we can choose a maximal
K-split k-torus T2 in H2 lifting T2 such that F2 ⊂ B(T2, k). It follows from
Lemma 2.2.1(2) that we can choose h ∈ GF2 such that B(hT2, k) ⊂ A. Since
∅ �= A(A ,F1) = A(A ,F2) ⊂ B(hT2, k), we conclude that F1 ⊂ B(hT2, k) ⊂
B(hH2, k).

Let H′ denote the maximal-rank connected reductive f-subgroup in GF1 such
that the image of hH2(K) ∩ G(K)F1 in GF1(F) coincides with H′(F). We have

H′ id= hH2 in GF1

id= GF2

and
H1

id= H2 in GF1

id= GF2 .

Hence there exists an h′ ∈GF1 ∩GF2 such that
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h′
H1

id= h′
H2

id= hH2
id= H′ in GF1

id= GF2

id= GF2

id= GF1 .

In other words, h
′
H1 = H′ in GF1 . We conclude from Lemma 5.2.4 that C(F1, H1)

is the G-conjugacy class of (h
′ )−1hH2(k); that is, C(F1, H1) = C(F2, H2).

5.3.C. A Bijective Correspondence
We now prove the final result of this paper.

Theorem 5.3.6. Suppose G isK-split. Then there is a bijective correspondence
between I c/∼ and C given by the map sending (F, H) to C(F, H).

Proof. By Lemma 5.3.5, this map is well-defined; by Lemma 5.2.2(2), the map is
surjective. It remains to show that the map is injective.

Suppose (F1, H1) and (F2, H2) are pairs in I c such that C(F1, H1) = C(F2, H2).

We need to show that (F1, H1) ∼ (F2, H2).

For i = 1, 2, by Lemma 5.2.5 we can choose a maximal unramified subgroup Hi
in G such that the building B(Hi ,K) contains Fi , the image of Hi(K) ∩ G(K)F
in GFi(F) is Hi(F), the image of Fi in B red(H ) is a hyperspecial vertex xFi , and
the G-conjugacy class of the pair (Hi(k), xFi ) is C(Fi , Hi ). Because C(F1, H1) =
C(F2, H2), there exists a g ∈G such that gH2 = H1 and gxF2 = xF1 in B red(H1, k).
Let H = gH2 = H1 and let H = H(k).

Note that both F1 and gF2 lie in B(H ). Moreover, both F1 and gF2 lie in the
preimage in B(H ) of xF1 ∈ B red(H ). Since (F1, H1) is an f-cuspidal pair, by Re-
mark 5.2.6 we have that F1 is a maximalG-facet in the preimage in B(H ) of xF1 ∈
B red(H ). Similarly, gF2 is a maximal G-facet in the preimage in B(H ) of xF1 ∈
B red(H ). By Lemma 5.2.2(3), the G-facets F1 and gF2 are strongly associated.
Since the image of H(K) ∩ G(K)F1 ∩ G(K)gF2 in GF1(F) (resp., in GgF2(F)) is
H1(F) (resp., gH2(F)), it follows that

H1
id= gH2 in GF1

id= GgF2 .

Remark 5.3.7. I believe that in Theorem 5.3.6 the requirement that G beK-split
can be removed. However, I was unable to show this. In fact, it took a rather long
computation on the part of Jeff Adler and myself just to show that the result is true
for the group SU3 splitting over a totally ramified quadratic extension of k. One
difficulty is that the set&(H, T) in the proofs of Lemmas 5.2.4 and 5.2.5 need not
be a closed root subsystem of &(G, T).
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