A Family of Knots Yielding Graph Manifolds by Dehn Surgery

Yuichi Yamada
Dedicated to Professor Yukio Matsumoto for his 60th birthday

1. Main Theorem

Let $P_{(l, r)}$ be an embedded once-punctured torus, $k_{(l, a ; r, b)}$ a knot in $P_{(l, r)}$ in S^{3} defined as in Figure 1, and

$$
p_{(l, a ; r, b)}:=l a^{2}+a b+r b^{2},
$$

where (a, b) is a coprime pair of integers a, b with $1<a<b$ and where l and r are integers. We will study the knots $k_{(l, a ; r, b)}$ themselves later. Our main theorem concerns Dehn surgery along $k_{(l, a ; r, b)}$.

Figure $1 k_{(l, a ; r, b)}$ in $P_{(l, r)}$ (here, $\left.k_{(4,2 ; 1,3)}\right)$

Theorem 1.1. For each $(l, a ; r, b)$ as described previously, the resulting manifold $\left(k_{(l, a ; r, b)} ; p_{(l, a ; r, b)}\right)$ of $p_{(l, a ; r, b)}$-surgery along the knot $k_{(l, a ; r, b)}$ is "at most" a graph manifold obtained by splicing two Seifert manifolds over S^{2} (possibly reduced to a Seifert manifold over S^{2}, a lens space, or a connected sum of two lens spaces in some cases).

In fact, $\left(k_{(l, a ; r, b)} ; p_{(l, a ; r, b)}\right)$ bounds a plumbing manifold [O, p. 22] corresponding to the weighted graph in Figure 2; that is, $\left(k_{(l, a ; r, b)} ; p_{(l, a ; r, b)}\right)$ is described by the framed link in the figure. We will give an algorithm to decide the integers n_{L}, n_{R}

[^0]

Figure $2\left(k_{(l, a ; r, b)}, p_{(l, a ; r, b)}\right)$
and the weights (i.e., framings) $\left\{a_{j}\right\}$ in Section 2, where $a_{-\left(n_{R}+1\right)}=-1$. Each vertex with weight a_{j} corresponds to a disk bundle over S^{2} whose self-intersection number of the zero-section is a_{j}, and each edge corresponds to a plumbing. The reason why the weight r (or l, respectively) is in the left (or right) half of the figure will become clear in Sections 2 and 3.

Theorem 1.1 includes the following Dehn surgeries, which were discovered one by one.
(1) $a b$-surgery along $T(a, b)$ is a connected sum of two lens spaces as the cases $(l, a ; r, b)=(0, a ; 0, b) ;$ see $[\mathrm{M}]$.
(2) A subfamily of Berge's lens surgery [Be] (see also [Ba]; denoted by $k^{ \pm}(a, b)$ in [Y3]) as the cases $(l, a ; r, b)=(\pm 1, a ; 1, b)$; it includes 19 -surgery along the pretzel knot $\operatorname{Pr}(-2,3,7)$ as the case $(l, a ; r, b)=(1,2 ; 1,3)$.
(3) $(4 l+15)$-surgery on the pretzel knot $\operatorname{Pr}(-2,3,2 l+5)$ is a Seifert manifold [BH, Prop. 16] as the case $(l, a ; r, b)=(l, 2 ; 1,3)$ with $l \geq 2$.

These surgeries may be alternatively proved by Theorem 1.1 and moves of graphs [FS] in Figure 3 or Kirby calculus [K; GS].

In Section 3, we will prove Theorem 1.1 by Kirby calculus on framed links. The process incorporates a Euclidean algorithm and the resolution [HKK; L] of the singularity of the complex curve of type $z^{a}-w^{b}=0$ or the twisting sequence on torus knots. This method was also discussed in [Y3] for the special case (2) of lens surgery just listed. In order to extend this method to the more general case, in this paper we will arrange the suffixes $(j$ s $)$ of the sequence $\left\{a_{j}\right\}$.

In Section 4 we will study the knots $k_{(l, a ; r, b)}$ themselves. Each $k_{(l, a ; r, b)}$ belongs to the class of twisted torus knots studied in [D] and to the class of A'Campo's

Figure 3 Moves on graphs
divide knots if l and r are nonnegative; see [A1; A2; A3] (and also [GHY; Hi; Y1; Y2]) for A'Campo's divide knots.

2. Algorithm

Here we present the algorithm for defining the integers n_{R} and n_{L} as well as the sequences

$$
a_{1}, a_{2}, \ldots, a_{n_{L}}, a_{\left(n_{L}+1\right)} \quad \text { and } \quad a_{-\left(n_{R}+1\right)}, a_{-n_{R}}, \ldots, a_{-2}, a_{-1}
$$

of weights (framings) in Figure 2, where $a_{-\left(n_{R}+1\right)}=-1$. The algorithm depends only on (a, b) and is independent of l and r.

Algorithm-from (a, b) to the sequence $\left\{a_{j}\right\}$.
(1) Euclidean algorithm: Get a word $w(a, b)=w_{1} w_{2} \cdots w_{n}$ of two letters L (left) and R (right) from the pair $(a, b)\left(=:\left(a_{0}, b_{0}\right)\right)$ inductively by the following rule:

$$
\begin{aligned}
& \text { if } a_{i}>b_{i} \text {, then } w_{i+1}:=L \text { and }\left(a_{i+1}, b_{i+1}\right):=\left(a_{i}-b_{i}, b_{i}\right) ; \\
& \text { if } a_{i}<b_{i} \text {, then } w_{i+1}:=R \text { and }\left(a_{i+1}, b_{i+1}\right):=\left(a_{i}, b_{i}-a_{i}\right) .
\end{aligned}
$$

By the coprimeness of (a, b), after some n steps the pair $\left(a_{n}, b_{n}\right)$ becomes $(1,1)$, which is the end of this step. We define n_{R} (and n_{L}, respectively) as the number of R (and L) in the word $w(a, b)$.
(2) Next, starting with

$$
\left\{a_{*}^{(0)}\right\}=\left(a_{-1}^{(0)}, a_{0}^{(0)}, a_{1}^{(0)}\right):=(-1,-1,-1)
$$

we define the sequence $\left\{a_{*}^{(i)}\right\}(i=1,2, \ldots, n)$ inductively as follows.
(a) For each $i, a_{0}^{(i)}=-1$.
(b) If $w_{i}=R$, then we define $\left\{a_{*}^{(i)}\right\}$ as

$$
\begin{cases}a_{j}^{(i)}:=a_{j}^{(i-1)} & \text { if } j>1 \text { and } a_{j}^{(i-1)} \text { is defined, } \\ a_{1}^{(i)}:=a_{1}^{(i-1)}-1, & \\ a_{-1}^{(i)}:=-2, & \\ a_{j}^{(i)}:=a_{j+1}^{(i-1)} & \text { if } j<-1 \text { and } a_{j+1}^{(i-1)} \text { is defined. }\end{cases}
$$

(c) If $w_{i}=L$, then we define $\left\{a_{*}^{(i)}\right\}$ as

$$
\begin{cases}a_{j}^{(i)}:=a_{j}^{(i-1)} & \text { if } j<-1 \text { and } a_{j}^{(i-1)} \text { is defined, } \\ a_{-1}^{(i)}:=a_{-1}^{(i-1)}-1, & \\ a_{1}^{(i)}:=-2, & \\ a_{j}^{(i)}:=a_{j-1}^{(i-1)} & \text { if } j>1 \text { and } a_{j-1}^{(i-1)} \text { is defined. }\end{cases}
$$

(3) For each integer j with $-\left(n_{R}+1\right) \leq j \leq\left(n_{L}+1\right)$, we define a_{j} as $a_{j}^{(n)}$ in the sequence $\left\{a_{*}^{(n)}\right\}$ obtained after the nth step, where n is the length of the word $w(a, b)$.

By the assumption $a<b$, we have $w_{1}=R$ and $a_{-\left(n_{R}+1\right)}=-1$. The resulting sequence $\left\{a_{j}\right\}$ satisfies
$\left[\left|a_{-\left(n_{R}+1\right)}\right|,\left|a_{-n_{R}}\right|, \ldots,\left|a_{-2}\right|,\left|a_{-1}\right|\right]=\frac{a}{b}, \quad\left[\left|a_{\left(n_{L}+1\right)}\right|,\left|a_{n_{L}}\right|, \ldots,\left|a_{2}\right|,\left|a_{1}\right|\right]=\frac{b}{a}$,
where $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the continued fraction expansion

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=x_{1}-\frac{1}{x_{2}-\frac{1}{\ddots-\frac{1}{x_{n}}}}
$$

Example. $\quad(2,7) \rightarrow_{R}(2,5) \rightarrow_{R}(2,3) \rightarrow_{R}(2,1) \rightarrow_{L}(1,1)$, with $n_{R}=3$ and $n_{L}=1$.

i	$a_{-4}^{(i)}$	$a_{-3}^{(i)}$	$a_{-2}^{(i)}$	$a_{-1}^{(i)}$	$a_{0}^{(i)}$	$a_{1}^{(i)}$	$a_{2}^{(i)}$
0				-1	-1	-1	
1			-1	-2	-1	-2	
2		-1	-2	-2	-1	-3	
3	-1	-2	-2	-2	-1	-4	
4	-1	-2	-2	-3	-1	-2	-4

See Figure 4.

3. Proof of Main Theorem

Let $P:=P_{(0,0)}$ be a standardly embedded once-punctured torus in the position S^{3} (cf. Figure 1); it consists of a disk D and two bands b_{L} and b_{R}. We take a simple closed curve $k^{0}(a, b):=k_{(0, a ; 0, b)}$ in P as in Figure 1. The framing of $k^{0}(a, b)$ defined by the surface P is $a b$. From now on, we call such a framing P-framing ("surface framing").

Twisting the bands b_{L} right-handed l-fully, $b_{R} r$-fully, and the curve $k^{0}(a, b)$ in it simultaneously, we have the knot $k_{(l, a ; r, b)}$ in the surface $P_{(l, r)}$. This operation is realized by the framed link in the complement of P in S^{3}; see Figure 5. Observe that $P_{(l, r)}$-framing of $k_{(l, a ; r, b)}$ is $p_{(l, a ; r, b)}$.

Figure 4 Blow-ups

Figure $5 \operatorname{From}\left(P, k^{0}(a, b)\right)$ to $\left(P_{(l, r)}, k_{(l, a ; r, b)}\right)$
Next, we move P and the curve $k^{0}(a, b)$ simultaneously in the total space S^{3} in another way, according to each step of (2) in the Algorithm: if $w_{i+1}=R$ (i.e., $a_{i}<$ b_{i}), we move the left band b_{L} over the central (-1)-component and slide over b_{R} as in Figure 6. In each black box of the figure, we take a tangle $T(x=y=-1)$ for the first step and take the tangle that appeared in the gray box at the end of the previous step, inductively. If $w_{i+1}=L$, the operation is similar by symmetry. Note that, after each operation in Figure 6: P comes back to the starting position; and $k^{0}\left(a_{i}, b_{i}\right)$ is changed to $k^{0}\left(a_{i}, b_{i}-a_{i}\right)$ in the R case or to $k^{0}\left(a_{i}-b_{i}, b_{i}\right)$ in the L case-that is, to $k^{0}\left(a_{i+1}, b_{i+1}\right)$ in either case-and a new (-1)-component appears for the next step. Note that the relation " P-framing of $k^{0}\left(a_{i}, b_{i}\right)$ is $a_{i} b_{i}$ " is kept during the process.

After n steps (n is the length of the word $w(a, b)$ in step (1) of the Algorithm), we have the framed link we seek: the final (-1)-curve γ and a $(+1)$-framed curve $\gamma^{\prime}:=$ $k^{0}(1,1)$ in P. Sliding γ^{\prime} over γ, we can cancel them. The proof of Theorem 1.1 is completed.

Figure 6 Operation (R case)

4. Knots $\boldsymbol{k}_{(l, a ; r, b)}$

Here we describe the knots $k_{(l, a ; r, b)}$ themselves, but we do not give complete proofs because these can be established by method(s) already reported by the author [Y1; Y2; Y3].

Theorem 4.1. If $l \geq 1$ and $r \geq 1$, then the knot $k_{(l, a ; r, b)}$ is equal to a twisted torus knot $T(l a+b, a ; b, r)$ and also to $T(a+r b, b ; a, l)$, where $T(p, q ; x, y)$ is a knot obtained from a torus knot $T(p, q)$ by y fully twisting of x strings in p parallel strings of $T(p, q)$ in the standard position.

Outline of Proof. From $k^{0}(a, b)=k_{(0, a ; 0, b)}$ in $P=P_{(0,0)}$, we have the knot $k_{(l, a ; r, b)}$ in the surface $P_{(l, r)}$ by twisting the bands $b_{L} l$-fully and $b_{R} r$-fully (and the curve $k^{0}(a, b)$ in it simultaneously). Here, if we twist b_{L} first, we have $k_{(l, a ; 0, b)}$ in $P_{(l, 0)}$ once; on the other hand, if we twist b_{R} first then we have $k_{(0, a ; r, b)}$ in $P_{(0, r)}$. The once-punctured torus $P_{(l, 0)}$ (and $P_{(0, r)}$ also) is isotopic to a subsurface of the standard torus in S^{3}, so both $k_{(l, a ; 0, b)}$ and $k_{(0, a ; r, b)}$ are torus knots. Their indices are easily calculated to be $T(l a+b, a)$ and $T(a+r b, b)$, respectively. The second twisting of b_{R} or b_{L} is easily checked to be the construction stated in the theorem.

Next, we point out that $k_{(l, a ; r, b)}$ belongs to A'Campo's divide knots if $l, r \geq 0$. Let $C_{(l, a ; r, b)}$ be a plane curve obtained by cutting out from the lattice X in the plane

Figure 7 Curve $C_{(l, a ; r, b)}$ (here, $\left.C_{(4,2 ; 1,3)}\right)$
as $X \cap \mathcal{R}_{(l, a ; r, b)}$ (and by smoothing), where $\mathcal{R}_{(l, a ; r, b)}$ is a region defined as in Figure 7. Note that $\mathcal{R}_{(l, a ; r, b)}$ should be in the position such that $X \cap \mathcal{R}_{(l, a ; r, b)}$ is an image of an immersion of an arc; see [$\mathrm{Hi} ; \mathrm{Y} 2$].

Theorem 4.2. For each $(l, a ; r, b)$ with $l, r \geq 0$, the knot $k_{(l, a ; r, b)}$ is A'Campo's divide knot $L\left(C_{(l, a ; r, b)}\right)$ of $C_{(l, a ; r, b)}$. Hence the unknotting number, minimal Seifert genus, and 4-genus of $k_{(l, a ; r, b)}$ are all equal to the number of double points in $C_{(l, a ; r, b)}$:

$$
\frac{1}{2}\left\{l a^{2}+a b+r b^{2}-(l+1) a-(r+1) b+1\right\}
$$

Outline of Proof. Each torus knot $T(p, q)$ is A'Campo's divide knot of the "billiard curve" of a $p \times q$ rectangle region; see [GHY] (and [AGV; CP; GZ]). Adding $x \times x$ squares along an edge of length $p(x \leq p)$ corresponds to once twisting x strings among the p strings.

Note that the area of the region $\mathcal{R}_{(l, a ; r, b)}$ is equal to $p_{(l, a ; r, b)}=l a^{2}+a b+r b^{2}$ (see [Y1; Y2; Y3]).

References

[A1] N. A'Campo, Generic immersion of curves, knots, monodromy and gordian number, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 151-169.
[A2] -, Planar trees, slalom curves and hyperbolic knots, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 171-180.
[A3] -, Real deformations and complex topology of plane curve singularities, Ann. Fac. Sci. Toulouse Math. (6) 8 (1999), 5-23.
[AGV] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differentiable maps, vol. 2, Monogr. Math., 83, Birkhäuser, Boston, 1988.
[Ba] K. Baker, Knots on once-punctured torus fibers, Ph.D. dissertation, Univ. of Texas, Austin, 2004.
[Be] J. Berge, Some knots with surgeries yielding lens spaces, unpublished manuscript, 1990.
[BH] S. Bleiler and C. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996), 809-833.
[CP] O. Couture and B. Perron, Representative braids for links associated to plane immersed curves, J. Knot Theory Ramifications 9 (2000), 1-30.
[D] J. Dean, Hyperbolic knots with small Seifert-fibered Dehn surgeries, Ph.D. dissertation, Univ. of Texas, Austin, 1996.
[FS] R. Fintushel and R. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), 33-51.
[GHY] H. Goda, M. Hirasawa, and Y. Yamada, Lissajous curves as A'Campo divides, torus knots and their fiber surfaces, Tokyo J. Math. 25 (2002), 485-491.
[GS] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math., 20, Amer. Math. Soc., Providence, RI, 1999.
[GZ] S. M. Gusein-Zade, Intersection matrices for certain singularities of functions of two variables, Funct. Anal. Appl. 8 (1974), 10-13.
[HKK] J. Harer, A. Kas, and R. Kirby, Handlebody decompositions of complex surfaces, Mem. Amer. Math. Soc. 62 (1986).
[Hi] M. Hirasawa, Visualization of A'Campo's fibered links and unknotting operations, Topology Appl. 121 (2002), 287-304.
[K] R. Kirby, The topology of 4-manifolds, Lecture Notes in Math., 1374, SpringerVerlag, Berlin, 1989.
[L] H. Laufer, Normal two-dimensional singularities, Ann. of Math. Stud., 71, Princeton Univ. Press, Princeton, NJ, 1971.
[M] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745.
[O] P. Orlik, Seifert manifolds, Lecture Notes in Math., 291, Springer-Verlag, New York, 1972.
[Y1] Y.Yamada, Plane slalom curves of a certain type, pretzel links and Kirby-Melvin's grapes (in Japanese), New methods and subjects in singularity theory (Kyoto, 2004), Sūrikaisekikenkyūsho Kōkyūroku 1374 (2004), pp. 179-187.
[Y2] ——, Finite Dehn surgery along A'Campo's divide knots, preprint, 2004.
[Y3] -, Berge's knots in the fiber surfaces of genus one, lens spaces and framed links, J. Knot Theory Ramifications 14 (2005), 177-188.

Department of Systems Engineering
University of Electro-Communications
1-5-1 Chofugaoka, Chofu
Tokyo, 182-8585
Japan
yyyamada@sugaku.e-one.uec.ac.jp

[^0]: Received September 9, 2004. Revision received January 3, 2005.
 This work was partially supported by Grant-in-Aid for Scientific Research no. 15740034, Japan Society for the Promotion of Science.

