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1. Introduction

For every positive integer n, let P(n) denote the largest prime factor of n, with
the usual convention that P(1) = 1. For an integer q ≥ 1 and a real number z, we
define eq(z) = e(z/q), where e(z) = exp(2πiz) as usual.

In Section 3, we consider the problem of bounding the function

�(x; q, a) = #{n ≤ x : P(n) ≡ a (mod q)}.
For the case of q fixed, this question has been previously considered by Ivić [11].
However, the approach in [11] apparently does not extend to the case where the
modulus q is allowed to grow with the parameter x; this is mainly due to the fact
that asymptotic formulas for the number of primes in arithmetic progressions are
much less precise for growing moduli than those known for a fixed modulus.

We also remark that Oon [13] has studied the distribution of P(n) over the con-
gruence classes of a fixed modulus q in the case of n itself belonging to an arith-
metic progression (with a growing modulus).

In this paper, we use a similar approach to that of Ivić [11] and obtain new
bounds that are nontrivial for a wide range of values of the parameter q. In partic-
ular, if q is not too large relative to x, we derive the expected asymptotic formula

�(x; q, a) ∼ x

ϕ(q)

with an explicit error term that is independent of a. On the other hand, we show
that this estimate is no longer correct (even by an order of magnitude) for q ≥
exp

(
3
√

log x log log x
)
.

In Section 4 we study the function

�(x; q, a) = #{p ≤ x : P(p − 1) ≡ a (mod q)},
where p varies over the set of prime numbers, and we derive the upper bound

�(x; q, a) 
 π(x)

ϕ(q)

provided that log q ≤ log1/3 x. Here, π(x) = #{p ≤ x}. We expect that the match-
ing lower bound �(x; q, a) � π(x)/ϕ(q) also holds for such q, or perhaps even
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the stronger relation �(x; q, a) ∼ π(x)/ϕ(q), but we have been unable to prove
this. On the other hand, as in the case of �(x; q, a), we expect that the behavior
of �(x; q, a) changes for larger values of q. Unfortunately, the scarcity of results
about smooth shifted primes is an obstacle to proving this.

In Section 5 we consider the related problem of bounding rational exponential
sums of the form

Sa,q(x) =
∑
n≤x

eq(aP(n)),

where the integers a and q ≥ 1 are coprime. Our bounds are nontrivial if x is suf-
ficiently large relative to q.

Finally, in Section 6 we bound the exponential sum

Sα(x) =
∑
n≤x

e(αP(n))

for a fixed irrational real number α. Our bound is nontrivial whenever x is suf-
ficiently large (depending only on α), from which we deduce that the sequence
{αP(n) : n ≥ 1} is uniformly distributed modulo 1. This result is nicely reminis-
cent of the classical theorem of Vinogradov [15] asserting that, for a fixed irrational
real number α, the sequence {αp : p prime} is uniformly distributed modulo 1.

Our techniques are somewhat similar to those used in [2; 3]. We expect that
our underlying approach can be suitably modified to obtain nontrivial bounds for
more general exponential and character sums involving the function P(n).

Throughout the paper, the implied constants in the symbols O, �, and 
 are
absolute (recall that the notations U 
 V and V � U are equivalent to the state-
ment that U = O(V ) for positive functions U and V ). We also use the symbol o
with its usual meaning: the statement U = o(V ) is equivalent to U/V → 0.

Throughout, p always denotes a prime number, log z denotes the natural loga-
rithm of z > 0, and ϕ(·) andµ(·) are the Euler and Möbius functions, respectively.
Recall that µ(1) = 1 and µ(m) = 0 if m ≥ 2 is not squarefree, and that µ(m) =
(−1)k if m is the product of k distinct primes.

2. Preliminary Estimates

As usual, we say that a positive integer n is y-smooth if P(n) ≤ y. Let

ψ(x, y) = #{n ≤ x : n is y-smooth}.
The following estimate is a substantially relaxed and simplified version of the
corollary to [4, Thm. 3.1]; see also [10] and [14].

Lemma 1. Let u = (log x)/(log y), where x ≥ y > 0. If u → ∞ and u ≤ y1/2,
then the following estimate holds:

ψ(x, y) = xu−u+o(u).

We remark that the condition u ≤ y1/2 can be relaxed slightly, but this statement
suffices for our purposes. To complement the estimate of Lemma 1, we also use
the following bound, which holds for all u ≥ 1 (see [14, Chap. III.5, Thm. 1]).
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Lemma 2. Let u = (log x)/(log y), where x ≥ y > 0. If u ≥ 1, then the follow-
ing bound holds:

ψ(x, y) 
 x exp(−u/2).

In what follows, we denote by P the set of all prime numbers and by P[w, x] the
set of primes p such that w ≤ p ≤ x; for simplicity, we write P[x] for P[0, x].
If the parameters x ≥ y > 0 are fixed within a discussion, we also put Pm =
P[Lm, x/m] for all m ≥ 1, where Lm = max{y,P(m)}.
Lemma 3. Let x ≥ y > 0. For any two functions h(k) and f(k) satisfying
max{|h(k)|, |f(k)|} ≤ 1 for all positive integers k,∑

n≤x

h(P(n))f(n) =
∑

m≤x/y

∑
p∈Pm

h(p)f(mp)+O(ψ(x, y)).

Proof. Denote by N the set of integers n ≤ x with P(n) ≥ y. Then∑
n≤x

h(P(n))f(n) =
∑
n∈N

h(P(n))f(n)+O(ψ(x, y)). (1)

Every integer n∈ N has a unique representation of the form n = mp, where p =
P(n) ∈ Pm and m ≤ x/y. Conversely, if m ≤ x/y and p ∈ Pm, then n = mp lies
in N. Hence∑
n∈N

h(P(n))f(n) =
∑

m≤x/y

∑
p∈Pm

h(P(mp))f(mp) =
∑

m≤x/y

∑
p∈Pm

h(p)f(mp),

which, together with (1), finishes the proof.

As usual, we denote by π(x; q, a) the number of primes p ≤ x such that p ≡ a

(mod q). For a real number x ≥ 2, write

li x =
∫ x

2

dt

log t
.

We now recall the well-known Siegel–Walfisz theorem; see [5, Thm. 1.4.6] or, in
an alternative form, [14, Chap. II.8, Thm. 5].

Lemma 4. For every fixed numberA > 0 there exists a constantB > 0 such that,
for all x ≥ 2 and all positive integers q ≤ logA x, the following bound holds:

max
gcd(a,q)=1

∣∣∣∣π(x; q, a)− li x

ϕ(q)

∣∣∣∣ 
 x exp
(−B

√
log x

)
.

We also need the Bombieri–Vinogradov theorem. See [6, Chap. 28], where the
form of this theorem is slightly different from that of the following statement,
which can be derived by partial summation.

Lemma 5. For every fixed number A > 0 there is a constant B > 0 such that,
for all x ≥ 2, the following bound holds:
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∑
2≤q≤x1/2 log−B x

max
gcd(a,q)=1

∣∣∣∣π(x; q, a)− li x

ϕ(q)

∣∣∣∣ 
 x

logA x
.

Remark 1. In [6], it is shown that one can take B = A+ 5.

In particular, for every fixed number C > 0, Lemma 5 implies that

∑
2≤q≤X1/3

max
gcd(a,q)=1

∣∣∣∣π(X; q, a)− liX

ϕ(q)

∣∣∣∣ 
 X

logC X
, (2)

and this is the only form of Lemma 5 that is needed in the sequel.
The following two technical lemmas will be needed for our study of �(x; q, a)

in Section 4.

Lemma 6. Uniformly for q ≤ x, the following bound holds:

max
gcd(b,q)=1

∑
m≤x

gcd(m−b,q)=1

1

ϕ(m)

 ϕ(q)

q
log x.

Proof. Let b be an integer coprime to q. We start with the following identity:

∑
m≤x

gcd(m−b,q)=1

m

ϕ(m)
=

∑
m≤x

∑
c |gcd(m−b,q)

µ(c)
∑
d |m

µ2(d )

ϕ(d )

=
∑
d≤x

µ2(d )

ϕ(d )

∑
c |q

µ(c)
∑

m≤x, d |m
c |m−b

1

=
∑
d≤x

µ2(d )

ϕ(d )

∑
c |q

µ(c)
∑
n≤x/d

dn≡b (mod c)

1.

Note that the last sum is empty unless gcd(c, d) = 1, in which case∑
n≤x/d

dn≡b (mod c)

1 = x

cd
+O(1).

It follows that
∑
m≤x

gcd(m−b,q)=1

m

ϕ(m)
=

∑
d≤x

µ2(d )

ϕ(d )

∑
c |q

gcd(c,d )=1

µ(c)

(
x

cd
+O(1)

)

= x
∑
d≤x

µ2(d )

dϕ(d )

∑
c |q

gcd(c,d )=1

µ(c)

c
+O(2ω(q) log x),

where ω(q) is the number of distinct prime divisors of q. Here we have used the
result of Landau that
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∑
d≤x

1

ϕ(d )

 log x

(see e.g. [12] for a more precise statement). Now

∑
c |q

gcd(c,d )=1

µ(c)

c
=

∏
p |q
p �d

(
1 − 1

p

)
= ϕ(q)

q

gcd(d, q)

ϕ(gcd(d, q))

and therefore
∑
m≤x

gcd(m−b,q)=1

m

ϕ(m)
= ϕ(q)

q
x

∑
d≤x

µ2(d )

dϕ(d )

gcd(d, q)

ϕ(gcd(d, q))
+O(2ω(q) log x).

Observing that ∑
d≤x

µ2(d )

dϕ(d )

gcd(d, q)

ϕ(gcd(d, q))

 1

and that, for all q ≤ x,

2ω(q) log x 
 ϕ(q)

q
x,

we obtain ∑
m≤x

gcd(m−b,q)=1

m

ϕ(m)

 ϕ(q)

q
x

uniformly for q ≤ x and b coprime to q. The result now follows by partial
summation.

Lemma 7. Uniformly for exp(log1/5 x) ≤ y ≤ x1/2 and q ≤ exp(log6/7 y), the
following bound holds:

max
gcd(b,q)=1

∑
m≤x

P(m)≤y
gcd(m−b,q)=1

m

ϕ(m)

 ϕ(q)

q
ψ(x, y).

Proof. Write ∑
m≤x

P(m)≤y
gcd(m−b,q)=1

m

ϕ(m)
=

∑
m≤x

P(m)≤y

m

ϕ(m)

∑
c |gcd(m−b,q)

µ(c)

=
∑
c |q

µ(c)
∑
m≤x

P(m)≤y
m≡b (mod c)

m

ϕ(m)
.

Using [1, Thm. 1] and the well-known estimate

ψ(x, y) = ρ(u)x

(
1 +O

(
log u

log y

))
,
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whereρ(·) is the Dickman function andu = (log x)/(log y), we obtain the estimate
∑
m≤x

P(m)≤y
m≡b (mod c)

m

ϕ(m)
= ζc(2)ζc(3)

ζc(6)

ψ(x, y)

c
(1 +O(log−1/35 x)),

which is uniform in all parameters subject to the specified constraints. Here ζc(s)
is the partial zeta-function defined for �(s) > 1 by

ζc(s) =
∏
p �c

(1 − p−s )−1.

Consequently,

∑
m≤x

P(m)≤y
gcd(m−b,q)=1

m

ϕ(m)
= ψ(x, y)

∑
c |q

µ(c)

c

ζc(2)ζc(3)

ζc(6)
+O

(
ψ(x, y)

log1/35 x

∑
c |q

µ2(c)

c

)
.

Since ∑
c |q

µ2(c)

c
=

∏
p |q

(
1 + 1

p

)

 q

ϕ(q)

 ϕ(q)

q
log1/36 x,

the error term is of size o(ϕ(q)ψ(x, y)/q). For the main term, we observe that

∑
c |q

µ(c)

c

ζc(2)ζc(3)

ζc(6)
= ζ(2)ζ(3)

ζ(6)

∑
c |q

µ(c)

c

∏
p |c

(1 − p−2)(1 − p−3)

1 − p−6



∏
p |q

(
1 − 1

p

(1 − p−2)(1 − p−3)

1 − p−6

)

= ϕ(q)

q

∏
p |q

(
1 + 1

p3 − 2p2 + 2p − 1

)

 ϕ(q)

q
,

and the result follows.

One of our principal tools is the following bound for exponential sums over prime
numbers, which follows immediately from [6, Chap. 25] by partial summation
(see also [2; 3]).

Lemma 8. Let α∈R be fixed, and suppose there are integers a, q with q ≥ 1 and
gcd(a, q) = 1 and ∣∣∣∣α − a

q

∣∣∣∣ < 1

q2
.

Then, for all x ≥ 2, the following bound holds:∣∣∣∣
∑

p∈P[x]

e(αp)

∣∣∣∣ 
 x(q−1/2 + x−1/5 + q1/2x−1/2) log3 x.

Finally, we also need the following “major arc” bound, which can be deduced via
partial summation from the bound in [6, Chap. 26, p. 147].
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Lemma 9. For every fixed number A > 0, there is a constant B > 0 with the
following property. Let x ≥ 2 and suppose that

α = a

q
+ β,

where a, q are coprime integers and

1 ≤ q ≤ logA x, |β| < logA x

x
.

Then ∑
p∈P[x]

e(αp) = µ(q)

ϕ(q)

∑
n≤x

e(nβ)
log n

+O
(
x exp

(−B
√

log x
))
.

In particular, ∣∣∣∣
∑

p∈P[x]

e(αp)

∣∣∣∣ 
 x

ϕ(q) log x
.

3. Distribution of P(n) in Congruence Classes

Theorem 1. For every fixed number 0 > 0 there exists a constant c > 0 such
that, for any positive integer q, the following bound holds:

max
gcd(a,q)=1

∣∣∣∣�(x; q, a)− x

ϕ(q)

∣∣∣∣ 
 x(x−q−0 + exp(−c log1/3 x)).

Proof. Throughout the proof, let a be fixed with gcd(a, q) = 1. Consider the func-
tion h(k) defined by

h(k) =
{

1 if k ≡ a (mod q),

0 otherwise.
Put

y = exp(q0/2) and u = log x

log y
= 2q−0 log x.

By Lemmas 2 and 3, we have

�(x; q, a) =
∑

m≤x/y

∑
p∈Pm

h(p)+O(x exp(−u/2)). (3)

For any m with mLm ≤ x,∑
p∈Pm

h(p) = π(x/m; q, a)− π(Lm; q, a)+O(1),

and the sum is empty otherwise. We observe that the error term in the bound in
Lemma 4 is a monotonically increasing function of x. Hence, for all positive in-
tegers m with x/m ≥ Lm ≥ y, since q ≤ 2 log1/0 y it follows that the estimate

∑
p∈Pm

h(p) = 1

ϕ(q)
(li(x/m)− liLm)+O

(
xm−1 exp

(−c1

√
log(x/m)

))
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holds for some constant c1 > 0 depending only on 0. Therefore, by (3) we obtain

�(x; q, a) = 1

ϕ(q)

∑
m≤x/y

(li(x/m)− liLm)+O(x1−q−0 + R),

where
R = x

∑
m≤x/y
mLm≤x

m−1 exp
(−c1

√
log(x/m)

)
.

The same arguments applied with h(k) = 1 lead to the identity

�x� =
∑
n≤x

1 =
∑

m≤x/y

(li(x/m)− liLm)+O(x1−q−0 + R).

Therefore,
�(x; q, a) = x

ϕ(q)
+O(x1−q−0 + R). (4)

In order to estimate R, we put L = �log(x/y)� and derive that

R ≤ x

L∑
j=1

∑
ej−1≤m<ej

P(m)≤x/m

m−1 exp
(−c1

√
log(x/m)

)


 x

L∑
j=1

exp
(−c1

√
log(x/ej )

)
exp

(
− log(ej )

2 log(x/ej )

)
,

where we have used Lemma 2 in the last step. Now we have the inequality

c1

√
log(x/m)+ logM

2 log(x/M)
≥ c2 log1/3 x

for some absolute constant c2 > 0 and all x > M > 0, as is readily verified
by considering the cases M < x exp(log−2/3 x) and M ≥ x exp(log−2/3 x) sepa-
rately. Thus, it follows that

R 
 xL exp(−c2 log1/3 x) 
 x exp(−c log1/3 x)

for some constant c > 0. Combining this result with (4) finishes the proof.

It is clear that Theorem 1 is nontrivial only when q ≤ logK x for a fixed constant
K > 0, which is to be expected given our limited knowledge concerning primes
in arithmetic progressions. Of course, much better results for primes in arithmetic
progressions are known “on average” as the modulus q varies over all values up to√
x/logB x, as evidenced by Lemma 5. On the other hand, Theorem 1 cannot be

extended to such a wide range because the largest prime divisor P(n) often takes
very small values; this limitation is encapsulated in the following result.

Theorem 2. For every sufficiently large number x, there exists an integer a such
that the lower bound

�(x; q, a) >
x

ϕ(q)1/2

holds for every modulus q ≥ exp
(
3
√

log x log log x
)
.
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Proof. Put

v =
√

2 log x

log log x
,

and let a be the prime number lying closest to x1/v; then a = (1 + o(1))x1/v.

Consider the set of products n = ma, where m runs over all positive integers m ≤
x/a that are (a − 1)-smooth. Clearly, each integer n is counted by �(x; q, a) for
every modulus q; therefore,

�(x; q, a) ≥ ψ(x/a, a − 1).

Since log(x/a)/log a = v + o(v), Lemma 1 allows us to derive that

�(x; q, a) ≥ x

avv+o(v)
= x exp(−v−1 log x − (1 + o(1))v log v)

= x exp
(−√

(2 + o(1)) log x log log x
)
,

and the result follows.

In view of the lower bound given by Theorem 2, the following analogue of the
Bombieri–Vinogradov theorem, which at first glance appears somewhat weak, is
nevertheless the best result possible in our situation.

Theorem 3. For every fixed number B > 0 and all x ≥ 2, we have

∑
2≤q≤exp(

√
log x )

max
gcd(a,q)=1

∣∣∣∣�(x; q, a)− x

ϕ(q)

∣∣∣∣ 
 x

logB x
.

Proof. Put C = 2B + 2, and define

y = exp
(
3
√

log x
)

and u = log x

log y
=

√
log x

3
.

Arguing as in the proof of Theorem1(but applying Lemma1rather than Lemma 2),
we are led to the estimate

∑
2≤q≤exp(

√
log x )

max
gcd(a,q)=1

∣∣∣∣�(x; q, a)− x

ϕ(q)

∣∣∣∣ 
 x exp
(√

log x
)
u−u+o(u) + R,

where
R = x

∑
m≤x/y
mLm≤x

m−1 log−C(x/m).

Here we have applied (2) with X = x/m; note that our choice of y guarantees that
q ≤ X1/3 for all q in the stated range. Trivially, we have

R ≤ x
∑

m≤x/y

m−1 log−C(x/m) ≤ x log−C y
∑

m≤x/y

m−1 
 x log2−C y,

and the result follows from our choices of C, y, and u.
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4. Distribution of P(p − 1) Modulo q

Recall that
�(x; q, a) = #{p ≤ x : P(p − 1) ≡ a (mod q)}.

Theorem 4. For all q ≤ exp(log1/3 x), the following bound holds:

max
gcd(a,q)=1

�(x; q, a) 
 π(x)

ϕ(q)
.

Proof. Throughout the proof, let a be fixed with gcd(a, q) = 1, and put

y = exp(log2/5 x) and u = log x

log y
= log3/5 x,

where x is a large real number. Note that, by Lemma 1, we have

ψ(x, y) = x exp(−(0.6 + o(1))(log x)3/5 log log x) 
 π(x)

ϕ(q)
. (5)

Let h(k) and f(k) be the functions given by:

h(k) =
{

1 if k ≡ a (mod q),

0 otherwise;

f(k) =
{

1 if k + 1 is prime,

0 otherwise.

By Lemma 3 and the bound (5), we have

�(x; q, a) =
∑
n≤x

h(P(n))f(n)+O(1)

=
∑

m≤x/y

∑
p∈Pm

h(p)f(mp)+O

(
π(x)

ϕ(q)

)
.

For each integer m, observe that∑
p∈Pm

h(p)f(mp) = #{p ∈ Pm : p ≡ a (mod q) and mp + 1 is prime}. (6)

Note that the sum is empty unless mLm ≤ x. If gcd(am + 1, q) = d > 1 then,
writing p = qt + a, we see that mp + 1 = mqt + am + 1 is divisible by d; this
shows that the right side of (6) is either 0 or 1 for every such m. Since x/y 

π(x)/ϕ(q) by our choice of y, it follows that

�(x; q, a) =
∑

m≤x/y
P(m)≤x/m

gcd(am+1,q)=1

∑
p∈Pm

h(p)f(mp)+O

(
π(x)

ϕ(q)

)
.

If m ≤ x/y and gcd(am + 1, q) = 1, we can apply a standard sieve to bound the
right side of (6) (see e.g. [7, Cor. 2.4.1]; note that q < x/m by our choice of q),
and for such m we obtain
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∑
p∈Pm

h(p)f(mp) 
 x/m

ϕ(q) log2(x/mq)

∏
p |mq

(
1 − 1

p

)−1

≤ q

ϕ(q)2
· x

ϕ(m) log2(x/mq)
.

Thus, to complete the proof, it suffices to show that

T =
∑

m≤x/y
P(m)≤x/m

gcd(am+1,q)=1

x

ϕ(m) log2(x/mq)

 ϕ(q)

q
π(x).

Splitting the sum T into two pieces, we see that T 
 T1 + T2 , where

T1 = x

log2 x

∑
m≤x 2/3

gcd(am+1,q)=1

1

ϕ(m)
,

T2 =
∑

x 2/3<m≤x/y
P(m)≤x/m

gcd(am+1,q)=1

x

ϕ(m) log2(x/mq)
.

For T1, we apply Lemma 6 with b ≡ −a−1 (mod q), which gives

T1 
 x

log2 x

ϕ(q)

q
log x 
 ϕ(q)

q
π(x).

To estimate T2 , put M = ⌊
2
3 log x

⌋
and L = �log(x/y)�; then, by Lemmas 2 and

7 (again with b ≡ −a−1 (mod q)), we have

T2 
 x

L∑
j=M

1

ej log2(x/ejq)

∑
ej−1≤m<ej

P(m)≤x/ej−1

gcd(am+1,q)=1

m

ϕ(m)


 ϕ(q)

q
x

L∑
j=M

1

log2(x/ejq)
exp

(
− log(ej )

2 log(x/ej−1)

)
.

Since q2 = o(y), we see that x/ejq ≥ (x/ej−1)1/2 for all j ≤ L if x is large
enough. Therefore,

T2 
 ϕ(q)

q
x

L∑
j=M

1

log2(x/ej−1)
exp

(
log(x/ej−1)− log x

2 log(x/ej−1)

)


 ϕ(q)

q

x

log2 x

L∑
j=M

log2 x

log2(x/ej−1)
exp

(
− log x

2 log(x/ej−1)

)


 ϕ(q)

q

xL

log2 x

 ϕ(q)

q

x

log x

 ϕ(q)

q
π(x),

and the proof is complete.
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5. Rational Exponential Sums with P(n)

We now show that arguments from [2; 3] can be used to estimate rational expo-
nential sums with P(n).

Theorem 5. For any integer q ≥ 2, the bound

max
gcd(a,q)=1

|Sa,q(x)| 
 x(v−2v/5+o(v) + q−1/2 log4 x)

holds with v = (log x)/(log q).

Proof. Without loss of generality, we can also assume that q ≥ log8 x because
otherwise the bound is trivial. Throughout the proof, fix a with gcd(a, q) = 1. We
define y = q5/2 and remark that

u = log x

log y
= 2v

5
≤ log x ≤ y1/2;

thus we can apply Lemma 1. By Lemma 3 applied with h(k) = eq(ak), we see that

Sa,q(x) =
∑

m≤x/y

∑
p∈Pm

eq(ap)+O(xu−u+o(u)), (7)

where as before Pm = P[Lm, x/m] and Lm = max{y,P(m)}. Write∑
p∈P[Lm,x/m]

eq(ap) =
∑

p∈P[x/m]

eq(ap)−
∑

p∈P[Lm−1]

eq(ap).

Now, by Lemma 8, for all positive integers m ≤ x/y we have∑
p∈Pm

eq(ap) 
 x

m
(q−1/2 + x−1/5m1/5 + q1/2x−1/2m1/2) log3 x


 x

m
(q−1/2 + y−1/5 + q1/2y−1/2) log3 x.

Recalling the definition of y, we see that the first term always dominates; therefore,

∑
p∈Pm

eq(ap) 
 x log3 x

mq1/2
.

Consequently,

∑
m≤x/y

∣∣∣∣
∑

p∈P[Lm,x/m]

eq(ap)

∣∣∣∣ 
 x log3 x

q1/2

∑
m≤x/y

1

m
= x log4 x

q1/2
,

which together with (7) finishes the proof.

As we remarked previously, the bound of Theorem 5 is trivial when q ≤ log8 x.

Fortunately, the result of Theorem 1 can be used to provide a bound on Sa,q(x)

that is nontrivial for all moduli q ≤ logA x, where A > 0 is any fixed constant.

Theorem 6. For every fixed number 0 > 0 there is a constant c > 0 such that,
for any positive integer q, the following bound holds:
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max
gcd(a,q)=1

|Sa,q(x)| 
 x(|µ(q)|ϕ(q)−1 + x−q−0 + exp(−c log1/3 x)).

Proof. Throughout the proof, fix a with gcd(a, q) = 1. Applying Theorem 1 with
0/2 instead of 0 yields that, for some constant c1 > 0,

Sa,q(x) =
q∑

b=1
gcd(b,q)=1

�(x; q, b)eq(ab)

= x

ϕ(q)

q∑
b=1

gcd(b,q)=1

eq(ab)+O(x(qx−q−0/2 + q exp(−c1 log1/3 x))

= x

ϕ(q)

q∑
b=1

gcd(b,q)=1

eq(b)+O(x(qx−q−0/2 + q exp(−c1 log1/3 x)).

The sum over b is the well-known Ramanujan sum, which evaluates to
q∑

b=1
gcd(b,q)=1

eq(b) = µ(q)

(see e.g. [8, Thm. 272]). If q ≥ log1/0 x then the bound of the theorem is trivial,
while for q < log1/0 x we have

qx−q−0/2 ≤ x−q−0

and q exp(−c1 log1/3 x) 
 exp
(− 1

2c1 log1/3 x).

The result follows.

We remark that if q is squarefree then, for q < log1/0 x, the last term never domi-
nates the first one; hence the bound given by Theorem 6 takes the form

max
gcd(a,q)=1

|Sa,q(x)| 
 x(ϕ(q)−1 + x−q−0

).

On the other hand, if q is not squarefree, then the first term simply disappears and
the bound of Theorem 6 takes the form

max
gcd(a,q)=1

|Sa,q(x)| 
 x(x−q−0 + exp(−c log1/3 x)).

6. Distribution of αP(n) Modulo 1

Our goal here is to replace a/q in the previous section by an arbitrary real number
α and then obtain a bound for Sα(x) that implies the sequence {αP(n) : n ≥ 1} is
uniformly distributed modulo 1 when α is irrational.

Theorem 7. Let x ≥ 2 and α ∈ R. Let {aj/qj : j = 1, 2, . . .} be the sequence of
convergents in the continued fraction expansion of α, and put

g = max
{
qj : qj < exp

(√
log x

)}
.
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Then ∣∣∣∣
∑
n≤x

e(αP(n))

∣∣∣∣ 
 xg−1/3.

Proof. Let y = max
{
exp(3 log1/2 x), xg

−1/2}
. As before, we have∑

n≤x

e(αP(n)) =
∑

m≤x/y

∑
p∈Pm

e(αp)+O(xu−u+o(u)),

where

u = log x

log y
= min

(
log1/2 x

3
, g1/2

)
.

Note that u−u+o(u) 
 g−1/3 since g ≤ exp(log1/2 x).

Suppose first that g ≥ log24 x. Then, by Lemma 8, we have

∑
p∈Pm

e(αp) 
 x

m

(
g−1/2 +

(
m

x

)1/5

+
(
gm

x

)1/2)
log3

(
x

m

)
.

Hence

∑
m≤x/y

∑
p∈Pm

e(αp) 
 log3 x

(
x

g1/2
log x + x

y1/5
+ x

(
g

y

)1/2)

 xg−1/3,

by our choice of parameters.
Now suppose that g < log24 x. For each m, let

rm = max

{
qj : qj ≤ x

m log24 x

}
.

If rm > log24 x, then ∑
p∈Pm

e(αp) 
 x

m log9 x

by Lemma 8; summing this bound over all such m gives a bound of order

O(x log−8 x) = O(xg−1/3).

On the other hand, if rm < log24 x then rm = g (by the properties of convergents
in a continued fraction). We can therefore use Lemma 9, which gives∣∣∣∣

∑
p∈Pm

e(αp)

∣∣∣∣ 
 x/m

ϕ(g) log(x/m)
. (8)

Summing (8) over all possible m yields the upper bound∣∣∣∣
∑
n≤x

e(αP(n))

∣∣∣∣ 
 x log x

ϕ(g) log y
+ x(log x) exp(−C log1/4 x) 
 xg−1/3,

by our choice of parameters (note that log y ≥ (log x)/g1/2). This completes
the proof.
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Remark 2. It is possible to improve g1/3 in the bound of Theorem 7 to g1/2−ε

for any fixed ε > 0.

Remark 3. If α is irrational then there are infinitely many convergents in its con-
tinued fraction; hence the parameter g in Theorem 7 tends to infinity with x.

Let 〈ϑ〉 denote the fractional part of the real number ϑ. We recall that the discrep-
ancy D(x) of an arbitrary sequence {ϑn : n ≥ 1} is defined as

D(x) = sup
0≤γ≤1

|Nγ(x)− γx|,

where Nγ(x) is the counting function

Nγ(x) = #{n ≤ x : 〈ϑn〉 ≤ γ }.
The sequence is said to be uniformly distributed modulo 1 if

lim
x→∞

D(x)

x
= 0.

Corollary 1. If α is irrational, then the sequence {αP(n) : n ≥ 1} is uniformly
distributed modulo 1.

Proof. By Weyl’s criterion (see [9, Thm. 5.6]), we need only show that∑
n≤x

e(αhP(n)) = o(x)

for every integer h ≥ 1. Since α is irrational, αh is also irrational, and the result
follows immediately from Theorem 7 in view of our previous remark that g → ∞
as x → ∞.

Remark 4. Unfortunately, there is no hope of obtaining an explicit discrepancy
bound in Corollary 1 unless one assumes an appropriate condition for α, since one
can always “manufacture” real numbers α for which the discrepancy decreases at
an arbitrarily slow rate.

We recall that α is called a Liouville number if

lim sup
q→∞

log‖αq‖−1

log q
= ∞.

When α is not a Liouville number (which is the case for almost all real α), we
have the following result.

Corollary 2. Let D(x) be the discrepancy of the sequence {αP(n) : n ≤ x}.
Then, provided that α is not a Liouville number, we have

D(x) 
 x exp
(−√

log x
)
.

Proof. Since α is not a Liouville number, it follows that for all q ≥ 1 we have

‖αq‖ > C(α)q−K (9)
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for some K ≥ 1. Put
L = exp

(√
log x

)
.

By the Erdős–Turàn theorem (see [9, Thm. 5.5]),

D(x) 
 x

L
+

L∑
?=1

1

?
S?, (10)

where

S? =
∣∣∣∣
∑
n≤x

e(?αP(n))

∣∣∣∣.
For each ?, let q? be the largest convergent denominator (in the continued frac-
tion expansion of α?) not exceeding L4K. Then ‖?q?α‖ < L−4K and so, by (9),
?q? � L4; hence q? � L3. We thus have L3 
 q? < L4K. An easy modification
of Theorem 7 then shows that

S? 
 x(log x)4L−3/2,

and therefore
L∑
?=1

1

?
S? 
 x(log x)5L−3/2 
 XL−1.

The theorem now follows from (10).

References

[1] W. Banks, A. Harcharras, and I. E. Shparlinski, Smooth values of shifted primes in
arithmetic progressions, Michigan Math. J. 52 (2004), 603–618.

[2] W. Banks and I. E. Shparlinski, Congruences and exponential sums with the Euler
function, Fields Inst. Commun., 41, pp. 49–60, Amer. Math. Soc., Providence, RI,
2004.

[3] , Congruences and rational exponential sums with the Euler function, Rocky
Mountain J. Math. (to appear).
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