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Normality and Shared Functions of
Holomorphic Functions and Their Derivatives
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1. Introduction

Let D be a domain in C and let F be a family of meromorphic functions defined
in D. The family F is said to be normal in D, in the sense of Montel, if each se-
quence {fn} ⊂ F contains a subsequence {fnj } that converges, spherically locally
uniformly in D, to a meromorphic function or to ∞ (see [7; 12; 14]).

Let f and g be meromorphic functions in a domain D in C, and let a and b

be complex numbers. If g(z) = b whenever f(z) = a, we write f(z) = a ⇒
g(z) = b. If f(z) = a ⇒ g(z) = b and g(z) = b ⇒ f(z) = a, we write f(z) =
a ⇔ g(z) = b. If f(z) = a ⇔ g(z) = a then we say that f and g share a in D.

Schwick [13] was the first to draw a connection between values shared by func-
tions in F (and their derivatives) and the normality of the family F. Specifically,
he showed that if there exist three distinct complex numbers a1, a2 , a3 such that f
and f ′ share aj (j = 1, 2, 3) in D for each f ∈ F, then F is normal in D. Pang
and Zalcman [10] extended this result as follows.

Theorem A. Let F be a family of meromorphic functions in a domain D, and
let a, b, c, d be complex numbers such that c 
= a and d 
= b. If for each f ∈ F we
have f(z) = a ⇔ f ′(z) = b and f(z) = c ⇔ f ′(z) = d, then F is normal in D.

Chen and Hua proved the following.

Theorem B ([4], cf. [5; 9]). Let F be a family of holomorphic functions in a
domain D, and let a (
= 0) be a finite complex value. If, f , f ′, and f ′′ share a in
D for each f ∈ F, then F is normal in D.

In this paper, we extend Theorem B as follows.

Theorem 1. Let F be a family of holomorphic functions in a domain D, and let
a(z) be an analytic function in D such that a ′ 
≡ a. If, for each f ∈ F, f(z) =
a(z) ⇔ f ′(z) = a(z) ⇔ f ′′(z) = a(z) and f(z) − a(z) = 0 → f ′(z) − a(z) =
0 in D, then F is normal in D.
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Here f(z) − a(z) = 0 → f ′(z) − a(z) = 0 means: if z0 is a zero of f(z) − a(z)

with multiplicity n, then z0 is a zero of f ′(z) − a(z) with multiplicity at least n.
Theorem B is an instant corollary of Theorem 1, which yields also our next

result.

Corollary 1. Let F be a family of holomorphic functions in a domain D. If,
for each f ∈ F, f , f ′, f ′′ have the same fixed points in D, then F is normal in D.

The following two examples show that the conditions a ′ 
≡ a and f(z) − a(z) =
0 → f ′(z) − a(z) = 0 in Theorem 1 are necessary.

Example 1. Let D = {z : |z| < 1} and a(z) = cez for c a finite value. Let F =
{fn}, where

fn(z) = enz + cez.

Then, for any f ∈ F, it is easy to see that f(z)− a(z) 
= 0, f ′(z)− a(z) 
= 0, and
f ′′(z) − a(z) 
= 0. But F is not normal in D.

Example 2. Let D = {z : |z| < 1}, a(z) = z2 + 2z + 2, and F = {fn : n =
2, 3, . . . }, where

fn(z) = nz3 + z2 + 2z + 2.

Then, for any fn(z) = nz3 + z2 + 2z + 2 ∈ F,

fn(z) − a(z) = nz3,

f ′
n(z) − a(z) = (3n − 1)z2,

f ′′
n (z) − a(z) = (6n − 2 − z)z.

Thus fn(z)− a(z), f ′
n(z)− a(z), and f ′′

n (z)− a(z) have the same zeros in D. But
F is not normal in D.

The following example shows that there are normal families that do not satisfy the
conditions of Theorem B yet do satisfy the conditions of our results.

Example 3. Let D = {z ∈ C : Re(z) > −3/2} and F = {fn : n = 1, 2, 3, . . . },
where

fn(z) = i

2
nz2 + (n2 + ni)z + n2 − i

2
(n3 − 2n).

(
Here, as usual, i = √−1.

)
Then F is normal in D. In fact, fn → ∞ locally

uniformly in D as n → ∞. We may compute

fn(z) − z = i

2
n(z − ni)

[
z −

(
−2 + ni − 2i

n

)]
,

f ′
n(z) − z = (−1 + ni)(z − ni),

f ′′
n (z) − z = −(z − ni).

It follows that fn(z), f ′
n(z), f

′′
n (z) have the same fixed points in D, so the functions

fn satisfy the conditions of Corollary 1.
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However, there does not exist a number a ∈ C such that fn, f ′
n, f ′′

n share a in
D. Let a = x0 + y0 i. Then, for sufficiently large n, f ′′

n (z) = ni 
= a, but zn =
−1 + y0/n + (n − x0/n)i ∈ D and so f ′

n(zn) = a. Thus the functions fn do not
satisfy the conditions of Theorem B.

In order to prove Theorem 1, we need the following results.

Proposition 1. Let F be a family of holomorphic functions in a domain D, and
let A(z) 
= 0 be a zero-free analytic function in D. If for each f ∈ F we have
f(z) = 0 ⇒ f ′(z) = A(z) and f ′(z) = A(z) ⇒ f ′′(z) = A(z) + A′(z) in D,
then F is normal in D.

Proposition 2. Let F be a family of holomorphic functions in a domain D, and
let A(z) 
≡ 0 be an analytic function in D that is not equal to zero identically. If,
for each f ∈ F, we have A(z) = 0 ⇒ f(z) = 0, f(z) = 0 ⇔ f ′(z) = A(z), and
f ′(z) = A(z) ⇔ f ′′(z) = A(z) + A′(z) and also f(z) = 0 → f ′(z) = A(z),
then F is normal in D.

Proposition 3. Let F be a family of holomorphic functions in a domain D, and
let A(z) 
≡ 0 be an analytic function in D that is not equal to zero identically. If,
for each f ∈ F, we have A(z) = 0 ⇒ f(z) 
= 0 and f(z) = 0 ⇔ f ′(z) = A(z)

and f ′(z) = A(z) ⇒ f ′′(z) = A(z) + A′(z), then F is normal in D.

2. Some Lemmas

Let f be a nonconstant meromorphic function in DR = {z : |z| < R} (R ≤ ∞).

Throughout this paper we use the basic results and notation of Nevanlinna the-
ory, such as T(r, f ), m(r, f ), N(r, f ), . . . (cf. [6; 7; 12; 14]). In particular, S(r, f )

denotes any function satisfying

S(r, f ) = o{T(r, f )}
as r → +∞ and possibly outside of a set of finite linear measure, where T(r, f ) is
Nevanlinna’s characteristic function. As usual, the order ρ(f ) of f is defined as

ρ(f ) = lim sup
r→∞

log T(r, f )

log r
.

In order to prove our theorems, we require the following results.

Lemma 1 ([11, Lemma 2]; cf. [15, p. 217]). Let F be a family of meromorphic
functions in the domain D ⊂ C, all of whose zeros have multiplicity at least k,
and suppose there exists an A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0.
Then, if F is not normal at some point z0 ∈D, for each 0 ≤ α ≤ k there exist

(a) points zn ∈D, zn → z0,
(b) functions fn ∈ F, and
(c) positive numbers ρn → 0
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such that ρ−α
n fn(zn + ρnζ) = gn(ζ) → g(ζ) locally uniformly, where g is a non-

constant meromorphic function in C, all of whose zeros have multiplicity at least
k, such that g#(ζ) ≤ g#(0) = kA + 1. In particular, if F is a family of holomor-
phic functions, then g is of exponential type.

Here, as usual, g#(ζ) = |g ′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative.

Lemma 2 ([9]; cf. [3]). Let g be a nonconstant entire function of exponential
type. If g(z) = 0 ⇒ g ′(z) = 1 and g ′(z) = 1 ⇒ g ′′(z) = 0, then g ′(z) ≡ 1.

Lemma 3 [7; 14]. Let f be a nonconstant meromorphic function and let k be a
positive integer. Then

m

(
r,

f (k)

f

)
= S(r, f );

in particular, if f is of finite order then

m

(
r,

f (k)

f

)
= O(log r).

Lemma 4 [6, Lemma 7.1]. Let φ1(z),φ2(z), . . . ,φn(z) be n entire functions such
that φi − φj is nonconstant for i 
= j. Let g1(z), g2(z), . . . , gn(z) be n meromor-
phic functions of finite order such that

ρ(gi) < min
1≤s<t≤n

{ρ(eφt−φs )}, i = 1, 2, . . . , n.

If
n∑

i=1

gi(z)e
φi(z) = 0,

then
g1 = g2 = · · · = gn = 0.

Here and in the sequel, ρ(g) denotes the order of g.

Lemma 5. Let g be an entire function whose order is at most 1, and let k be a
positive integer. If g(z) = 0 ⇔ g ′(z) = zk and g ′(z) = zk ⇔ g ′′(z) = kzk−1,
then g(z) = czk+1, where c is a nonzero constant.

Proof. Set

φ(z) = zg ′′(z) − kg ′(z)
g(z)

. (2.1)

Now we consider two cases.

Case 1: φ ≡ 0. Then zg ′′(z) − kg ′(z) = 0 for any z∈ C. It follows that

g(z) = czk+1 + d, (2.2)

where c and d are constants. Thus by g(z) = 0 ⇔ g ′(z) = zk, we know that d =
0. Hence g(z) = czk+1, where c is a nonzero constant.
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Case 2: φ 
≡ 0. Then, by the conditions of the lemma, φ(z) has only one pos-
sible simple pole z = 0 (if g(0) = 0). Since ρ(g) ≤ 1, by Lemma 3 we have

T(r,φ) = m(r,φ) + N(r,φ)

≤ m(r, z) + m

(
r,

g ′

g

)
+ m

(
r,

g ′′

g

)
+ log r + O(1)

= O(log r). (2.3)

It follows that

φ(z) = αnz
n + αn−1z

n−1 + · · · + α1z + α0 + γ

z
, (2.4)

where αn, . . . ,α0 and γ are constants and where γ = 0 if g(0) 
= 0.
Set

L(z) = g(z)[g ′′(z) − kzk−1]

g ′(z) − zk
. (2.5)

If L ≡ 0 then g(z)[g ′′(z) − kzk−1] ≡ 0. Thus, by g(z) = 0 ⇔ g ′′(z) − kzk−1 =
0 we deduce that g(z) ≡ 0, which is impossible.

Hence L 
≡ 0. Since g(z) = 0 ⇔ g ′(z) − zk = 0 ⇔ g ′′(z) − kzk−1 = 0, it
follows that L(z) is an entire function that has only one possible zero z = 0 with
multiplicity s if z = 0 is a zero of g with multiplicity s + 1. Since ρ(g) ≤ 1, we
deduce from Lemma 3 that ρ(L) ≤ 1. Thus we have

L(z) = azseλz, (2.6)

where λ and a 
= 0 are constants and where s is a nonnegative integer.
Thus, by (2.5) and (2.6),

g(z)[g ′′(z) − kzk−1] = azseλz[g ′(z) − zk]. (2.7)

This together with (2.1) yields

g(z)[kg ′(z) + φ(z)g(z) − kzk] = azs+1eλz[g ′(z) − zk],

so that
[g ′(z) − zk][kg(z) − azs+1eλz] = −φ(z)[g(z)]2. (2.8)

It follows that kg(z) − azs+1eλz has only finitely many zeros.
Since g is an entire function and since ρ(g) ≤ 1, we may assume that

g(z) = a

k
zs+1eλz + P(z)eµz, (2.9)

where P(z) is a polynomial and µ is a constant. It is obvious that P(z) 
≡ 0.
Using (2.9), we obtain

g ′(z) = a

k
[λzs+1 + (s + 1)zs]eλz + [P ′(z) + µP(z)]eµz. (2.10)

Thus by (2.8)–(2.10) and some calculation, we have

A1(z)e
2λz + A2(z)e

(λ+µ)z + A3(z)e
2µz + A4(z)e

µz = 0,

where
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A1(z) = a2

k2
z2(s+1)φ(z) 
≡ 0,

A2(z) = 2a

k
zs+1P(z)φ(z) + a[λzs+1 + (s + 1)zs]P(z),

A3(z) = [P(z)]2φ(z) + kP(z)[P ′(z) + µP(z)],

A4(z) = −kzkP(z) 
≡ 0.

Next we show that λ = µ = 0. First, by Lemma 4, we know that at least one of
µ, λ, λ − µ, and 2λ − µ is zero. And again by Lemma 4 with A1 
≡ 0 and A4 
≡
0, we see that either (a) λ 
= 0, µ 
= 0, and λ − µ 
= 0 or (b) λ = µ = 0.

In case (a) we have µ = 2λ. Thus, by Lemma 4 again, we know that A2 ≡ 0
and A3 ≡ 0.

Hence by (2.4) and A2 ≡ 0 we have

2αnz
s+n+1 + · · · + 2α1z

s+2 + [kλ + 2α0 ]zs+1 + [k(s + 1) + 2γ ]zs ≡ 0,

so that

αn = · · · = α1 = 0, α0 = −1

2
kλ, γ = −1

2
k(s + 1) 
= 0.

Therefore, (2.4) allows us to obtain

φ(z) = −1

2
kλ − k(s + 1)

2z
;

together with A3 ≡ 0, this yields(
−1

2
kλz − k(s + 1)

2

)
P(z) + kz[P ′(z) + µP(z)] ≡ 0.

It follows that µ = −λ/2, which together with µ = 2λ gives that λ = µ = 0, a
contradiction. Hence we have proved that λ = µ = 0. Thus, by (2.9), g(z) is a
polynomial.

By (2.7) and λ = 0, we have

g(z)[g ′′(z) − kzk−1] = azs[g ′(z) − zk]. (2.11)

By (2.1) and (2.4),

z2g ′′(z) − kzg ′(z) − (αnz
n+1 + · · · + α0 z + γ )g(z) ≡ 0.

It follows that αn = · · · = α1 = α0 = 0 and γ 
= 0, so that g(0) = 0. Thus, by
(2.11), z = 0 is a zero of g with multiplicity s + 1.

If
g(z) = a0 z

l + a1z
m + · · · , (2.12)

where a0, a1 are nonzero constants and l > m are nonnegative integers, then m ≥
s + 1 and so l ≥ s + 2. On the other hand, by (2.11) it follows that l = s + 1, a
contradiction.

Hence g(z) = czl, where c 
= 0 is a constant and l is a positive integer. Thus,
by g(z) = 0 ⇔ g ′(z) = zk, it follows that l = k + 1. This completes the proof of
Lemma 5.
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Lemma 6. Let f(z) be analytic in the disc + = {z : |z| < r0}; let A(z) =
zkφ(z), where k ∈ N and φ 
= 0 is analytic on +̄; and let a be a complex number
such that |a| < r0. If f(0) 
= 0, f(−a) 
= 0, (f ′/φa)

(2k)
z=0 
= 0, and La(0) 
= 0 and

if f(z) = 0 ⇔ f ′(z) = Aa(z) and f ′(z) = Aa(z) ⇒ f ′′(z) = Aa(z) + A′
a(z),

where Aa(z) = A(z + a), φa(z) = φ(z + a), and

La(z) = [Aa(z) − A′
a(z)]

f ′(z)
f(z)

+ Aa(z)
f ′′(z)
f(z)

− 2Aa(z)
f ′′(z) − A′

a(z)

f ′(z) − Aa(z)
+ A′

a(z), (2.13)

then for 0 < r < r0 − |a| we have

T(r, f ) ≤ LD[r, f ] + log
|[f ′(0) − Aa(0)]f(0)|
|[La(0)]2(f ′/φa)

(2k)
z=0|

, (2.14)

where

LD[r, f ] = 3m

(
r,

f ′

f

)
+ 2m

(
r,

f ′′

f

)
+ 2m

(
r,

f ′′ − A′
a

f ′ − Aa

)

+ m

(
r,

(f ′/φa)
(k)

f ′/φa

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa)(k)

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa)(k) − k!

)

+ m

(
r,

[(f ′/φa) − (z + a)k](k)

(f ′/φa) − (z + a)k

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa) − (z + a)k

)

+ 3m

(
r,

1

φa

)
+ 6m(r,Aa) + 4m(r,A′

a) + 12 log 2. (2.15)

Proof. Using a standard argument in Nevanlinna’s theory, we have

m

(
r,

1

f

)
+ m

(
r,

1

f ′ − Aa

)

= m

(
r,

1

f

)
+ m

(
r,

1

f ′ − (z + a)kφa

)

≤ m

(
r,

1

f ′/φa

)
+ m

(
r,

1

(f ′/φa) − (z + a)k

)
+ 2m

(
r,

1

φa

)
+ m

(
r,

f ′

f

)

≤ m

(
r,

1

(f ′/φa)(k)

)
+ m

(
r,

1

(f ′/φa)(k) − k!

)
+ m

(
r,

f ′

f

)

+ m

(
r,

(f ′/φa)
(k)

f ′/φa

)
+ m

(
r,

[(f ′/φa) − (z + a)k](k)

(f ′/φa) − (z + a)k

)
+ 2m

(
r,

1

φa

)

≤ m

(
r,

1

(f ′/φa)(k)
+ 1

(f ′/φa)(k) − k!

)
+ m

(
r,

f ′

f

)
+ log 2 + log+ 4

k!

+ m

(
r,

(f ′/φa)
(k)

f ′/φa

)
+ m

(
r,

[(f ′/φa) − (z + a)k](k)

(f ′/φa) − (z + a)k

)
+ 2m

(
r,

1

φa

)
≤
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≤ m

(
r,

1

(f ′/φa)(2k)

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa)(k)

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa)(k) − k!

)

+ m

(
r,

f ′

f

)
+ m

(
r,

(f ′/φa)
(k)

f ′/φa

)
+ m

(
r,

[(f ′/φa) − (z + a)k](k)

(f ′/φa) − (z + a)k

)

+ 2m

(
r,

1

φa

)
+ 4 log 2. (2.16)

Since f ′/φa is holomorphic in +, by Nevanlinna’s first fundamental theorem it
follows that

m

(
r,

1

(f ′/φa)(2k)

)
≤ T

(
r,

1

(f ′/φa)(2k)

)

= T(r, (f ′/φa)
(2k)) + log

1

|(f ′/φa)
(2k)
z=0|

= m

(
r,

(f ′/φa)
(2k)

(f ′/φa) − (z + a)k
· f

′ − Aa

φa

)
+ log

1

|(f ′/φa)
(2k)
z=0|

≤ m(r, f ′ − Aa) + m

(
r,

(f ′/φa)
(2k)

(f ′/φa) − (z + a)k

)

+ m

(
r,

1

φa

)
+ log

1

|(f ′/φa)
(2k)
z=0|

. (2.17)

Thus, by (2.16) and (2.17) we have

T(r, f ) = m(r, f ) + m(r, f ′ − Aa) − m(r, f ′ − Aa)

= T(r, f ) + T(r, f ′ − Aa) − m(r, f ′ − Aa)

= T

(
r,

1

f

)
+ T

(
r,

1

f ′ − Aa

)
− m(r, f ′ − Aa)

+ log|f(0)[f ′(0) − Aa(0)]|

≤ N

(
r,

1

f

)
+ N

(
r,

1

f ′ − Aa

)
+ LD1[r, f ]

+ log

∣∣∣∣f(0)[f ′(0) − Aa(0)]

(f ′/φa)
(2k)
z=0

∣∣∣∣, (2.18)

where

LD1[r, f ] = m

(
r,

f ′

f

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa)(k)

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa)(k) − k!

)

+ m

(
r,

[(f ′/φa) − (z + a)k](k)

(f ′/φa) − (z + a)k

)
+ m

(
r,

(f ′/φa)
(2k)

(f ′/φa) − (z + a)k

)

+ m

(
r,

(f ′/φa)
(k)

f ′/φa

)
+ 3m

(
r,

1

φa

)
+ 4 log 2. (2.19)
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Because f(−a) 
= 0, Aa(−a) = 0, and f(z) = 0 ⇔ f ′(z) = Aa(z), we can
see that f ′(−a) 
= 0. Since f(z) = 0 ⇔ f ′(z) = Aa(z) and f ′(z) = Aa(z) ⇒
f ′′(z) = Aa(z) + A′

a(z), it follows that all zeros of f(z) and f ′(z) − Aa(z) are
simple. Hence we have

N

(
r,

1

f ′ − Aa

)
= N

(
r,

1

f

)
. (2.20)

This with (2.18) yields

T(r, f ) ≤ 2N

(
r,

1

f

)
+ LD1[r, f ] + log

∣∣∣∣f(0)[f ′(0) − Aa(0)]

(f ′/φa)
(2k)
z=0

∣∣∣∣. (2.21)

Now let f(z0) = 0. Then, by f(−a) 
= 0, we have z0 +a 
= 0 and so Aa(z0) =
A(z0+a) 
= 0. By assumption, f ′(z0) = Aa(z0) andf ′′(z0) = Aa(z0)+A′

a(z0).

Thus, near z0:

f ′(z)
f(z)

= Aa(z0) + [Aa(z0) + A′
a(z0)](z − z0) + O[(z − z0)

2]

Aa(z0)(z − z0) + 1
2 [Aa(z0) + A′

a(z0)](z − z0)2 + O[(z − z0)3]

= 1

z − z0
+ Aa(z0) + A′

a(z0)

2Aa(z0)
+ O(z − z0);

f ′′(z)
f(z)

= Aa(z0) + A′
a(z0) + f ′′′(z0)(z − z0) + O[(z − z0)

2]

Aa(z0)(z − z0) + 1
2 [Aa(z0) + A′

a(z0)](z − z0)2 + O[(z − z0)3]

= Aa(z0) + A′
a(z0)

Aa(z0)
· 1

z − z0
+ f ′′′(z0)

Aa(z0)
− [Aa(z0) + A′

a(z0)]2

2[Aa(z0)]2

+ O(z − z0);
f ′′(z) − A′

a(z)

f ′(z) − Aa(z)

= Aa(z0) + [f ′′′(z0) − A′′
a(z0)](z − z0) + O[(z − z0)

2]

Aa(z0)(z − z0) + 1
2 [f ′′′(z0) − A′′

a(z0)](z − z0)2 + O[(z − z0)3]

= 1

z − z0
+ f ′′′(z0) − A′′

a(z0)

2Aa(z0)
+ O(z − z0).

Hence, by definition of the function La(z), near z0 we have La(z) = O(z − z0),
and it follows that La(z0) = 0. Combining this with the fact that all zeros of f(z)

are simple, we get

N

(
r,

1

f

)
≤ N

(
r,

1

La

)
and N(r,La) = 0. (2.22)
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This, together with (2.21) and Nevanlinna’s first fundamental theorem, yields

T(r, f ) ≤ 2N

(
r,

1

La

)
+ LD1[r, f ] + log

∣∣∣∣f(0)[f ′(0) − Aa(0)]

(f ′/φa)
(2k)
z=0

∣∣∣∣
≤ 2m

(
r,La

)
+ LD1[r, f ] + log

∣∣∣∣f(0)[f ′(0) − Aa(0)]

[La(0)]2(f ′/φa)
(2k)
z=0

∣∣∣∣. (2.23)

By (2.13), we have

m(r,La) ≤ m

(
r,

f ′

f

)
+ m

(
r,

f ′′

f

)
+ m

(
r,

f ′′ − A′
a

f ′ − Aa

)

+ 3m(r,Aa) + 2m(r,A′
a) + 4 log 2. (2.24)

Thus, by (2.23), (2.24), and (2.29) we obtain (2.14) and (2.15). This completes the
proof of Lemma 6.

Lemma 7 [1]. Let U(r) be a nonnegative, increasing function on an interval
[R1,R2 ] (0 < R1 < R2 < +∞); let a, b be two positive constants satisfying b >

(a + 2)2; and let

U(r) < a

{
log+ U(ρ) + log

ρ

ρ − r

}
+ b

whenever R1 < r < ρ < R2. Then, for R1 < r < R2 ,

U(r) < 2a log
R2

R2 − r
+ 2b.

Lemma 8 [8]. Let f(z) be meromorphic in |z| < R. If f(0) 
= 0, ∞ then, for
every positive integer k,

m

(
r,

f (k)

f

)
≤ Ck

{
1 + log+ log+ 1

|f(0)| + log+ 1

r

+ log+ 1

ρ − r
+ log+ρ + log+ T(ρ, f )

}
,

where 0 < r < ρ < R and Ck is a constant depending only on k.

In the sequel, Ck may vary with each occurrence.

3. Proofs

3.1. Proof of Proposition 1

Suppose that F is not normal at some point z0 ∈D. Since D is open, there exists
a positive number δ such that {z : |z − z0| < δ} ⊂ D. Hence, by Lemma 1 there
exist zn → z0, ρn → 0, and fn ∈ F such that

gn(ζ) = ρ−1
n fn(zn + ρnζ) → g(ζ)
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locally uniformly on C, where g is a nonconstant entire function such that g#(ζ) ≤
g#(0) = max|z−z0|≤δ/2|A(z)| + 1. In particular, g is of exponential type.

We claim that:

(i) g(ζ) = 0 ⇒ g ′(ζ) = A(z0);
(ii) g ′(ζ) = A(z0) ⇒ g ′′(ζ) = 0.

Suppose now that g(ζ0) = 0. Then, by Hurwitz’s theorem, there exist points
ζn → ζ0 such that gn(ζn) = ρ−1

n fn(zn + ρnζn) = 0. Thus fn(zn + ρnζn) = 0 and
so f ′

n(zn + ρnζn) = A(zn + ρnζn). Hence g ′
n(ζn) = A(zn + ρnζn) and g ′(ζ0) =

limn→∞ g ′
n(ζn) = A(z0). This proves (i).

Next we prove (ii). Suppose that g ′(ζ0) = A(z0). Obviously g ′(ζ) 
≡ A(z0),
for otherwise g#(0) ≤ |g ′(0)| = |A(z0)|, which contradicts

g#(0) = max|z−z0|≤δ/2
|A(z)| + 1.

Hence, by Hurwitz’s theorem there exist points ζn → ζ0 such that g ′
n(ζn) =

A(zn+ρnζn), so f ′
n(zn+ρnζn) = A(zn+ρnζn) and g ′′

n(ζn) = ρnf
′′
n (zn+ρnζn) =

ρn[A(zn + ρnζn)+A′(zn + ρnζn)]. It follows that g ′′(ζ0) = limn→∞ g ′′
n(ζn) = 0,

which proves (ii).
Therefore, Lemma 2 implies that g ′(ζ) ≡ A(z0)—a contradiction. Thus, the

proof of Proposition 1 is complete.

3.2. Proof of Proposition 2

Let z0 ∈D. If A(z0) 
= 0 then, by Proposition 1, F is normal at z0. Now suppose
that A(z0) = 0. Then there exists a positive number δ such that A(z) 
= 0 for z ∈
{z : 0 < |z − z0| ≤ δ} ⊂ D. Hence, again by Proposition 1, F is normal in {z :
0 < |z − z0| < δ}. Without loss of generality, we assume that z0 = 0. Let + =
{z : |z| < δ}. Then F is normal in +\ {0}. Let A(z) = zkφ(z), where k is a posi-
tive integer and φ is a zero-free analytic function on +̄. We shall prove that F is
normal at z = 0, but first we prove three claims as follows.

Claim 1. Let f ∈ F. Then z = 0 is a zero of f with multiplicity k + 1 and
f (k+1)(0) = k!φ(0).

Proof. Indeed, by A(z) = 0 ⇒ f(z) = 0 and A(0) = 0 it follows that f(0) = 0.
Thus f(z) = zlf1(z), where l is a positive integer and where f1(z) is analytic at
z = 0 and satisfies f1(0) 
= 0. Hence we have

f ′(z) − A(z) = zl−1[lf1(z) + zf ′
1(z)] − zkφ(z). (3.2.1)

If l − 1 
= k, then by f(z) = 0 → f ′(z) = A(z) we see that min(l − 1, k) ≥ l,
which is impossible.

Thus l = k + 1, so

f(z) = zk+1f1(z), (3.2.2)

f ′(z) − A(z) = zk[(k + 1)f1(z) + zf ′
1(z) − φ(z)]. (3.2.3)
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Since f(z) = 0 → f ′(z) = A(z), we know that (k +1)f1(0)−φ(0) = 0. Hence,
by (3.2.2), f (k+1)(0) = k!φ(0). This proves Claim 1.

Claim 2. Let f ∈ F and let F(z) = z−kf(z). Then F(z) is analytic in + and
|F ′(z)| ≤ M whenever F(z) = 0 in +, where M = maxz∈+̄|φ(z)|.
Proof. In fact, by Claim 1 we know that F(z) is analytic in +. Now suppose
F(z0) = 0, so that f(z0) = 0. If z0 
= 0 then, by f(z0) = 0, it follows that
f ′(z0) = A(z0) = zk

0φ(z0). Thus

|F ′(z0)| = |z−k
0 f ′(z0) − kz−k−1

0 f(z0)| = |φ(z0)| ≤ M.

If z0 = 0 then by Claim 1 we know that, near z0 = 0,

f(z) = φ(0)

k + 1
zk+1 + O(zk+2)

and so

F(z) = φ(0)

k + 1
z + O(z2).

Thus we have

|F ′(z0)| = |F ′(0)| = |φ(0)|
k + 1

≤ M,

and Claim 2 is proved.

Claim 3. If {F(z) = z−kf(z) : f ∈ F } is normal at z = 0, then F is also nor-
mal at z = 0.

Proof. Let {fn} be a sequence in F. Then {Fn(z) = z−kfn(z)} is normal at z = 0.
By Claim 1, Fn(0) = 0. It follows that there exists a subsequence {Fnj } of {Fn}
such that, in a neighborhood U ⊂ + of z = 0, {Fnj } converges uniformly to an
analytic function h(z). Thus fnj (z) = zkFnj (z) converges uniformly to zkh(z) in
U. Hence F is normal at z = 0, which proves Claim 3.

Now we prove that F is normal at z = 0. Suppose on the contrary that F is not
normal at z = 0. Then, by Claim 3, the family {F(z) = z−kf(z) : f ∈ F } is not
normal at z = 0. Thus, by Claim 2 and Lemma 1, we can find zn → 0, ρn → 0+,
and fn ∈ F such that

gn(ζ) = ρ−1
n (zn + ρnζ)

−kfn(zn + ρnζ) → g(ζ) (3.2.4)

locally uniformly on C, where g is a nonconstant entire function such that g#(ζ) ≤
g#(0) = M + 1 for M = maxz∈+̄|φ(z)|. In particular, ρ(g) ≤ 1.

Without loss of generality, we assume that

lim
n→∞

zn

ρn

= c ∈ Ĉ = C ∪ {∞}. (3.2.5)

Next we consider two cases.

Case 1: c 
= ∞. Let

hn(ζ) = ρ−k−1
n fn(zn + ρnζ). (3.2.6)
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Then (3.2.4) and (3.2.5) yield

hn(ζ) =
(
ζ + zn

ρn

)k

gn(ζ) → (ζ + c)kg(ζ) = h(ζ) (3.2.7)

locally uniformly on C. We claim that:

(i) h(ζ) = 0 ⇔ h′(ζ) = φ(0)(ζ + c)k;
(ii) h′(ζ) = φ(0)(ζ + c)k ⇔ h′′(ζ) = kφ(0)(ζ + c)k−1;

(iii) h(k+1)(−c) = k!φ(0).

Suppose h(ζ0) = 0. Obviously, h(ζ) 
≡ 0. Thus, by Hurwitz’s theorem, there
exist points ζn → ζ0 such that hn(ζn) = 0, so that fn(zn +ρnζn) = 0. Then, since
f(z) = 0 ⇒ f ′(z) = A(z), it follows that f ′

n(zn + ρnζn) = A(zn + ρnζn) and so

h′
n(ζn) = ρ−k

n f ′
n(zn + ρnζn) =

(
ζn + zn

ρn

)k

φ(zn + ρnζn).

Hence
h′(ζ0) = lim

n→∞ h′
n(ζn) = (ζ0 + c)kφ(0).

Thus we have proved that h(ζ) = 0 ⇒ h′(ζ) = φ(0)(ζ + c)k. On the other
hand, suppose h′(ζ0) = φ(0)(ζ0 +c)k. Then h′(ζ) 
≡ φ(0)(ζ +c)k. For otherwise,
if h′(ζ) ≡ φ(0)(ζ + c)k, then

h(ζ) = φ(0)

k + 1
(ζ + c)k+1 + d,

where d is a constant. Since h(−c) = 0, we get d = 0. Thus we obtain

g(ζ) = h(ζ)

(ζ + c)k
= φ(0)

k + 1
(ζ + c).

It follows that g#(0) ≤ |g ′(0)| = |φ(0)|/(k + 1) < M + 1, a contradiction.
Therefore, h′(ζ) 
≡ φ(0)(ζ + c)k. Hence, by Hurwitz’s theorem there exist

points ζn → ζ0 such that

h′
n(ζn) = φ(zn + ρnζn)

(
ζn + zn

ρn

)k

= ρ−k
n A(zn + ρnζn),

so that f ′
n(zn +ρnζn) = ρk

nh
′
n(ζn) = A(zn +ρnζn). Then, since f ′(z) = A(z) ⇒

f(z) = 0, it follows that fn(zn + ρnζn) = 0 and so hn(ζn) = 0. Because h(ζ0) =
limn→∞ hn(ζn) = 0, we have proved that h′(ζ) = φ(0)(ζ + c)k ⇒ h(ζ) = 0.
Thus claim (i) is proved.

Next we prove (ii). Suppose h′(ζ0) = φ(0)(ζ0 + c)k; then the foregoing argu-
ment shows that there exist points ζn → ζ0 such thatf ′

n(zn+ρnζn) = A(zn+ρnζn).

As a result, by f ′(z) = A(z) ⇒ f ′′(z) = A(z) + A′(z) we have

f ′′
n (zn + ρnζn) = A(zn + ρnζn) + A′(zn + ρnζn)

= k(zn + ρnζn)
k−1φ(zn + ρnζn)

+ (zn + ρnζn)
k[φ(zn + ρnζn) + φ ′(zn + ρnζn)].

Hence, by (3.2.6),
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h′′
n(ζn) = ρ−k+1

n f ′′
n (zn + ρnζn)

= k

(
ζn + zn

ρn

)k−1

φ(zn + ρnζn)

+ ρn

(
ζn + zn

ρn

)k

[φ(zn + ρnζn) + φ ′(zn + ρnζn)]

and so
h′′(ζ0) = lim

n→∞ h′′
n(ζn) = k(ζ0 + c)k−1φ(0).

This proves that h′(ζ) = φ(0)(ζ + c)k ⇒ h′′(ζ) = kφ(0)(ζ + c)k−1.

Suppose now h′′(ζ0) = kφ(0)(ζ0 + c)k−1. If h′′(ζ) ≡ kφ(0)(ζ + c)k−1, then

h(ζ) = φ(0)

k + 1
(ζ + c)k+1 + d1ζ + d2 ,

where d1 and d2 are constants. Since h(−c) = 0, we have d2 = cd1. Therefore,

g(ζ) = h(ζ)

(ζ + c)k
= φ(0)

k + 1
(ζ + c) + d1

(ζ + c)k−1
.

Because g is an entire function, it follows that either d1 = 0 or k = 1, so that
g ′(ζ) ≡ φ(0)/(k + 1). Thus g#(0) ≤ |g ′(0)| = |φ(0)|/(k + 1) < M + 1, a
contradiction.

Hence h′′(ζ) 
≡ kφ(0)(ζ +c)k−1. Thus, by h′′(ζ0) = kφ(0)(ζ0 +c)k−1 and Hur-
witz’s theorem, there exist points ζn → ζ0 such that

h′′
n(ζn) = k

(
ζn + zn

ρn

)k−1

φ(zn + ρnζn)

+ ρn

(
ζn + zn

ρn

)k

[φ(zn + ρnζn) + φ ′(zn + ρnζn)]

= ρ−k+1
n [A(zn + ρnζn) + A′(zn + ρnζn)].

It follows from h′′
n(ζ) = ρ−k+1

n f ′′
n (zn + ρnζ) that

f ′′
n (zn + ρnζn) = A(zn + ρnζn) + A′(zn + ρnζn).

As a result, we may use f ′′(z) = A(z) + A′(z) ⇒ f ′(z) = A(z) to deduce
f ′
n(zn + ρnζn) = A(zn + ρnζn), so that by h′

n(ζ) = ρ−k
n f ′

n(zn + ρnζ) we have

h′
n(ζn) = ρ−k

n A(zn + ρnζn) =
(
ζn + zn

ρn

)k

φ(zn + ρnζn).

Consequently,
h′(ζ0) = lim

n→∞ h′
n(ζn) = φ(0)(ζ0 + c)k.

Thus we have proved that h′′(ζ) = kφ(0)(ζ + c)k−1 ⇒ h′(ζ) = φ(0)(ζ + c)k.

This, together with h′(ζ) = φ(0)(ζ +c)k ⇒ h′′(ζ) = kφ(0)(ζ +c)k−1, proves (ii).
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Finally, we prove (iii). By Claim 1, f (k+1)
n (0) = k!φ(0). Thus, using (3.2.6)

yields

h(k+1)(−c) = lim
n→∞ h(k+1)

n

(−zn

ρn

)

= lim
n→∞ f (k+1)

n

(
zn + ρn

(−zn

ρn

))
= lim

n→∞ f (k+1)
n (0) = k!φ(0).

This proves (iii).
Now let

H(ζ) = h(ζ − c)

φ(0)
.

Then claims (i)–(iii) yield:

(i′) H(ζ) = 0 ⇔ H ′(ζ) = ζ k;
(ii′) H ′(ζ) = ζ k ⇔ H ′′(ζ) = kζ k−1;

(iii′) H (k+1)(0) = k!.

Thus, by Lemma 5, it follows that H(ζ) = ζ k+1/(k + 1). Hence we have h(ζ) =
φ(0)
k+1 (ζ + c)k+1, so that g(ζ) = (ζ + c)−kh(ζ) = φ(0)

k+1 (ζ + c). Therefore g#(0) ≤
|g ′(0)| = |φ(0)|/(k + 1) < M + 1, a contradiction.

Case 2: c = ∞. Then zn 
= 0 and ρn/zn → 0 as n → ∞. Set

hn(ζ) = ρ−1
n z−k

n fn(zn + ρnζ).

Then, by (3.2.4),

hn(ζ) =
(

1 + ρn

zn

ζ

)k

gn(ζ) → g(ζ)

locally uniformly on C. Next, using the same argument as in the proof of Case 1,
we have

(iv) g(ζ) = 0 ⇒ g ′(ζ) = φ(0);
(v) g ′(ζ) = φ(0) ⇒ g ′′(ζ) = 0.

Thus, by Lemma 2, g ′(ζ) ≡ φ(0). It follows that g#(0) ≤ |g ′(0)| = |φ(0)| <
M + 1, a contradiction. Hence F is normal in D and Proposition 2 is proved.

3.3. Proof of Proposition 3

Let z0 ∈ D. If A(z0) 
= 0 then, by Proposition 1, F is normal at z0. Now sup-
pose A(z0) = 0. Then there exists a positive number δ such that A(z) 
= 0 for
z ∈ {z : 0 < |z − z0| ≤ δ} ⊂ D. Hence, by Proposition 1, F is normal in {z :
0 < |z − z0| < δ}. Without loss of generality, we assume that z0 = 0. Let + =
{z : |z| < δ}. Then F is normal in +\ {0}. Let A(z) = zkφ(z), where k is a posi-
tive integer and φ is a zero-free analytic function on +̄. We shall prove that F is
normal at z = 0.

Suppose on the contrary that F is not normal at z = 0. Then, by Lemma 1 there
exist points zn → 0, positive numbers ρn → 0, and functions fn ∈ F such that

gn(ζ) = fn(zn + ρnζ) → g(ζ) (3.3.1)
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locally uniformly on C, where g is a nonconstant entire function. Without loss of
generality, we assume that

lim
n→∞

zn

ρn

= c ∈ Ĉ = C ∪ {∞}. (3.3.2)

First, we prove that g(ζ) is a transcendental entire function. Suppose now that
g is a polynomial. The argument given in the proof of Proposition 1 shows that

g(ζ) = 0 ⇐⇒ g ′(ζ) = 0. (3.3.3)

It follows that g(ζ) = C(ζ − ζ0)
d, where C (
= 0) is a constant and d ≥ 2 is an

integer.
Let ε < 1 be a positive number. Then by (3.3.1) and Hurwitz’s theorem, for

sufficiently large n in Dε = {ζ ∈ C : |ζ − ζ0| < ε}, gn(ζ) has d zero points
ζn,j (j = 1, 2, . . . , d) counting multiplicity. Thus we have fn(zn + ρnζn,j ) = 0.
It follows from A(z) = 0 ⇒ f(z) 
= 0 and f(z) = 0 ⇒ f ′(z) = A(z) that
f ′
n(zn + ρnζn,j ) = A(zn + ρnζn,j ) 
= 0. Therefore, by g ′

n(ζ) = ρnf
′
n(zn + ρnζ)

we see that g ′
n(ζn,j ) = ρnA(zn + ρnζn,j ) 
= 0. Hence each ζn,j is a simple zero

of gn(ζ), so that ζn,j 
= ζn,l for 1 ≤ j < l ≤ d. Thus, for sufficiently large n, the
function hn(ζ) = g ′

n(ζ)− ρnA(zn + ρnζ) has at least d distinct zero points in Dε.

Obviously, we have

hn(ζ) = g ′
n(ζ) − ρnA(zn + ρnζ) → g ′(ζ)

uniformly on Dε. By Hurwitz’s theorem we then know that g ′(ζ) has at least d
zero points in Dε counting multiplicity. Since we can choose ε to be as small as
we like, ζ0 is a zero of g ′ with multiplicity at least d, which contradicts g ′(ζ) =
dC(ζ − ζ0)

d−1. Hence g is a transcendental entire function.
Now we consider four cases.

Case 1. There exist infinitely many {nj} such that

f ′
nj
(znj + ρnj ζ) ≡ A(znj + ρnj ζ).

It follows that g ′
nj
(ζ) ≡ ρnjA(znj + ρnj ζ). Letting j → ∞, we deduce that

g ′(ζ) ≡ 0, which contradicts that g is transcendental.

Case 2. There exist infinitely many {nj} such that
(
f ′
nj
(z)

φ(z)

)(2k)
z=znj +ρnj ζ

≡ 0.

Thus, we have

2k∑
i=0

(
2k
i

)
f (i+1)
nj

(znj + ρnj ζ)

(
1

φ(z)

)(2k−i)

z=znj +ρnj ζ

≡ 0,

so that
2k∑
i=0

(
2k
i

)
ρ2k−i
nj

g(i+1)
nj

(ζ)

(
1

φ(z)

)(2k−i)

z=znj +ρnj ζ

≡ 0.
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Letting j → ∞, we deduce that g(2k+1)(ζ)/φ(0) ≡ 0, which also contradicts that
g is transcendental.

Case 3. There exist infinitely many {nj} such that

Lnj(znj + ρnj ζ) ≡ 0,

where

Ln(z) = [A(z) − A′(z)]
f ′
n(z)

fn(z)
+ A(z)

f ′′
n (z)

fn(z)
− 2A(z)

f ′′
n (z) − A′(z)
f ′
n(z) − A(z)

+ A′(z).

Thus we have

ρnj

(
1 − k

znj + ρnj ζ
− φ ′(znj + ρnj ζ)

φ(znj + ρnj ζ)

)
· g

′
nj
(ζ)

gnj(ζ)
+ g ′′

nj
(ζ)

gnj(ζ)

+ 2ρnj

g ′′
nj
(ζ) − ρ2

nj
A′(znj + ρnj ζ)

g ′
nj
(ζ) − ρnjA(znj + ρnj ζ)

+ ρ2
nj

(
k

znj + ρnj ζ
+ φ ′(znj + ρnj ζ)

φ(znj + ρnj ζ)

)
≡ 0.

(3.3.4)

If c 
= ∞, then letting j → ∞ in (3.3.4) yields

− k

ζ + c
· g

′(ζ)
g(ζ)

+ g ′′(ζ)
g(ζ)

≡ 0.

It follows that g is a polynomial, a contradiction. If instead c = ∞, then let-
ting j → ∞ in (3.3.4) yields g ′′(ζ)/g(ζ) ≡ 0. Hence g again is a polynomial, a
contradiction.

Case 4. There exist finitely many {nj} such that

f ′
nj
(znj + ρnj ζ) ≡ A(znj + ρnj ζ) or

(
f ′
nj
(z)

φ(z)

)(2k)
z=znj +ρnj ζ

≡ 0 or

Lnj(znj + ρnj ζ) ≡ 0,

where Ln is defined as in Case 3. For all n we may suppose that f ′
nj
(znj + ρnj ζ) 
≡

A(znj + ρnj ζ), (f
′
nj
(z)/φ(z))

(2k)
z=znj +ρnj ζ


≡ 0, and Lnj(znj + ρnj ζ) 
≡ 0.

Take ζ0 ∈ C such that g(j)(ζ0) 
= 0 for j = 0,1, 2, . . . , 2k + 1. In case c 
= ∞,
choose ζ0 to satisfy the additional conditions that ζ0 
= −c and

g ′′(ζ0) − k

ζ0 + c
· g ′(ζ0) 
= 0.

The argument given previously now shows that, as n → ∞:

ρn[f ′
n(zn + ρnζ0) − A(zn + ρnζ0)] → g ′(ζ0) 
= 0, ∞;

ρ2k+1
n

(
f ′
n(z)

φ(z)

)(2k)
z=zn+ρnζ0

→ g(2k+1)(ζ0)

φ(0)

= 0, ∞;
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ρ−k+2
n Ln(zn + ρnζ0)

→ φ(0)(ζ0 + c)k
[
g ′′(ζ0)

g(ζ0)
− k

ζ0 + c
· g

′(ζ0)

g(ζ0)

]

= 0, ∞, c 
= ∞;

ρ2
nz

−k
n Ln(zn + ρnζ0) → φ(0)

g ′′(ζ0)

g(ζ0)

= 0, ∞, c = ∞.

These facts imply that

Kn = [f ′
n(zn + ρnζ0) − A(zn + ρnζ0)]fn(zn + ρnζ0)

[Ln(zn + ρnζ0)]2(f ′
n(z)/φ(z))

(2k)
z=zn+ρnζ0

→ 0

as n → ∞, so that

log|Kn| → −∞ as n → ∞. (3.3.5)

For n = 1, 2, 3, . . . , put

hn(z) = fn(zn + ρnζ0 + z).

Since zn + ρnζ0 → 0 as n → ∞, it follows that (for sufficiently large n) hn is
defined and holomorphic on |z| < 1/2. Denote

an = zn + ρnζ0.

Then, for sufficiently large n, hn(0) 
= 0, hn(−an) 
= 0, [h′
n(z)/φan

(z)](2k)z=0 
= 0,
Lan

(0) = Ln(an) 
= 0, and

[h′
n(0) − Aan

(0)]hn(0)

[Lan
(0)]2[h′

n(z)/φan
(z)](2k)z=0

= Kn,

as well as hn(z) = 0 ⇔ h′
n(z) = Aan

(z) and h′
n(z) = Aan

(z) ⇒ h′′
n(z) =

Aan
(z) + A′

an
(z).

Now applying Lemma 6 to hn(z) with r0 = 1/2 and a = an, using (3.3.5), and
noting that the last four terms in (2.15) are bounded for 0 < r < 1/3, we obtain
that, for sufficiently large n and 0 < r < 1/3,

T(r,hn) ≤ 3m

(
r,

h′
n

hn

)
+ 2m

(
r,

h′′
n

hn

)
+ 2m

(
r,

h′′
n − A′

an

h′
n − Aan

)

+ m

(
r,

(h′
n/φan

)(k)

h′
n/φan

)
+ m

(
r,

(h′
n/φan

)(2k)

(h′
n/φan

)(k)

)

+ m

(
r,

(h′
n/φan

)(2k)

(h′
n/φan

)(k) − k!

)
+ m

(
r,

(h′
n/φan

− (z + an)
k)(k)

h′
n/φan

− (z + an)k

)

+ m

(
r,

(h′
n/φan

)(2k)

h′
n/φan

− (z + an)k

)
.
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We know that
hn(0) = gn(ζ0) → g(ζ0),

h′
n(0) − Aan

(0) = ρ−1
n g ′

n(ζ0) − A(zn + ρnζ0) → ∞,

h′
n(0)

φan
(0)

= g ′
n(ζ0)

ρnφ(zn + ρnζ0)
→ ∞,

(
h′
n(z)

φan
(z)

)(k)
z=0

=
k∑

j=0

(
k

j

)
[h′

n(z)]
(j)

z=0

(
1

φan
(z)

)(k−j)

z=0

= 1

ρk+1
n

(
g(k+1)
n (ζ0) +

k−1∑
j=0

(
k

j

)
ρk−j
n g(j+1)

n (ζ0)

(
1

φ(z)

)(k−j)

z=zn+ρnζ0

)

→ ∞,

so by Lemma 8 we obtain, for 0 < r < τ < 1/3,

T(r,hn) ≤ Ck

{
1 + log+ 1

r
+ log+ 1

τ − r

+ log+ T(τ,hn) + log+ T(τ,h′
n − Aan

) + log+ T

(
τ,

h′
n

φan

)

+ log+ T

(
τ,

(
h′
n

φan

)(k))
+ log+ T

(
τ,

(
h′
n

φan

)(k)
− k!

)

+ log+ T

(
τ,

h′
n

φan

− (z + an)
k

)}

≤ Ck

{
1 + log+ 1

r
+ log+ 1

τ − r
+ log+ T(τ,hn)

+ log+ T(τ,h′
n) + log+ T

(
τ,

(
h′
n

φan

)(k))}
. (3.3.6)

Observe that T(τ,h′
n) = m(τ,h′

n) ≤ m(τ,hn) + m(τ,h′
n/hn) and

T

(
τ,

(
h′
n

φan

)(k))
= m

(
τ,

(
h′
n

φan

)(k))

≤ m

(
τ,

h′
n

φan

)
+ m

(
τ,

(h′
n/φan

)(k)

h′
n/φan

)

≤ m(τ,hn) + m(τ,φan
) + m

(
τ,

h′
n

hn

)
+ m

(
τ,

(h′
n/φan

)(k)

h′
n/φan

)
.

(3.3.7)

Hence, for 1/4 < r < ρ < 1/3 with τ = (r + ρ)/2, we can use (3.3.6), (3.3.7),
and Lemma 8 to obtain

T(r,hn) ≤ Ck

(
1 + log+ 1

ρ − r
+ log+ T(ρ,hn)

)
.
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By Lemma 7 it then follows that

T

(
1

4
,hn

)
≤ A,

where A is a constant independent of n. Thus {fn(z)} is uniformly bounded for
sufficiently large n and |z| < 1/8. However, from ρ2

nf
′
n(zn + ρnζ0) = g ′′

n(ζ0) →
g ′′(ζ0) 
= 0 we see that f(z) cannot bounded in |z| < 1/8. This is a contradiction,
so the proof is complete.

3.4. Proof of Theorem 1

Let G = {g = f − a : f ∈ F } and A(z) = a(z)− a ′(z) 
≡ 0. Obviously, G is nor-
mal in D if and only if F is normal in D. It follows from our assumptions that,
for any g ∈ G, we have g(z) = 0 ⇔ g ′(z) = A(z) and g ′(z) = A(z) ⇔ g ′′(z) =
A(z) + A′(z) and g(z) = 0 → g ′(z) = A(z).

Let z0 ∈D. Now we prove that G is normal at z0. Let {gn} ⊂ G be a sequence.
If A(z0) 
= 0, then there exists a positive number δ such that +δ(z0) = {z∈D :

|z − z0| < δ} ⊂ D and A(z) 
= 0 in +δ(z0). Thus, by Proposition 1, {gn} is nor-
mal in +δ(z0).

If A(z0) = 0, then there exists a positive number δ such that +δ(z0) = {z∈D :
|z − z0| < δ} ⊂ D and A(z) 
= 0 in +δ(z0) \ {z0}. If {gn} has a subsequence—
say, without loss of generality, itself—such that gn(z0) = 0, then {gn} is normal
in +δ(z0) by Proposition 2. If gn(z0) 
= 0 for all but finitely many of {gn}, then
{gn} is normal in +δ(z0) by Proposition 3.

Thus F is normal in D and so Theorem 1 is proved.

3.5. Proof of Corollary 1

By Theorem 1, we need only show that f(z) − z = 0 → f ′(z) − z = 0 in D. Let
z0 be a zero of f(z) − z in D. Then, since f(z) = z ⇔ f ′(z) = z and f ′(z) =
z ⇔ f ′′(z) = z, it follows that f(z0) = f ′(z0) = f ′′(z0) = z0. Thus we ob-
tain that

[f(z) − z]′
z=z0

= z0 − 1, [f(z) − z]′′
z=z0

= z0, [f ′(z) − z]′
z=z0

= z0 − 1.

If z0 
= 1, then z0 is a simple zero of f(z) − z; if z0 = 1, then z0 is a double
zero of f(z)− z and z0 is a multiple zero of f ′(z)− z. Consequently, f(z)− z =
0 → f ′(z) − z = 0 in D. Thus F is normal in D by Theorem 1, completing the
proof of Corollary 1.
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