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Introduction

As shown in [3; 7; 9], the basic dynamical properties of the self-maps of projec-
tive spaces can be summarized as follows. Any holomorphic self-map P” L pr
lifts through the canonical map C’'\ 0 > P" to a self-map C'*! Lo gF =
fq, whose components are homogeneous polynomials of degree d, the algebraic
degree of f. When d > 1, the origin is a super-attracting fixed point for F with
bounded and complete circular basin of attraction. The Green function associated
to this basin is given by the formula G = lim; log| F/ || /d’, so it is plurisubhar-
monic. If 7 denotes the open set where G is pluriharmonic, then the Fatou set F
of f equals g(#). It follows that F is Stein and Kobayashi hyperbolic and that,
when r > 2, the complement .7 of F is connected.

In this paper we extend these results to the context of projective bundles on pro-
jective manifolds. In the first part, we discuss the structure of the self-maps of a
projective bundle PE L B (fiber-degree, algebraic degree, completely invariant
sub-bundles, dimension of the space of self-maps, lifting to E’). In the second
part, we introduce Green functions and use them in the analysis of the basic dy-
namical features of a self-map PE EN PPE (pseudoconvexity and hyperbolicity of
the Fatou set, connectedness of the Julia set). We prove the following theorem.

THEOREM 1. Let PE — P" be a projective bundle with nonzero discriminant,
and let PE EN PE be a self-map with topological degree at least 2. Then:
(1) f has well-defined algebraic degree;

(2) the Fatou components of f are Stein and Kobayashi hyperbolic;
(3) when rank(E) > 3, the Julia set of f is connected.

Note that the first two statements fail in the trivial case PE = P" x P”".

PrRELIMINARIES. Fix a vector bundle E i) B, rank(E) = r + 1, over a pro-
jective manifold B, dim(B) = n, and let E’ Z, B denote its dual. The homo-
geneous lines in E’ form the projective manifold PE, which is endowed with
the projection PE 2%, B. The pull-back p*E’ admits a canonical line sub-bundle,
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T

the line bundle Opg(1) := T’ as a quotient of p*E. The Chow ring A(PE) is a
free A(B)-module generated by H/, 0 < j < r, where H is the class of Opg(1).
We have ZG*I(—I)/'CJ-H’“*j = 0, where C; € A(B) are the Chern classes of
E. Put C(T) = 6+1(—1)1CjT’+1’j € A(B)[T]. The Picard group of PE is
Pic(PE) = p*Pic(B) & ZH. Let ~ denote the equality in Pic. The canonical
class of PE is Kpg ~ —(r + )H + p*det(E) + p*Kp. Whenn > 2, let A :=
Cl2 — @Cz e A%(B) ® Q; it does not change when E is tensored by a line
bundle on B. We call A the discriminant of PE.

When B = P let L := p*Opn(l). Then p*C; = ¢;L/ for some ¢; € Z,
with cg = 1 and ¢; = O for j > n. Let C(T,S) = Zg“(—l)fch’“’ij €
Z[T, S]. Then Pic(PE) = ZL®ZH and A(PE) = Z[L, H]/L"*, where L"+! =
C(H,L) =0.1fn > 2 then § := ¢} — 2V¢, € Q.

A vector bundle E is totally decomposable if and only if it is a direct sum of line
bundles. Every vector bundle on P! is totally decomposable. Given m € Z"+! with
mo > -+ > m,, put E, := @y Opr(m;) and §,, := %Zj<k(mj — my)? When
n > 2 we have §g,, = 8,,, s0 &g is coherently defined for every vector bundle E
on P".

Given a map X Z> B and a line bundle x € Pic(X), the set of maps X i> PE
that satisfy pf = r and f*Opg(1) =~ x can be identified with the projectivized
set of nonvanishing global sections in r*E’ ® .

Let w denote the zero-section in E/, and let E’ \ w 2, PE be the map that asso-
ciates to e’ # 0 the line passing through e’. Note that pg = 7 and that ¢g*Opg (1)
is trivial.

0 — 7 — p*E’, whose fiber overaline/ e PEis! C E ). Dualizing this yields

1. Self-Maps

1.1. Fiber-Degree and Algebraic Degree

DEFINITION 1.1. A finite self-map PE L PEis over B if and only if there exists
B %> B with pf = gp. In this case, we say that f is over g.

THEOREM 1.2. Let E be a vector bundle on P", and let PE i> PE be a finite
self-map. Then some iterate of f is over P".

Proof. We have to show that some iterate f’ maps fibers of PE to fibers. Write
f*H ~aH +bL and f*L ~ cH + dL. Note that, by the projection formula, we
can take i = 1 when ¢ = 0. Let o denote the topological degree of f. There are
three cases to discuss: r > n,r =n,and r < n.

When r > n, Bézout’s theorem implies that the restriction of pf to any fiber of
IPE is constant. In this case, we can take i = 1. Consider the case r = n.

When r =n =1, we may assume E = E(g ) withe < 0. If ¢ = 0, then f is
a finite self-map of P! x P! and we can take i = 2. If ¢ < 0, then PE contains a
unique negative curve and it follows that f*H = aH = f,H, wherea > 0,0 =
a?, and (with the projection formula) ce = a — d. We show that ¢ = 0, so that
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we can take i = 1 in this case. Otherwise, since deg(L?) = 0, we get ce = —2d
and hence d = —a < 0. If s is a section in PE with deg(H - s) = 0, then 0 <
deg(f*L - s) = d. This is a contradiction.

Whenr = n > land ¢ # 0 we have (cT +dS)"*! = ¢"*C(T, S) +d"+'S"+!,
so that C(T,S) = (T — mS)"! — (=) m"*t1§"+ in Q[T, S], where m =
—d/c. Since (n + 1)m" = c,, we get m € Z. Replacing E by E ® Op»(—m), we
may assume that m = 0 and hence C(T,S) = T"*'. But then (aT + bS)"t! =
a" T 4 pr IS+l in QIT, S1; thatis, ab = 0. Since f is finite, it follows that
b # 0 and hence a = 0. Therefore, we can take i = 2 in this case.

When 1 <r < nandc # 0, we have C(aT +bS,cT +dS) = at'C(T, S) and
(cT 4+ dS)"t' — doS™! = ¢, (T, S)C(T, S), with ¢,,_, € Z[T,S]and do € Z.
Let m; € C be the roots of C(T,1). We have (cm; + d)"' =dyforall0 < j <
r. Not all m; are equal. Indeed, otherwise m; = m € Zforall 0 < j < r and we
could assume that C(T, S) = T+ Tt follows immediately that b = 0 and d # O,
but then ¢ = 0. Consequently, do # 0, the polynomial (¢T + d)"*' — d; has no
multiple roots, and all m; are distinct. The Mobius transformation . (z) = az+b

cz+d
leaves invariant the set {m;, 0 < j <r}, so wr D fixes all of the points m;. Put

a b . a b
M= d M=M"" = - ).
<c d) an ¢ d

Then ( ) is an eigenvector of M with eigenvalue ¢ cmj + d. Since mg # m, and
(cm; + d)”‘H =d,, we have B""' =dyl andcantake i = (r + 1)! (n +1). O

REMARK 1.3. Let E be a vector bundle of rank » 4 1 on a projective manifold B
of dimension n, B # P". If r > n, then any finite self-map of PE is over B.

Proof. Fix a fiber F of PE and consider the restriction F 2, B of pf. Let G =
¢(F) and y = dim(G). Since B is smooth, Lazarsfeld’s result implies y < r.

Choose a finite map G X P”. The composition F Y pr s surjective, hence
y =0. O

REMARK 1.4. In the totally split case of E = E,, with §,, # 0 = my, any finite
self-map of PE,, is over P".

Proof. We keep the notation from the proof of Theorem 1.2. Lemma 1.8 (to fol-
low) implies that a, b, c, and d are nonnegative. We need to show that ¢ = 0. This
is clear when r > n. In the case 1 < r < n, assume ¢ # 0. Then all m; are dis-
tinct and (cm; + d)"t' = d"*! for all j. It follows that n is odd, r = 1,d > 0,
and m; = —2d/c. Moreover, {(0), u(m;)} = {0,m;}. Since u(0) = b/d > 0,
we obtain ©(0) = 0 = b and w(m;) = my. But w(m;) = 2a > 0, which is a
contradiction. O

DEFINITION 1.5. A ﬁmte self-map X EN X has well-defined algebraic degree d
if and only if Pic(X) EAR Pic(X) is given by multiplication with d.

Clearly, self-maps of PE with well-defined algebraic degree must be over B.
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DEFINITION 1.6. Assume that PE EN PE is over B %> B. If the induced maps

of fibers Fj EN F,») have algebraic degree d independent of b € B, we say that f
has fiber-degree d.

PrROPOSITION 1.7.  Any finite self-map PE EN PE over B %> B has well-defined
fiber-degree d(f). If B(E, f) € Pic(B) is the line bundle that satisfies f*H ~
d(f)H — p*B(E, ), then:

(1) BIEQua, f) = B(E, f) — g*a + d(f)ua for every line bundle o € Pic(B);
) B(E. ff) = d())B(E. f)+g*B(E. f) for every self-map PE > PE over B;
(3) BE, ) = “ELAE iy A(B) @ Q;

r+1
4) whenn > 2, g*Ap = d*Ag in A(B) ® Q.

Proof. Write f*H ~ dH — p*B with d € Z and B € Pic(B). Then f*H - F}, =
dH - Fy, for all b € B. Let d(b) > 0 be the algebraic degree of Fj i) Fyv)- Then
foly, =d(b) Fypyand fH, = d(b)”ng(b),where Hj := OF,(1). Since H| f, =~
Hj, in Pic(F}p), the projection formula implies

dd(b) ™' Hywy = df.(Hy) = dfs(H - Fy) = fu(f*H - Fy)
=H - fi.(Fy) =d(b)'H - Fyp) = d(b) Hg)

and so (d — d(b))d(b)”ng(b) = 0 in A(Fg)). This implies that d(b) = d for
allb € B.

Parts (1) and (2) of the proposition are straightforward calculations. Let P(T) :=
Zg“(—l)jg*Cj(dT —B) 1=/ —d"'C(T) € A(B)[T]. Since deg(P) < r, it fol-
lows that P(T') = 0. Looking at the coefficient of 77, we get part (3). Looking at
the coefficient of 777!, we get g*Cy /d> + 1B - g*Ci/d +r(r +1)B%/2 = C,, and
part (4) follows from (3). O

The canonical projection E,, — €D, 2; Opn(my) — 0 defines a hypersurface H;
of PE,,, with H; +m;L >~ H, forall0 < j <r.

LeEmMmA 1.8.  If a and b are integers such that ho(]PEm, aH — bL) > 0, thena >
Oand b < mya.

Proof. Let D be an effective divisor on PE,,, D >~ aH — bL. We may assume
that Hy is not an irreducible component of D. Indeed, if H, appears in D with
multiplicity ¢ > Oandif D' = D —cHy~a'H —b'L,thena =a’+cand b =
b’ + mgc. If the statement is true for D’, it follows immediately that it is also true
for D.

We proceed by induction over r. If r = 1 then a = deg(D - L") and mya — b =
deg(D - Hy - L™ 1); hence, since L" and L"~" are nef, we deduce that « > 0 and
moa —b > mya —b > 0. If r > 2 then the induction hypothesis applied to D| g,
implies thata > 0 and b < mja < mga, and the induction is complete. O

THEOREM 1.9. Let E be a vector bundle on P", and let PE i> PE be a finite
self-map over P". If 8g # 0, then f has well-defined algebraic degree.
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Proof. Let P" £, P" be the self-map induced by f, and let d > 0 be the fiber-
degree of f. In Pic(PE) we have f*L ~ yL and f*H ~ dH — bL, where y >
0 is the algebraic degree of g and b € Z is the degree of S(E, f) € Pic(P"). By
Proposition 1.7, b = (d —y)c;/(r +1). Alsonote that f, H = y"~'d"~'(yH +bL).

Assume first that n > 2. By Proposition 1.7, (y2 —d*»8 =0. Since § # 0, we
get y = d and then b = 0. In the remaining case (n = 1), E = E,, for some m €
Z'*! and we may assume that m, = 0, so that H ~ H,, is effective. Since § # 0,
we also get ¢; < 0. Lemma 1.8 applied to f*H and f,H implies that » < 0 and
b > 0; thatis,b =0andsod = y. O

1.2. Lifting to E’

A section of p is amap B % PE with ps = 1p. Its image S = s(B) is a section
of PE.

DEFINITION 1.10. A section § C PE with Opg(1)|s = 0 is an affine section.

The set of affine sections in PE is the projectivized set of nonvanishing global sec-
tions in E’. We need the following well-known Bertini-type result.

LemMA L1.11. If rank(E) > dim(B) and if E’ is globally generated, then the
generic section of PE is affine and is not contained in any proper subvariety
of PE.

Proof. We need to show first that the generic global section of E’ is nonvanish-
ing. LetV :=T'(B,E’) and let K := {(v,b) € V x B : v(b) = 0}, a subvariety of
V x B. For b € B, the evaluation map V 2y Crtlis surjective and so its kernel V},
has dimension dim (V) s r — 1. Since r > n, it follows that dim(K) < dim(V).
The projection V x B — V is proper, so P(K) is a proper subvariety of V.

Let Z be a proper subvariety of PE. We may assume that p(Z) = B, since
otherwise Z does not contain any section in PE. Given b € B, the set Z, :=
{0} Ug~(Z N Fp) is analytic in C"*' = 7~!(b). Since AZ;, C Z, forall » € C, it
follows that Z,, is algebraic in C"*! and hence U := ﬂbeB{s eV :sb)eZy}is
algebraic in V. Moreover, U # V. Indeed, pick b € B such that Z, # C"*!, and
choose t € C"*!\ Z,. Because E’ is globally generated, there exists a v € V with
v(b) = t and hence v ¢ U. It follows that the generic section of PE is not con-
tained in Z. OJ

DEFINITION 1.12.  The self-map PE EN IPE lifts to E’ if and only if there exists a
self-map E' \ w RNy % \ w such that gF = fq.

LemMa 1.13. Let U 5 U be holomorphic from the unit ball U C C" to some
analytic space U. If U x P” ER U x P" is a holomorphic map over g with
positive fiber-degree, then [ admits a holomorphic lifting U x (C™1\0) EiN
U x (C™1\0).
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Proof. Letw := U x 0and @ := U x 0, and denote by
UxP 5oy,
UxC*\ ol uxp,
UxctSu

the canonical projections, and similarly for p,g, 7. Lett; (0 < j < r) denote the
coordinatesin C"*!. For1 < j < r, the functions tj/to are meromorphic on U xP"
and holomorphic outside the hypersurface Ty = {ro = 0} C U x P’. Because f
has fiber-degree d > 0, its image is not contained in Tj and so the compositions
¢; := (tj/to) fq are meromorphic on U x C"+!'\ w and holomorphic outside the
hypersurface q’l (f~N(Tp)). Levi’s extension theorem implies that ¢; is meromor-
phicon U x C"*! forall 1 < j < r. Note that ¢, At) = ¢;(u,t) for all (u,t) €
U x C"*!and all » € C* The extension theorem of Thullen, Remmert, and Stein
implies that the point set closure Hy of ¢ 7' (f ~'(Tp)) € U x C"*!is an analytic
hypersurface in U x C"*!. Since AHy C Hj for all » € C*, we deduce that w C
H,. Note that H contains no fibers of m, since d > 0.

Fix b € U and let hy = 0 be a local defining equation of H, near (b, 0). For
a large enough integer m, the functions vy; = h{¢; are holomorphic near (b, 0)
for all 1 < j < r. Using the Taylor expansion near (b,0), write h{] = Ziio Yo,k
with v ; holomorphic in u and homogeneous of degree k in . Similarly, ¥; =
Y reo Vjk. Because the ¢; are homogeneous in 7, we deduce that ¢y x = ¥; «
foralll < j < randall k > 0. Since 77'(b) ¢ Hy, we can find [ > 0 such
that o ;(b,-) # 0. Let y = ged(Yo,z, ..., ¥r,1) in Opt], which is a UFD. Clearly,
v (u, 1) is ahomogeneous polynomial in ¢. Define P; := v ;/y for0 < j < r, and
let e be their common algebraic degree in t. Then ¢; = P;/Py as meromorphic
functions on V x C"*!, where b € V C U is a sufficiently small ball. Shrinking V,
we may assume that Py(u,) Z Oforallu e V. If Z C V x C"*! denotes the set
of common zeros of the polynomials Py, ..., P,, then the map

VxC*t\z D O xC N\, Fy=(Py,...,P),

is a lifting of f. Note that Z contains no fiber of 7, and AZ C Z for all » € C*;
hence w N~ 1(V) C Z.

We show that d = e. Otherwise d < e and, for all u € V, the polynomi-
als Py(u,1t), ..., P.(b,t) have nontrivial common factors. Since p is proper, there
exists an irreducible component C of ¢(Z) with p(C) =V. ForueV,CNp~(u)is
anonempty sum of irreducible components of ¢ (Z)N p~!(b). Since g (Z)N p~'(b)
has pure dimension r — 1, it follows that C is a hypersurface in V x P and hence
g~ '(C) is a hypersurface in V x C"*!'\ w. As before, the point set closure of
g '(C)isahypersurface Y inV x C"*, andwNn (V) CY C Z. Ify =0isa
local equation of ¥ C V x C"*! near (b, 0), then there exist holomorphic germs
Qo,...,0r € Op,0) with P = yQ; forall0 < j < r. The order o of y in t is posi-
tive because 7 ~'(b) ¢ Y. Therefore, the homogeneous term y, of y is a nontrivial
common divisor of Py, ..., P.. This contradiction shows that d = e. Since the
map p~'(u) EN p~'(g(u)) is regular for all u € V, we obtain Z = w N7~ 1(V).



Self-Maps of Projective Bundles on Projective Spaces 517

Therefore, for all b € U there exista ball b € V C U and a lifting of f,

VxC '\ w2 0 x C\ a.

Given two such liftings Fy and Fy, we have cyy = Fy/Fy € O*(V N W).
Therefore, the system (V,cyw) defines a 1-cocycle of the sheaf Of;. Since
H\(U, O}) = 0, we obtain cyw = cy/cw with cy € O*(V) for all V. Gluing
together the liftings Fy/cy, we get the lifting F. U

ProOPOSITION 1.14.  Any finite self-map PE EN PE over B <> B determines a
line bundle D(E, f) € Pic(B), so that D(E, f) >~ 0 if and only if f lifts to E’.
Moreover:

(1) D(E, Sflpi) = D(E, f) when PE C PE is an f-invariant sub-bundle;

(2) D(E, f) =~ dL, — g*L| when the PL; are sections in PE with f(PL{) C
PL,;

(3) DIEQu, f)~D(E, f)— g*a +d(f)a forall o € Pic(B);

(4) D(E, ff) ~d(f)D(E, f) + g*D(E, f) for all PE 2, PE over B:

(5) ifr = nthen (r + )D(E, f) =~ (r + DB(E, f).

Proof. Since g is finite, it is also open. Take an O*-acyclic covering U = {Uy}
of B such that E|y, and E|y, are trivial for all k, where V := g(U). Let (U, ex;)
and (V, ¢y;) be cocycles defining E’. By Lemma 1.13, there exist local lift-
ings to E', (E'\ 0)|y, = (E'\ @)|y,. Write Fy(b,1) = (g(b), P¢(b,1)), where
Uy x C*! Py crtlisa polynomial of degree d = d(f) in t. Over U, N U},
both F; and F; are liftings of f; hence there exists cy; € O*(Uy N U;) with
D (gb))Pi(b,t) = cp(b) Pr(b, e (b)t). We can write, simply, ¢u(g)P; =
¢ Pr(er). The cocycle (U, ¢y(g)) defines g*E’. Clearly, (U, cy;) is a cocycle
whose class D is independent of the choice of local liftings Fj. Therefore, if f
lifts to E’ then D =~ 0. Conversely, if D >~ 0 then ¢;; = ci/c;, with ¢, € O*(Uy).
Gluing together the local liftings Fu(b,t) = (g(b), Pi(b,1)/ck (b)), we obtain a
global lifting of f to E'.

Let0 — £ — E — E — 0 define an f-invariant sub-bundle PE. We may
assume that £’ and E’ are defined over U,V by cocycles &y, ¢r and &, qbkl, re-
spectively. Then E’ is defined over U and V by

e O b 0
en = < e ) and ¢y = (¢k1 { )
Uk €kl Vi Pu

Moreover, B
Py =
P.=| » with Pz =0,
Py
while PE 2> PE is given over Uy by (g, P¢|z). Restricting to E’ the relation
dri1(8) Pr = criPr(exr), we get part (1) of the proposition.
Take quotients E — L; — 0 thatdefine sections with f(PPL;) C PL,. We may
assume that L} is defined by (U, py;) and L), by (V, ;). Reasoning as in (1), we

get A (g(0)) Py(b,0,F) = ciy(b) P(b, 0, pu (b)) for all k, 1 and all b € Uy N Uy,
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i e C. But P(b,0,7) = pr(b)7¢ with py € O*(Uy). We then have Ay (g)ps =
cklpkp,f,, so g*L,, > D + dL and thus part (2) is proved.

Let E = E® a. We may assume that « is defined by (U, ay;) and (V, by);
then E’ is defined by (U, eri/ar;) and (V, ¢r1/by;). If ¢i; is the cocycle that de-
fines D(E, f), then (¢x;(8)/bri(8)) Pr = CriPi(exi/an). We get by (8)¢i/ag, =
cii, and (3) follows. _

To prove part (4), let B £, Bbethe map induced by f. We may assume that E’
isdefined by (g(V), yx;) and that f admits local liftings Fyovereach Vi, Fy(b,1) =
(g(b), Pr(b,1)) for b € Vi and r € C"t!. We have y;(g) P, = ¢ Pi(¢w), where
(V, ) defines D(E, f). Then D(E, ff) is defined by a cocycle xy; satisfying
Y (88) Pi(g, P1) = x1 Pr(g, Pr(er)). But

Yu(88) Pi(g, P1) = ¢ (8) Pe(g, dui(8) P) = ¢ () Pi(g, cuPeler))

= Ekl(g)clfl(f)f’k(g, Pr(exr)),

_ d(f
hence Xkl = Ckl(g)ckl(f).

Finally, we prove part (5). Since D(E, f) and B(E, f) behave identically when
E is tensored by « € Pic(B), we may assume (by Serre’s theorem) that E’ is glob-
ally generated. In the equality ¢y;(g) P;(t) = cpiPr(ext), we take Jacobian de-
terminants with respect to ¢ and obtain det(¢;(g))j;(t) = c,:f“ljk (exit) det(e;).
Therefore, if M := —(r + 1)D + det(E) — g* det(E), then the functions j; de-
fine a B-map E’ L om Using Lemma 1.11, choose a nonvanishing global section
O 3 E’ such that the image of s := qv is not contained in the support of the di-
visor J that is locally defined by j;. Both s*J and M are given by the vanishing
of j(v),sos*J >~ M. Note that / = Ry — p*R,, where Ry and R, are the ramifi-
cation divisors of f and g, respectively. By Riemann—-Hurwitz,

J ~ Kpg — f*Kpg — p*Kp + p*g*Kp
~(d—-1D+1)H+ p*det(E) — p*g*det(E) — (r + D)p*B.

Hence M ~ Jg ~ —(r + 1) + det(E) — g*det(E), and we get (r + 1) =~
r+1D. 0

Lemma 115, If PE EN PE has well-defined algebraic degree, then there exists
an o € Pic(B) such that f extends to a self-map of P(E @ o).

Proof. Let B £, B be the self-map induced by f, let d be the algebraic degree of
f.andlets € H(PE, p*¢*E’® (Opg(1))?) be a nonvanishing section that defines
f. Put G := E @« with projection PG %> B.The adjunction formula implies that
Opg(PE) >~ Opg(1) Q r*a’. If PG fi) PG extends f, then f, has the algebraic
degree of f. We need a nonvanishing section s, € H(PG,r*g*G’ ® (Opg(1))?)
that extends s. Note that

r¢* G’ ® (Opc (1)) =~ (r*g"E’' @ (Opc (1)) & (Opc(PE))".

We show first that, for « >> 0, s extends to t € H)(PG,r*s*G’ @ (Opg(1)9).
Indeed, Leray’s spectral sequence together with the projection formula give the
exact sequence
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H'(B,g"E'® a ® r.((Opc(1))!™") — H'(PG,r*¢*E' ® r*a ® (Opc(1))*™)
— HB,g"E'® a ® R'r.((Opc (1))*™1)).

But R'r,.((Opg(1))4~") = 0, and Serre’s asymptotic vanishing theorem implies
that H'(B, g*E’ ® a @ r.((Opg (1))?™")) = 0 for & >> 0. It follows that H'(PG,
r*¢*E’ ® r*a ® (Opg(1))4~!) = 0 for @ > 0. The short exact sequence 0 —
Opg(=PE) — Opg — Opg — 0 implies that the restriction map H°(PG,
r*¢*G' ® (Opg(1))¥) — HO(PE, p*g*E’ ® (Opr(1))?) is surjective; hence s ex-
tends to #, a section that does not vanish on PE. O

Let s € H(PG, Opg(PE)) be a section that vanishes precisely on PE, and de-
fine 54 := (¢, s(‘)l).

THEOREM 1.16. Any finite self-map PE EN PE with well-defined algebraic de-
greelifts to all E’ ® a, o € Pic(B).

Proof. We need to show that D(E, f) ~ 0. Lemma 1.15 and parts (1) and (5) of
Proposition 1.14 imply that (r +n)D(E, f) ~0and (r +n+1)D(E, f) ~ 0. O

REMARK 1.17. Let PE 2 B be the ruled surface with invariant 1 over an ellip-

tic curve. If PE NS induces the identity self-map of B and has fiber-degree
greater than 1, then f does not lift to any E’ ® «, « € Pic(B).

Proof. Otherwise, d — 1 would divide
deg(D(E, f)) = deg(B(E, f)) = (d — 1)/2. U

1.3. Completely Invariant Sub-bundles

Given PE EN PE, a subset A C PE is completely invariant if and only if
f7(4) = A

LeEMMA 1.18.  Forevery 0 < j <, fix a section s; € HO(]PEm,(’)pE,"(I-Ij)) that
vanishes precisely on H;. Assume 8, # 0 = mo and let 0 < k < r be deter-
mined by 0 = my > myy,. Then, for all integers d > 0, HO(PE,,,dH) is the set
of degree-d homogeneous polynomials in s, ..., Sk.

Proof. The statement is clearly true when d = 0. It is also true when k = 0.
Indeed, otherwise let @ > 0 be minimal with h°(PE,,,aHy) > 1, and choose an
effective divisor aHy # D =~ aHy so that Hy is not an irreducible component of
D. Lemma 1.8 applied to D| g, implies that am < am,, which contradicts m >
my. To prove the general case, we use induction over k + d.

Let P(Ty,...,T;) be a homogeneous polynomial with P(sy,...,s;) = 0. Re-
stricting to Hy, we get p(si,...,s¢) = 0, where p(Ty,...,T;) = P(0,Ty,...,T}).
The induction hypothesis implies p = 0 and so P = TyQ, where deg(Q) =
deg(P) — 1 and Q(sp,.-.,sx) = 0. By induction, Q = 0, hence P = 0.

The exact sequence 0 — Opg,,((d —1)H) — Opg,(dH) — Oy,(dH) —
0 implies that h°(PE,,,dH) < h°(PE,,,(d — )H) + h°(Hy,dH | ,). By induc-
tion, h’(PE,,,dH) < (“}*). This finishes the proof. O



520 MARIUS DABIJA

For 0 < k < r, define Py, := ﬂf) H; C PE,,.

THEOREM 1.19.  If my > myyy, then Py is completely invariant for all finite self-
maps of PE,,.

Proof. By an inductive argument, we may assume that 0 = my = my. Let d be
the algebraic degree of f. With the notation of Lemma 1.18, forevery 0 < j <k
we have that f*H, is the zero-locus of P;(so, ...,s), where P; is a homogeneous
polynomial of degree d. It is enough to show that the polynomials Py, ..., P; have
no common zeros in P¥. Assume that p € P* is a common zero. Since f is fi-
nite, codimpg,, (f ~'(P)) = codimpg, (P) = k + 1. The set Z := {z € PE,,

si(z)p; = s;(2)p; YO < i, j < k} is defined by k equations, so codimpg,, (Z) < k.
But Z C f~'(P%), hence codimpg, (Z) > k + 1. This contradiction finishes the
proof. U

COROLLARY 1.20. Assume that B = P! and mg > m; > --- > m,. Fix a ra-
tional function P! £, p! of algebraic degree d. The space of self-maps over g of
PE,, is the complement of r + 1 hyperplanes in general position in PV, where

v () () ()
0

Proof. We start with B = P”, and we assume n = 1 only when calculating N.
By Theorem 1.9, any self-map PE,, EN PE,, over g has algebraic degree d. By
Theorem 1.16, any such f comes from a self-map E, LE /, over g. Up to amul-
tiplicative constant, F' is uniquely determined by f.

Fix such F. Let b = [by,...,b,] be the homogeneous coordinates in P”",
and define A; = {b € P" : b; # 0} and Ak A; N g‘l(Ak) In E,
have (b,1); = (b, (bx/bj)™1)i. For all j and k, A" xC 5 A, x (C’*' is
given by the formula F((b,1);) = (g(b), F}(b, t))k with F" O (AH[1].
For an arbitrarily large integer p > 0 we have ij (bj gk) PP where Pk
Cr[b, 1, deg;,(ij) = p(l+d), and deg,(ij) =d. Set P) = P =Y, P,z
where P; € C'*![b] and where the sum ranges over the nonnegative multi-
indices J € Z"*! with length |J| = d. The gluing condition becomes Pk(b 1) =
(bj/bo)P(8k/g0)?"P(b, (bo/b;)"t) for all j, k, b, and r. This means that
(bj/bo)?~ 7 ™(gi/g0) "™ Py € C"'[b] forall j, k,and J, where J -m =Y Jym;.
We may assume that p > mod. Since gy, ..., g have no common factor, it fol-
lows that P; = bgij'm Py with Q5 € C*'[b] and deg(Q) = J - m — dm,
where dm = (dmy, ...,dm,). We get Fk >, b_J Mgyt on Ak x Cr*,

Write Q; = (Qyjo,...,Qyr), With le e C[b] and deg(Q ) = J m — dm;
for all J and . By Theorem 1.19, Q;; = 0 whenever there exists an i > [ such
that J; # 0. Consequently, the condition F~'(w) = w means that Q ;;; # 0 for
all0 <! <r, where J| = d§!. Here, 8! denotes the Kronecker symbol.

In conclusion, we can identify F with the map it induces,

A x C s (b, 1)y o> <g(b) g0 (b)Z Qf(b) ) €Ay x C™,
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where Q; € C[b] are indexedby 0 </ < r and 0 < J € Z!*! with |J| = d and
also satisfy deg(Q ;) = —dm; + Zf) Jim; and Q ji; # 0.
Therefore, if I(J) = I denotes the dimension of J € Z'*!, we have

J-m—d
N(n,m,d):Z(n+ m ml(J))’

n
J

where the sum ranges over all multi-indices J with /[(J) < r and |J| = d. The
formula for N(1,m,d) follows by a lengthy but straightforward calculation that
uses the identity )¢ (*F7) = (**2+1). O

EXAMPLE 1.21. Assume that B = P!, let F,, = PE _, be the Hirzebruch sur-
face with invariant n > 0, and fix a rati(_mal function P! %5 P! of degree d >
0, g[x,y] = [u,v]. Any self-map F, i) F, over g determines a polynomial
w(x,y,t) that satisfies w(0,0,1) # 0 and is homogeneous of degree d with re-
spect to the weights (1/n,1/n,1), so that, as a rational self-map of P2, f is given
by the formula f[x, y, z] = [¢", u™ v, wix, v, zx" D]

Proof. Indeed, the proof of Corollary 1.20 shows that f is given by a rational self-
map F of P' x C?: F(x,y;1,2) = (u,v; u"x 14, Zg wjx "t iz477), withw; €
Clx,yl, deg(w;) = nj, and wo # 0. As a rational self-map of P2 flx,y,z] =
[u”, "y, Zg wjzd_jx(”_l)(d_-f)]. We put w(x, y,1) := Zg w;(x, =l O

ExaMPLE 1.22. Let X EN X be a finite self-map, where X L P s the blow-up
at a point with exceptional divisor e. Then e is completely f-invariant, and f in-
duces (through p) a regular self-map P” £, P". Moreover, f can be identified
with a regular self-map of P+ of the form [b, b,11] = [g(B), gns1(b, by,
where g,+1 € C[b, b,+1] is homogeneous and g,+1(0,1) # 0.

Proof. Since X = PE ), Theorem 1.19 implies that e is completetely invariant.
Let d be the algebraic degree of f. As in the proof of Corollary 1.20, f is given
by a rational self-map F of P" x C:

d
1 o
F(b; to, 1) = (g(b);td,— q-(b)t’b_’>,
o ° go(b)Xo: S
with g; € C[b],deg(q;) = d — j,and gg # 0. We put g,11 := >0 q;(b)b.,,. O

2. Dynamics

We work from now on in the following context: £ l) B is a vector bundle, with
rank(E) = r + 1 and dim(B) = n, whose dual E’ Z B is endowed with a Her-

mitian metric ||-|; PE <> PE is a finite self-map over B <> B, of fiber-degree

d > 2, that is assumed to admit a lifting to E', E' \ w KNy \ w. We study the
basic dynamical propeties of f, adapting to this context the methods of [3; 7; 9].
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2.1. Green Function

Forr > 0,wehave B, :={x € E’: ||x|| <r}. PutU :=09B;. Aset BC E’is

(a) bounded iff there exists r > 0 such that B C B,;
(b) aneighborhood of w iff there exists » > 0 such that B D B,; and
(c) complete circular iff Ax € B for all x € B and A € C with |A]| < 1.

Put E'\ @ <> R with & := log| F|| — dlog||-|| and E’ \ w £, R with B =
log|| F|| —log||-]|. Note that « is continuous and homogeneous of degree 0, mean-
ing that « is constant on the homogeneous lines of E’ and hence « is bounded on
E'\ w.

LEMMA 2.1.  There exists an r > 0 such that 8 < —1 on B, and B > 1 out-
side B]/,-.

Proof. We can choose r := e~ "+V/@=D where m := maxy|«|. O

DEFINITION 2.2. A :={x € E': limj_,oo||Fj(x)|| = 0} is the basin of attrac-
tionof w,and Ay :={x € E’: limjﬁooHFj(x)H = oo} is the basin of attraction
of oo.

The sets A and A, are disjoint and are completely F-invariant domains of E’;
also, A = | ;| F ~JB, with r given by Lemma 2.1. Note that A is a bounded and
complete circular neighborhood of w.

ProPOSITION 2.3. If A C E’ is a bounded and complete circular neighbor-

hood of w, then there exists a unique function E' \ w G, R with the following
propetrties:

(1) G —log||-|| is homogeneous of degree 0; and
2) Glga=0.

Moreover, G — log||-| is upper semi-continuous and upper bounded on E’ \ .

Proof. To prove the uniqueness of G, assume that G; and G, both satisfy these
two properties. Then h := G; — G, is homogeneous of degree 0. Note that, for
every homogeneous line / in E’, I N A is a nondegenerate disk centered at the ori-
gin. Since |54 = 0, we deduce that i|; = 0 for every [ and hence h = 0.

In order to construct G, first define E’ \ w N (0,00) and r(x) = sup{r > 0 :
Ax € A}. Tt is clear that r(Ax) = r(x)/|A| for all (A,x) € C* x (E’ \ w) and
that |34 = 1. Consequently, G := —logr satisfies properties (1) and (2) of the
proposition.

Observe that r is lower semi-continuous. Indeed, given a > 0, it follows that
r(x) > a if and only if ax € A. Given x € E’ \ o with r(x) > a, there exists
a neighborhood V of ax with V. C A. Then V/a is a neighborhood of x and
a(V/a) C A, sothat r > a on V/a. Therefore, G is upper semi-continuous. If
C := maxy G, then G(x) — log|lx|| = G(x/||x||) < C forallx € E' \ w. O
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We call G the Green function of A. Clearly, A\ w = {x € E'\ @ : G(x) < 0}
and A ={x e E'\w: G(x) =0}.

Let H be the set of points x € E"\ @ with the property that G is pluriharmonic in
a neighborhood of x, and put Q := ¢(#). Then H = ¢~'(2) by Proposition 2.3.

ProprosITION 2.4.  Q contains no fiber of PE.

Proof. Assume that there exists a fiber F,, C Q such that C"*'\ 0 = ¢7'(F,) C
H. The restriction G|cr+1\¢ is pluriharmonic and hence extends to a pluriharmonic
function on C"*!. This is not possible, since Glcring(0) = —oo0. UJ

PROPOSITION 2.5. Q2 equals the set of points | with the property that E’ \ @ 4 PE
admits a section defined near l, with image contained in d.A.

Proof. Given 1° € PE with b° := p(I°) € B, let U C B be a neighbor-
hood of b° on which E’ is trivial, E'|y = U x C"*. so that [ = (»°,[T°])
with [T°] € P’. Permuting the coordinates in C"*!, we may assume 70 # 0
so that [T°] = [1,1°] € P". If Ay := {[T] € P" : Ty, # 0} = C’, then
E'Ng™"(Ux Ag) =U xC*x C",and E' N g~ ' (U x Ag) 2> U x Ay is given
by the formula ¢ (b, A, x) = (b, x/1). In these coordinates, [° = (b°,1°) e U x A,
and G(b, 1, x) = log|A| + G(b,1,x/)1). Let U x C* x C" 2 C* be the projec-
tion on C*, and let U x Ay ~> g~ '(U x Ap) be the local section of g given by
so(b,t) = (b,1,t). Define U x C” 2 R with y(b,t) = G(b,1,t). Then y =
Gsoon U x Ag and G = log|A| + yg on ¢~' (U x Ag). Since H = ¢~ (), it
follows that 1° € Q if and only if y is pluriharmonic near [ = (6°,¢°).

Assume that [° € @, choose ¢ € 0,0 with Ri¢ = y, and define near [° the map
s(b,t) = (b,e "D te=9®:0) Then

gs(b,t) = (b,t) and Gs(b,1) =logle *®"| +y(b,1) =0,

meaning that s is a local section of ¢ whose image is contained in 9.4.
Conversely, let s be a local section of ¢ near 19 lets(b,t) = (b,o(b,1),t5(b, 1))

with o € O}, and assume that Gs = 0. Since Gs = log|o| + y, it follows that

y = —log|o| is pluriharmonic near °. U

REMARK 2.6. If 59 and s; are two germs at [° € Q of local sections of g with
image in d.A, then sy = c¢s; for some ¢ € C* with |c| = 1.

Proof. Indeed, inlocal coordinates near!® wehaves; (b, 1) = (b, 0:(b, 1), to;(b, 1)),
with o; € O}, satisfying y = —loglo;| for i € {0,1}. It follows that |o1/00| = 1,
which implies the existence of ¢ € C* with |c|] = 1 and so o7 = coyp; that is,
§1 = CSp. O

We recall that, when A is the basin of attraction of @ under the action of F, the
corresponding G is called the Green function of F.

PROPOSITION 2.7.  The Green function G of a self-map E' \ w LoE \ w of fiber-
degree d > 2 satisfies the following properties:
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(1) G(F) =dG;
(2) forany E'\ @ = R such that v —log||-|| is bounded, G = lim;_, «, v(F/)/d/
uniformly on E' \ w.

Consequently, G — log||-|| is continuous and bounded on E' \ w.

Proof. If u := v(F) — dv, then Lemma 2.1 implies that y is bounded on E’ \ w.
Since v(F/)/d! = 337" w(F¥)/d*, there exists an E' \ S, R such that G, =
lim;_, oo v(F/)/d/ uniformly in E’ \ . Since v — log|-|| is bounded, G, = Gy
with Gy = lim;_,  log|| F/ || /d”. It follows immediately from the definition of G,
that Go(F) = dGy. As a uniform limit of continuous functions, G is continuous.
For (A, x) € C* x (E’\ w) we have log|| F/(Ax)||/d’ = log|A| + log|| F/(x)|/d’,
s0 Go(Ax) = log|A| + Go(x); that is, Gy — log||-|| is constant on the homoge-
neous lines of E’. By continuity, this implies that Gy — log||-|| is bounded.

By Proposition 2.3, it remains to show that Go|y4 = 0, since this will imply
that G = Gy. Fix x € E'\ w. If Go(x) > 0, then || F/(x)| > exp[Go(x)d’/2] for
all j > 0 and hence x € Ao If Go(x) < 0, then || F/(x)| < exp[Go(x)d//2] for
all j > 0 and hence x € A. Since AN A = @ and 0AN A, = 0, it follows that
G0|E).A =0. O

2.2. Fatou Set

The Fatou set F of PE EN IPE is the set of points / € PE that have a neighborhood

V C PE on which the sequence of iterates V EiR PE is a normal family. By defi-
nition, F is open in PE. It is easy to see that the Fatou set does not change when
the self-map is replaced by an iterate. The complement J = PE \ F is the Julia
set of f. Let F, denote the Fatou set of B LNy

PROPOSITION 2.8.  F C p~I(F,).

Proof. Fix | € F with a neighborhood V on which (f7); is a normal family. If
U C B is a sufficiently small neighborhood of b := p(l), then there exists a
local section of p, U = PE, with s(U) C V. Then (g-i|U)j = (pffs)j is normal
on U. UJ

ProrosITION 2.9.  If E is globally generated, then F C 2.

Proof. Fix [ € Q and let (f/*); be a subsequence of iterates of f that converges

uniformly in a compact neighborhood V of / to a map V 2 PE. Letl® = o)
and fix x* € I\ 0 C E’\ w. Because E is globally generated, we can find a
w € I'(B, E) with x°(w) # 0 and put ¢ := |x°(w)|/[|x°|| > 0. Define W :=
{x e E'\ o : |x(w)|/|x]| < ¢&/2}. Clearly, W = ¢ '(g(W)) and I° ¢ g(W).
Shrinking V, we may assume that #(V)Ng(W) = @. Thus we may also assume
that f/*(V)Ng(W) = ¢ for all k.

Define E' \ w 5 R with v(x) = log max (|| x||, 2| x(w)|/¢), so that v(x) =
log||x|| on W and v(x) = log(2|x(w)|/e) outside W. The function v — log||-| is
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continuous and homogeneous of degree 0, so it is bounded on E’ \ w. By Proposi-
tion 2.7, lim v(F/*)/d/* = G uniformly on E'\ w. If x € g~'(V) then gF/¥(x) =
fi (g (x)) € fIK(V), so that F/*(x) ¢ W. Therefore, uniformly on ¢ ~'(V), G =
limy log(2| F/*(w)|/e)/d’*. We conclude that G is pluriharmonic on ¢~'(V') and
that [ € Q. O

ProPOSITION 2.10.  p~I(F,)NQ C F.

Proof. Fix | € Q with b := p(b) € F, and fix an arbitrary subsequence (f/*); of
iterates of f. We may assume that (g/*); converges uniformly in a compact neigh-
borhood U ¢ Bofbtoa map UL B Puth = y (b), fix local coordinates near
0:=b’,and let D C B be a neighborhood of 4’, biholomorphic to the unit ball in
C", such that E|p is trivial. Shrinking U, we may assume that y(U ) C D/2,and
then we may assume that g/(U) C D for all k.

By Proposition 2.5, there exists a neighborhood V C IPE of [ and a local section
of g,V => dA C E’\ w. Shrinking V, we may assume that p(V) C U.

We see that F/ks (V) € Flrs(p~'(U)) c ' (g/*(U)) Cw~'(D) and Fi*s(V) C
Fi*@A) C 3A, so that Fiks(V) ¢ 7~ YD) N dA. Since 77(D) N dA is a
bounded set in C"*", Montel’s theorem implies that (F7¥s); is a normal family.
Since f/*|y = qF/ks, there exists a sub-subsequence (f/%);, that converges on V,
and we conclude that [ € F. O

THEOREM 2.11.  If E is globally generated, then F = QN p‘l(]-'g).
Proof. This collects the results of the previous three propositions. O

ExampLE 2.12. Forn > 0 and d > 1, consider the rational self-map s of P2
[x0,%1,2] — [xgd,x(()”_l)dxf’,zd]. As in Example 1.21, s can be viewed as a reg-
ular self-map F, = F,, f((xo,x1;1,2);) = (xd,x{;t%,z9);, for j = 0,1. The
Green function of f is G((xo, x; ,2);) = logmax(|t|, |xo/x;|" |z, |x1/x;]"]|z])-
The mapping F, ER F,, has four Fatou components, all basins of attraction, that
are biholomorphic to the 2-disk.

From now on, we assume that E is globally generated.

LEMMA 2.13. There exists a Hermitian metric ||-|| on E' such that log||-|| is
plurisubharmonic on E’.

Proof. Because E is the quotient of a trivial bundle OV it follows that E’ is a

sub-bundle of O g . We choose ||-|| to be the restriction to E’ of the trivial metric
N

on Op. O

COROLLARY 2.14.  The Green function G of F is plurisubharmonic on E’.

Proof. By Proposition 2.7, G is the uniform limit on E’ \ @ of the sequence
log||F/|/d’, j = 0. Consequently, G is plurisubharmonic on E’ \ . Since
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. . . G
G — log||-|| is continuous and bounded on E’ \ w, the function E’ — [—00, 00)
is continuous; G ~'(—o0) = w, hence G is plurisubharmonic on E’. O

The following result is well known.

LEmMA (Cegrell). Given a plurisubharmonic function M i) [—00,00) on a
complex manifold M, let H be the set of points m € M that possess a neigh-
borhood V.C M such that h|y is pluriharmonic. If H # @, then H is pseudocon-
vex in M.

COROLLARY 2.15. 2 is pseudoconvex in PE.

Proof. Fix1 €02, and let V =S FE \ w be a local section of ¢ defined in a neigh-
borhood V of [. Then H N s(V) is pseudoconvex in s(V'), so 2 N V is pseudo-
convex in V. UJ

LeEMMA 2.16.  If F, is pseudoconvex in B, then p_](]-;) is pseudoconvex in PE.

Proof. Fix I € p~'(F,), and choose a neighborhood U C B of b := p(l) on
which E is trivial. Since F, N U is pseudoconvex in U, we deduce that
p{(F)Np~NU) = (F, NU) x P is pseudoconvex in p~'(U) = U x P". [

THEOREM 2.17.  If F, is pseudoconvex in B, then F is pseudoconvex in PE. If
F, is Stein, then F is Stein.

Proof. According to Theorem 2.11, Corollary 2.15, and Lemma 2.16, F is an in-
tersection of two pseudoconvex sets and hence is pseudoconvex.

Assume now that 7, is Stein. Since F is pseudoconvex in PE| 7, and since, by
Proposition 2.4, F contains no fiber of PE, Brun’s result on the Levi problem in
projective bundles with a Stein basis can be applied to conclude that F is Stein.

O
LEmMMA 2.18. Let Uy and U, be open and proper subsets of P7, with P" =
Ui U U,. If Uy N U, is pseudoconvex, thenr = 1.

Proof. Note first that U; and U, are Stein. Indeed, if x € dU; then x € U,, so that
U, is pseudoconvex. Fujita’s result on the Levi problem in P implies that U, is
Stein. Leray’s lemma implies that the cohomological dimension of P" is at most
1; that is, r = 1. U

THEOREM 2.19.  Assumer > 2. If F, is pseudoconvex in B, then [J is connected.

Proof. Assume that J is a disjoint union of proper subsets 7, and 7. By Propo-
sition 2.4, J intersects every fiber of PE and hence p(J;) U p(J2) = B. Since p
is a closed map and B is connected, there exists a b € p(J;) N p(J2). Put U; =
Fp \ J; fori € {1,2}. Then U; and U, are open and proper subsets of Fj, and
UNU, = F,\ J = F, N F. Theorem 2.17 implies that U; N U, is pseudo-
convex in F, = P". By Lemma 2.18, this is not possible when r > 2. O
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THEOREM 2.20. If F, is Kobayashi hyperbolic, then F is Kobayashi hyperbolic.

Proof. By Theorem 2.11, F = QN p’l(]-'g). Let F( be a connected component
of F and fix [ € Fy. Let G denote the abstract complex manifold of germs of local
sections of ¢ with domain in F( and image in 9.4, endowed with the local bi-
holomorphism G & Fo and the evaluation map G 5 94N q’l(}'o) CE'\ow.
Proposition 2.5 implies that Q is surjective, and Remark 2.6 implies that e is in-
jective. The map G may be viewed as a covering of F, with infinitely many sheets
and indexed by the unit circle.

LetV > Fo be the universal covering of Fy, and fix sg € G; := 0~'(I). Since
Q is alocal biholomorphism, any piecewise-smooth path [0, 1] L Fo with y(0) =
[ determines a local section of Q, V,, A G, defined near y with Q(s, (1)) = so.
Since s, (y (1)) depends only on the homotopy class of y, we obtain an Fy-map
V 5 G with s[y] :=s,(y(1)).

Let C be the subset of the fundamental group 7 (Fy, ) formed by the classes of
loops [y ] with the property that s[y] = s¢. In other words, [y] € K if and only if
s,y isaloopin G. Clearly, K is a subgroup of 7 (Fy, ) and hence defines unram-
ified coverings V 2 Mand M 5 Fo with up = v. By definition of X and M,
there exists an injective map M N G withtp =s and Qt = u.

Since E is globally generated, E’ is a sub-bundle of a trivial vector bun-
dle, E' ¢ B x CN. By Lemma 2.1 we have 04 C B x B, where B :=
{z € CN : |iz|| < 1/r}. Therefore, DA N g~ (Fo) C dAN T (F,) C Fy x B.
Let 3.AN g~ (Fy) — F, x B denote this inclusion map. As a product of hyper-
bolic manifolds, F, x B is hyperbolic. Since the map M = F, x Bis injective,

M is hyperbolic. Since M L Foisa covering, Fy is hyperbolic. 0

COROLLARY 2.21. Let PE — P" be a projective bundle with nonzero discrimi-

nant, and let PE EN PE be a self-map with topological degree at least 2. Then the
Fatou components of f are Stein and Kobayashi hyperbolic. When rank (E) > 3,
the Julia set of f is connected.

Proof. By Theorem 1.9, such a mapping PE EN PE has well-defined algebraic
degree d > 1. Let P” £, P" be the self-map induced by f. By Theorem 1.16, we
may assume that E is globally generated and that f lifts to E’. Theorem 2.17 im-
plies that F, is Stein, and then F is Stein. By Theorem 2.19, 7 is connected when
rank (E) > 3. By Theorem 2.20, F is hyperbolic. O
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