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Surfaces with Degenerate CR Singularities
That Are Locally Polynomially Convex

Gautam Bharali

1. Introduction and Statement of Results

A compact subset K ⊂ Cn is said to be polynomially convex if, for every point ζ /∈
K, there exists a holomorphic polynomial P such that P(ζ) = 1 and supK|P | < 1.
A subset K is said to be locally polynomially convex at a point p ∈ K if there
exists a closed ballB(p) centered at p such thatK∩B(p) is polynomially convex.
In general, it is difficult to determine whether a given compact K ⊂ Cn is poly-
nomially convex when n > 1. In contrast, there is a considerable body of work
concerning the (local) polynomial convexity of smooth surfaces in Cn. Let S be
a smooth real surface in Cn, n > 1. A point p ∈ S is said to be totally real if the
tangent plane Tp(S) at p is not a complex line. A point on S that is not totally
real will be called a CR singularity. At a totally real point p ∈ S, the surface S is
locally polynomially convex. This is not always the case if p ∈ S is an isolated
CR singularity. At a CR singularity p ∈ S, if the order of contact of Tp(S) with S

equals 2 then the situation is well understood. Suppose S ⊂ C2; then there exist
local holomorphic coordinates (z,w) with respect to which p = (0, 0) and such
that S is locally given by an equation of the form w = |z|2 + γ (z2 + z̄2)+F(z),
where γ > 0 and F(z) = O(|z|3). In Bishop’s terminology, the CR singular-
ity p = (0, 0) is said to be elliptic if 0 < γ < 1/2, parabolic if γ = 1/2, and
hyperbolic if γ > 1/2. Bishop showed [1] that if p is elliptic then, given ε0 > 0,
there is a 1-parameter family of analytic discs whose boundaries are contained in
S ∩ B(p; ε0), whence S is not polynomially convex. Much later, Forstnerič and
Stout showed [3] that if p ∈ S is an isolated, hyperbolic CR singularity then S is
locally polynomially convex at p.

Very little is known when the order of contact of Tp(S) with S at a CR singu-
larity p is greater than 2. We will call such a CR singularity a degenerate CR sin-
gularity. The aim of this paper is to study when S is locally polynomially convex
at an isolated, degenerate CR singularity. Knowing so may be useful in function
theory: for instance, if a surface S had only isolated CR singularities and if one
knew that S was locally polynomially convex at each singularity, then S would
have a Stein neighborhood basis. Local polynomial convexity at a degenerate CR
singularity may be inferred in some cases when S is the graph of a function F ∗
for F ∗ : C → C a globally defined, finitely sheeted branched covering; see [7]
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for a precise statement. It would, however, be useful to deduce local polynomial
convexity using merely local information. Toward this end, we provide certain
sufficient conditions for a smooth surface S to be locally polynomially convex
at an isolated, degenerate CR singularity. Given a compact subset K ⊂ Cn, let
P(K) denote the function space of uniform limits of the holomorphic polynomi-
als on K. Questions about the polynomial convexity of K are closely related to
whether P(K) = C(K). In particular, for any compact K ⊂ Cn, P(K) = C(K)

implies that K is polynomially convex (we will justify this assertion in Section 3).
Here and in what follows, C(K) will denote the class of complex-valued continu-
ous functions on K. Our results provide sufficient conditions showing that, given
a surface S and an isolated CR singularity p ∈ S, there exists a small compact
S-neighborhood of p that is polynomially convex and, moreover, that all continu-
ous functions on this portion of S can be approximated uniformly by holomorphic
polynomials.

We now state our first result.

Theorem 1.1. Let S be a smooth surface in C2 given by

w =
∑

α+β=k

Cα,βz
αz̄β + F(z),

where (z,w) are holomorphic coordinates on C2, F is a smooth function satis-
fying F(z) = o(|z|k ) as z → 0, and k > 2. Assume that S has an isolated CR
singularity at the origin. Let us write∑

α+β=k

Cα,βz
αz̄β = Ck,0 z

k + C0,k z̄
k + �(z), C0,k �= 0.

If |�(z)| ≤ κ|z|k for some κ satisfying

0 ≤ κ < |C0,k| min

{
π

2k
,

1

2

}
, (1.1)

then there exists a constant ε0 > 0 such that {(z,w) : |z| ≤ ε0}∩S is polynomially
convex. Furthermore, P({(z,w) : |z| ≤ ε0} ∩ S) = C({(z,w) : |z| ≤ ε0} ∩ S).

One may ask whether there is a purely geometric condition such as hyperbolicity—
as opposed to the analytical condition given here—according to which a surface S
is locally polynomially convex at a degenerate CR singularity p ∈ S. The Maslov
index (see [2] for a definition) is an invariant associated with an isolated CR sin-
gularity. Elliptic CR singularities have Maslov index 1, whereas hyperbolic points
have Maslov index −1. In view of the definition of the Maslov index, it is reason-
able to ask if a surface is locally polynomially convex at an isolated, degenerate
CR singularity with negative Maslov index. However, this is not always true. An
example of Wiegerinck [9, Ex. 4.3] shows that a surface can have a nontrivial
polynomial hull near an isolated, degenerate CR singularity with negative Maslov
index. It thus seems that additional conditions are necessary.
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The analytical condition in Theorem 1.1 essentially states that, if a surface S is
(around a CR singularity taken to be the origin) presented as a graph of a function
F ∗ with leading order k > 2, then S is locally polynomially convex if the Tay-
lor coefficients of all the leading terms of F ∗ other than the z̄ k-term are in some
sense small in comparison to that of the z̄ k-term. However, by adapting the tech-
nique of Forstnerič and Stout to the case of degenerate CR singularities, one can
also demonstrate local polynomial convexity in cases where some of the leading
Taylor coefficients of the graphing function are not small in comparison to that of
the z̄ k-term. This is the situation addressed by the following theorem.

Theorem 1.2. Let S be a smooth surface in C2 given by

w =
∑

α+β=2k

Cα,βz
αz̄β + F̃(z),

where (z,w) are holomorphic coordinates on C2, F̃ is a smooth function satisfy-
ing F̃(z) = o(|z|2k ) as z → 0, and k > 1. Assume that S has an isolated CR
singularity at the origin. Let us write∑

α+β=2k

Cα,βz
αz̄β = C2k,0 z

2k + Ck,k|z|2k + C0,2k z̄
2k + �̃(z),

γ = |C0,2k|
|Ck,k| .

If γ > 1/2 and |�̃(z)| ≤ κ(2γ − 1)|z|2k for some κ satisfying

0 ≤ κ <
|Ck,k|

2
min

{
π

2k
,

2γ − 1

2γ (3γ + 2)

}
, (1.2)

then there exists a constant ε0 > 0 such that {(z,w) : |z| ≤ ε0} ∩ S is polynomi-
ally convex. Furthermore,

P({(z,w) : |z| ≤ ε0} ∩ S) = C({(z,w) : |z| ≤ ε0} ∩ S).

We do not claim that condition (1.2) is the best possible condition that guarantees
local polynomial convexity. On the other hand, if �̃(z) = 0, then an obvious mod-
ification of the arguments in [1] shows that S would not be polynomially convex
if γ < 1/2. The case γ = 1/2 leads to varying phenomena, as in the case when
0 ∈C2 is a nondegenerate CR singularity (see [5]).

2. Some Notation and Remarks

The primary purpose of this section is to state Kallin’s lemma [6], which is instru-
mental in demonstrating (local) polynomial convexity of various configurations in
Cn, n > 1, and to remark upon its connection with our results. We state a form of
Kallin’s lemma that we shall use in Sections 3 and 4; the reader is referred to [6]
for the original result.
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Lemma 2.1 (Kallin). Suppose X1 and X2 are compact subsets of Cn such that
P(Xj ) = C(Xj ), j = 1, 2. Let φ : Cn → C be a holomorphic polynomial such
that φ(Xj ) ⊂ Wj , j = 1, 2, where W1 and W2 are polynomially convex compact
sets in C and W1 ∩W2 = {0}. Assume that φ−1{0} ∩ (X1 ∪X2) = X1 ∩X2. Then
P(X1 ∪ X2) = C(X1 ∪ X2).

The version of Kallin’s lemma stated here is implicit in the proof of [3, Thm. IV],
but for the reader’s convenience we provide the following.

Sketch of Proof of Lemma 2.1. The conditions on Wj (j = 1, 2) imply that W1

and W2 are peak sets for P(W1 ∪ W2). Since P(X1 ∪ X2) is a closed subspace
of C(X1 ∪ X2), there is a regular Borel measure µ on X1 ∪ X2 that annihilates
P(X1 ∪ X2). Define µj := µ|Xj , j = 1, 2. Let f ∈ P(W1 ∪ W2) peak on W1.

Then, for every holomorphic polynomial P on Cn,

0 = lim
ν→∞

∫
X1∪X2

(f � φ)νP dµ =
∫
X1

P dµ,

whence µ1 annihilates P(X1) = C(X1), which implies that µ1 = 0. Similarly,
µ2 = 0. We have shown that µ = 0. Therefore P(X1 ∪ X2) = C(X1 ∪ X2).

In our proofs, we will extend a technique presented in [3, Thm. IV]. In the proofs of
both theorems, we will find an appropriate proper polynomial mapping ofC2 onto
C2 such that the preimage of an appropriately small compact S-neighborhood of
the origin under this proper mapping is a finite union of compact subsetsX1, . . . ,XN

that satisfy P(Xj ) = C(Xj ), j = 1, 2, . . . ,N. In Theorem 1.1 N = k, and in The-
orem 1.2 N = 2. We will then show that the sets X1, . . . ,XN are mapped by a
polynomial into distinct sectors in C, which intersect only at the origin. It is at
this stage that one needs Lemma 2.1, and one infers that P(X1 ∪ · · · ∪ XN) =
C(X1 ∪ · · · ∪ XN). The desired conclusions follow from the last statement by ap-
pealing to the theory of analytic covers. These proofs are presented in the next
section. The proof of Theorem 1.2 incorporates the use of certain technical lem-
mas whose proofs are deferred to Section 4.

Before presenting the proofs of our results, we define a couple of concepts that
will be used in Section 3. First, if K is a compact subset of Cn then the polyno-
mially convex hull of K, written K̂, is defined by

K̂ := {ζ ∈Cn | |P(ζ)| < supK|P | for every holomorphic polynomial P }.
Second, given a uniform algebra A , the maximal ideal space of A is the space of
all algebra homomorphisms of A to C, viewed as a subspace of the dual space A∗
with the weak∗ topology (it is a standard fact that every complex homomorphism
of A is in fact continuous). Recall that, for a compact subset K, the maximal ideal
space of C(K) is homeomorphically identified with K. We will need this fact in
Section 3.
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3. Proof of the Main Results

Proof of Theorem 1.1

To begin we note that, without loss of generality, we may assume Ck,0 = 0. For
when this is not the case, we can simply choose new holomorphic coordinates
(z∗,w∗) given by

z∗ := z, w∗ := w − Ck,0 z
k,

whereby the coefficient of the (z∗)k-term of the function defining S vanishes.
For this reason, we shall assume in the following argument that Ck,0 = 0. Let
Ψ : C2 → C2 be defined by Ψ (z,w) := (z,wk). This is a proper map of C2 onto
itself having multiplicity k. Notice that there exists a δ > 0 such thatΨ −1({(z,w) :
|z| ≤ δ} ∩ S) = ⋃k

j=1 Sj(δ), where S1(δ), . . . , Sk(δ) are compact sets given by the
equations

Sj(δ) : w = e2πi(j−1)/kc∗z̄{1 + H(z)}, |z| ≤ δ,

where c∗ := |C0,k|eiArg(C0,k)/k and where H is a continuous function satisfying a
useful estimate. To justify this statement, we introduce the function F ∗ and view
the surface S as the graph of F ∗. The function F ∗ may be written as

F ∗(z) = C0,k z̄
k

{
1 + �(z)

C0,k z̄k
+ F(z)

C0,k z̄k

}
.

Observe that:

(a) owing to the estimate for �(z) and condition (1.1),∣∣∣∣ �(z)

C0,k z̄k

∣∣∣∣ ≤ κ

|C0,k| <
1

2
;

and
(b) limz→0 F(z)/C0,k z̄

k = 0.

By (a) and (b), we can find a δ > 0 so small that∣∣∣∣ �(z)

C0,k z̄k
+ F(z)

C0,k z̄k

∣∣∣∣ ≤ 1

2
∀|z| ≤ δ.

Given this fact, it follows thatF ∗(z) has k distinct kth roots f ∗
1 (z), . . . , f

∗
k (z)when

0 < |z| ≤ δ, each Sj(δ) is the graph of f ∗
j (j = 1, . . . , k), and

f ∗
j (z) = e2πi(j−1)/kc∗z̄

[
1 +

∞∑
m=1

αm

{
�(z)

C0,k z̄k

}m

+ o(1)

]
, (3.1)

where theαm are coefficients occurring in the Taylor expansion of (1+x)1/k around
x = 0; that is,

(1 + x)1/k = 1 +
∞∑
m=1

αmx
m, |x| < 1.
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The infinite series in (3.1) represents a function h that is homogeneous of degree 0,
and we write H(z) := h(z) + R(z), where R(z) = o(1) as z → 0. Notice that

sup
|z|=1

|h(z)| ≤
∞∑
m=1

|αm|
{

min

(
1

2
,
π

2k

)}m

= 1 −
{

1 − min

(
1

2
,
π

2k

)}1/k

< min

(
1

2
,
π

2k

)
. (3.2)

The last inequality follows because k > 2 and because the term in braces is smaller
than 1. In view of (3.1) and (3.2), it is possible to find a small constant ε1 > 0
such that

|z̄H(z) − ζ̄H(ζ)| ≤ sup
|ξ|=1

|h(ξ)||z − ζ| + |z||h(z) − h(ζ)| + |z̄R(z) − ζ̄R(ζ)|

< |z − ζ| ∀z �= ζ : |z|, |ζ| ≤ δ and ∀δ ∈ (0, ε1]. (3.3)

We use standard estimates to bound |z||h(z) − h(ζ)| by |z − ζ|/2, which is en-
abled by the bound (3.2).

The estimate (3.3) allows us to use a result of Wermer [8, Thm. 1] to conclude
that, for each Sj(δ), we have P(Sj(δ)) = C(Sj(δ)) for j = 1, . . . , k, assuming, of
course, that 0 < δ ≤ ε1.

Consider the polynomial p(z,w) = zw/c∗. For any (z,w)∈ S1(δ),

Re{p(z,w)} = |z|2 + Re{|z|2(h(z) + R(z))} ≥ |z|2 − |z|2|h(z)| − |z|2|R(z)|,
|Im{p(z,w)}| ≤ |z|2{|h(z)| + |R(z)|}.
In view of the estimate (3.2) and the fact that R(z) = o(1) as z → 0, we can find
a number M satisfying 1/2 < M < 1 − κ/|C0,k| and a small constant ε2 > 0
such that

Re{p(z,w)} ≥ M|z|2, |Im{p(z,w)}| < π

2k
|z|2 ∀|z| ≤ δ,

p(S1(δ)) � {x + iy ∈C : |y| ≤ (π/2kM)x} where δ ∈ (0, ε2 ]. (3.4)

Expression (3.4) states that (a) p(S1(δ)) is a proper subset of the sector W1 that is
centered on the positive x-axis and (b) p(S1(δ)) has an aperture of (π/kM). Note
that p(Sj(δ)) is therefore a proper subset of the sector Wj , which is simply a copy
of W1 rotated by (2π(j − 1)/k), j = 1, . . . , k.

We have shown so far that:

• for each Sj(δ), P(Sj(δ)) = C(Sj(δ)), j = 1, . . . , k, where 0 < δ ≤ ε1;
• p(Sj(δ)) � Wj , j = 1, . . . , k, where 0 < δ ≤ ε2;
• Wµ ∩Wν = {0} for all µ �= ν, because the aperture of each Wj , π/kM< 2π/k;

and
• p−1{0} ∩ {⋃k

j=1 Sj(δ)
} = {(0, 0)}, where 0 < δ ≤ ε2.

We define ε0 := min(ε1, ε2); the facts just summarized allow us to apply Lemma
2.1 repeatedly to show that
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P
( k⋃

j=1

Sj(ε0)

)
= C

( k⋃
j=1

Sj(ε0)

)
. (3.5)

Now let f ∈ C({(z,w) : |z| ≤ ε0} ∩ S). Define f̂ := f � Ψ : Ψ −1({(z,w) :
|z| ≤ ε0} ∩ S) → C. Since Ψ −1({(z,w) : |z| ≤ ε0} ∩ S) = ⋃k

j=1 Sj(ε0), it fol-
lows that f̂ ∈ C(⋃k

j=1 Sj(ε0)
)
. We can paraphrase (3.5) in the following way: for

each ε > 0, there exists a polynomial gε such that

|f̂ (z, e2πi(j−1)/kw) − gε(z, e2πi(j−1)/kw)| < ε

∀(z,w)∈ S1(ε0), j = 1, . . . , k. (3.6)
We define

Qε(z,w) := 1

k

k∑
j=1

gε(z, e2πi(j−1)/kw).

Notice that if gε(z,w) = ∑
0≤µ+ν≤N Aµ,ν z

µwν , then Qε(z,w) has the form

Qε(z,w) =
∑

(µ,ν):ν=kj

Aµ,kj z
µwkj

≡ Pε(z,wk),

where Pε is itself a polynomial. Let us write w = |w|eiθ, θ ∈ [0, 2π). For (z,w)∈
{(z,w) : |z| ≤ ε0} ∩ S, we compute

|f(z,w) − Pε(z,w)|

=
∣∣∣∣1

k

k∑
j=1

f̂ (z, |w|1/ke i(2π(j−1)+θ)/k ) − Qε(z, |w|1/ke iθ/k )
∣∣∣∣

≤
k∑

j=1

|f̂ (z, |w|1/ke i(2π(j−1)+θ)/k ) − gε(z, |w|1/ke i(2π(j−1)+θ)/k )|
k

< k

(
ε

k

)
.

The last inequality follows from the estimate (3.6). This establishes that P({(z,w) :
|z| ≤ ε0} ∩ S) = C({(z,w) : |z| ≤ ε0} ∩ S).

Now we need only show that {(z,w) : |z| ≤ ε0} ∩ S is polynomially convex.
This follows from general abstract considerations. For this purpose, given a com-
pact K � Cn, we define

K̂ := the polynomially convex hull of K,

A(K;Cn) := the uniform algebra generated by the class
{f |K : f ∈ O(Cn)},

M[A(K;Cn)] := the maximal ideal space of the uniform algebra A(K;Cn).

We know that M[A(K;Cn)] = K̂ (see e.g. [4, Cor. VII.A(6)]). Thus, in our sit-
uation, M[A({(z,w) : |z| ≤ ε0} ∩ S;C2)] = {(z,w) : |z| ≤ ε0}̂ ∩ S. But since
P({(z,w) : |z| ≤ ε0} ∩ S) = C({(z,w) : |z| ≤ ε0} ∩ S), we have
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{(z,w) : |z| ≤ ε0}̂ ∩ S = M[C({(z,w) : |z| ≤ ε0} ∩ S)]

= {(z,w) : |z| ≤ ε0} ∩ S.

This concludes our proof of Theorem 1.

Before proving Theorem 1.2 we remark that, with respect to a new system of holo-
morphic coordinates (z∗,w∗) defined by

z∗ := e−iφ0z and

w∗ := w − (C2k,0 − C0,2k)z
2k

Ck,k

(where φ0 := Arg(C0,2k/Ck,k)/2k), S is expressed by the equation

S : w∗ = |z∗|2k + γ ((z∗)2k + (z̄∗)2k ) + �̃(e iφ0z∗)
Ck,k

+ F̃(e iφ0z∗)
Ck,k

.

For simplicity of notation we will denote the new coordinates by (z,w), and we
then assert that the surface S is expressed by an equation of the form

S : w = |z|2k + γ (z2k + z̄2k ) + �(z) + F(z) (3.7)

with respect to these new coordinates. In (3.7), �(z) is homogeneous of degree
2k, F(z) = o(|z|2k ) as z → 0, and γ is precisely as defined in Theorem 1.2. Let
us define a function ψ(z,w) := |z|2k + γ (z2k + z̄2k ) + �(z) + F(z) − w. With
respect to the new coordinates, S is thus the zero set of ψ. Under this change of
coordinates, |�(z)| ≤ κ(2γ − 1)|z|2k, and the estimate (1.2) transforms to

0 ≤ κ <
1

2
min

{
π

2k
,

2γ − 1

2γ (3γ + 2)

}
. (3.8)

In the remainder of this paper, we will assume that S is the zero set ofψ or (equiv-
alently) is defined by (3.7).

Proof of Theorem 1.2

Let Φ : C2 → C2 be defined by Φ(z,w) = (z, zkw + γ (z2k + w2)). This is a
proper mapping of C2 onto itself having multiplicity 2. We first show that there
is a small constant δ > 0 such that Φ−1({(z,w) : |z| ≤ δ} ∩ S) = S1(δ) ∪ S2(δ),
where Sj(δ), j = 1, 2, are compact sets given by

S1(δ) : w = z̄ k + H(z) + f1(z), |z| ≤ δ,

S2(δ) : w = −
(

1

γ
zk + z̄ k

)
− H(z) + f2(z), |z| ≤ δ,

(3.9)

where

• f1 and f2 are continuous functions satisfying fj(z) = o(|z|k ) as z → 0, j =
1, 2; and

• H(z) is a continuous function that is homogeneous of degree k and satisfies
|H(z)| ≤ 2κ|z|k.



Polynomially Convex Surfaces 437

In order to justify the preceding statement, we need to analyze how the equations
describing S1(δ) and S2(δ) arise. We first study the set S1(δ). For this purpose,
we introduce the quantity g1(z) such that

S1(δ) = {(z,w) : w = z̄ k + g1(z), |z| small}
and then demand that ψ[Φ(z, z̄ k + g1(z))] = 0. Thus g1 satisfies the quadratic
equation

γg2
1 + (2γ z̄k + zk)g1 − {�(z) + F(z)} = 0.

By the quadratic formula we have

g1(z) = −2γ z̄k + zk

2γ
+

√
(2γ z̄k + zk)2 + 4γ {�(z) + F(z)}

2γ

= −2γ z̄k + zk

2γ
+ 2γ z̄k + zk

2γ

{
1 + 4γ {�(z) + F(z)}

(2γ z̄k + zk)2

}1/2

(3.10)

in a small neighborhood of z = 0, where the square root is unambiguously de-
fined. We choose the positive square root in equation (3.10) because it is this
branch of the square root that ensures f1(z) will decay in the desired manner as
z → 0. To see this, observe that if we write z = |z|eiθ then 2γ z̄2k + |z|2k =
|z|2k{(2γ cos(2kθ) + 1) − 2iγ sin(2kθ)}. Therefore,

|2γ z̄2k + |z|2k| = |z|2k
√

1 + 4γ 2 + 4γ cos(2kθ)

≥ |z|2k√1 + 4γ (γ − 1) = (2γ − 1)|z|2k. (3.11)

Since γ > 1/2, the quantity on the extreme right of estimate (3.11) is strictly pos-
itive when z �= 0. Thus,∣∣∣∣ 4γ�(z)

(2γ z̄k + zk)2

∣∣∣∣ =
∣∣∣∣ 4γ�(z)z̄2k

(2γ z̄2k + |z|2k )2

∣∣∣∣ ≤ 4κγ (2γ − 1)|z|2k
(2γ − 1)2|z|2k ≤ 2

7
. (3.12)

The last inequality is a consequence of the estimate (3.8) for κ. Since |F(z)| =
o(|z|2k ) as z → 0, it follows that there exists a δ > 0 sufficiently small that
|4γ {�(z) + F(z)}/(2γ z̄k + zk)2| < 1 for all |z| ≤ δ. Therefore, we can write

g1(z) = 2γ z̄k + zk

2γ

∞∑
m=1

βm

{
4γ�(z)

(2γ z̄k + zk)2

}m

+ F(z)

2γ z̄k + zk
+ O(|z|k+1) ∀|z| ≤ δ, (3.13)

where the coefficients βm are the coefficients occurring in the Taylor expansion
of (1 + x)1/2 around x = 0. The smallness of the quantity on the extreme left of
(3.12) allows us to make the following estimate:

∞∑
m=1

|βm|
∣∣∣∣ 4γ�(z)

(2γ z̄k + zk)2

∣∣∣∣m = 1 −
{

1 −
∣∣∣∣ 4γ�(z)

(2γ z̄k + zk)2

∣∣∣∣}1/2

<

∣∣∣∣ 4γ�(z)

(2γ z̄k + zk)2

∣∣∣∣. (3.14)
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Using the inequalities (3.13), (3.12), and (3.14), we can write

g1(z) ≡ H(z) + F(z)

2γ z̄k + zk
+ O(|z|k+1)

≡ H(z) + f1(z) ∀|z| ≤ δ,

provided δ > 0 is sufficiently small and where

H(z) := 2γ z̄k + zk

2γ

∞∑
m=1

βm

{
4γ�(z)

(2γ z̄k + zk)2

}m

,

|H(z)| ≤ 2

∣∣∣∣ �(z)

(2γ z̄k + zk)

∣∣∣∣ ≤ 2κ|z|k.
By this last estimate, we see that H(z) and f1(z) satisfy the desired properties.
This completes the analysis of the compact S1(δ).

Next, we study the set S2(δ). Let g2(z) be such that

S2(δ) =
{
(z,w) : w = −

(
zk

γ
+ z̄ k

)
+ g2(z), |z| small

}
.

Once more we require that ψ[Φ(z, −(zk/γ + z̄ k ) + g2(z))] = 0. Thus, g2 satis-
fies the quadratic equation

γg2
2 − (2γ z̄k + zk)g2 − {�(z) + F(z)} = 0.

By the quadratic formula,

g2(z) = 2γ z̄k + zk

2γ
−

√
(2γ z̄k + zk)2 + 4γ {�(z) + F(z)}

2γ

= 2γ z̄k + zk

2γ
− 2γ z̄k + zk

2γ

{
1 + 4γ {�(z) + F(z)}

(2γ z̄k + zk)2

}1/2

(3.15)

for each |z| ≤ δ with δ > 0 appropriately small. Unlike the case of equation
(3.10), in (3.15) we choose the negative branch of the square root. We make this
choice because it ensures that f2(z) decays in the desired manner as z → 0. This
is shown in exactly the same manner as in the case of S1(δ). Here it turns out that

g2(z) = −2γ z̄k + zk

2γ

∞∑
m=1

βm

{
4γ�(z)

(2γ z̄k + zk)2

}m

− F(z)

2γ z̄k + zk
+ O(|z|k+1)

≡ −H(z) + f2(z) ∀|z| ≤ δ, (3.16)

and exactly the same δ > 0 as the δ produced in the analysis on S1(δ) works. Ex-
actly as in the preceding paragraph, from the expressions (3.13), (3.12), and (3.16)
we establish the desired conclusion about the structure of S2.

Finally, owing to (a) the estimate |H(z)| ≤ 2κ|z|k whereby

2|H(z)| <
(

2 − 1

γ

)
|z|k

and (b) the fact that γ > 1/2, we have
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z̄ k + H(z) �= −
(

1

γ
zk + z̄ k

)
− H(z) ∀z �= 0.

Since f1(z), f2(z) = o(|z|k ) as z → 0, this inequality implies—lowering the
value of δ > 0 if necessary—that S1(δ) ∩ S2(δ) = {0}. From this we conclude,
since Φ is a mapping of multiplicity 2 and since Φ[Sj(δ)] ⊂ S (j = 1, 2), that
Φ−1({(z,w) : |z| ≤ δ} ∩ S) = S1(δ) ∪ S2(δ).

We shall need the following lemma, whose proof is deferred to Section 4.

Lemma 4.1. Let S be a surface in C2 that, in a neighborhood of the origin, is
defined by the equation

w = z̄ k + σ(z) + G(z),
where

• γ > 1/2,
• σ is a continuous function that is homogeneous of degree k such that |σ(z)| ≤

2κ|z|k for some κ satisfying condition (3.8), and
• G is a continuous function satisfying G(z) = o(|z|k ) as z → 0.

Then there exists a small constant ε0 > 0 such that P({(z,w) : |z| ≤ ε0} ∩ S ) =
C({(z,w) : |z| ≤ ε0} ∩ S ).

By a direct application of Lemma 4.1, we see that there exists an ε1 > 0 such that
P(S1(ε)) = C(S1(ε)) for all ε ≤ ε1. The image of S2(δ) under the biholomor-
phic map (z,w) �→ (z,−w− zk/γ ) is of the same form as S in Lemma 4.1. Thus,
P(S2(ε)) = C(S2(ε)) for all ε ≤ ε1.

Let φε(γ ) denote the polynomial

φε(γ )(z,w) = z2k − w2

4
+ ε(γ )zkw, (3.17)

where

ε(γ ) :=
{ 3

16 if γ ≥ 1,

min
{

3
16 , 2γ−1

8γ (1−γ )

}
if 1

2 < γ < 1.

We now refer the reader to Lemmas 4.2 and 4.3 in the next section. These lemmas
tell us that there exists a small constant ε2 > 0 such that, for every δ < ε2 , φε(γ )

maps S1(δ) into a closed sector that is symmetric with respect to the x-axis and is
strictly contained in {z ∈C : Re(z) ≥ 0}, while φε(γ )(S2(δ)) \ {0} is contained in
{z∈C : Re(z) < 0}.

Let ε0 = min(ε1, ε2). At this stage in the proof, we have all the elements needed
to invoke Kallin’s lemma (i.e., Lemma 2.1) to conclude that P(S1(ε0)∪ S2(ε0)) =
C(S1(ε0)∪S2(ε0)).We want to deduce from this that P({(z,w) : |z| ≤ ε0}∩ S) =
C({(z,w) : |z| ≤ ε0} ∩ S). The deduction is achieved by the following argu-
ment of Forstnerič and Stout given in [3]; we present it here for the reader’s con-
venience. Let f ∈ C({(z,w) : |z| ≤ ε0} ∩ S). Note that, since Φ−1({(z,w) :
|z| ≤ ε0} ∩ S) = S1(ε0) ∪ S2(ε0), it follows that f � Φ ∈ C(S1(ε0) ∪ S2(ε0)).

From what we have shown, there is a sequence of polynomials {Qn}n∈N such that
Qn → f � Φ uniformly on S1(ε0) ∪ S2(ε0). Let U be the open, dense set in C2
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such that, for each ζ ∈U, Φ−1{ζ} consists of two distinct points ζ (+) and ζ (−). By
the standard theory of analytic covers, the function

Pn(ζ) := Qn(ζ
(+)) + Qn(ζ

(−))

2
, ζ ∈U,

which is holomorphic in U, extends to an entire function. By construction, the se-
quence of entire functions {Pn}n∈N converges uniformly on {(z,w) : |z| ≤ ε0}∩S
to f. Hence P({(z,w) : |z| ≤ ε0} ∩ S) = C({(z,w) : |z| ≤ ε0} ∩ S).

In view of this last fact, it follows that {(z,w) : |z| ≤ ε0} ∩ S is polynomi-
ally convex, proving Theorem1.2. The abstract uniform algebras argument needed
for showing this is precisely the one given in the last paragraph of the proof of
Theorem 1.1.

4. Technical Lemmas

In this section, we prove the three technical lemmas used in the proof of Theo-
rem 1.2. But first we make the following observation, easily verified, about the
quantity κ arising in the condition (3.8):

κ <
1

2
min

{
π

2k
,

2γ − 1

2γ (3γ + 2)

}
�⇒ κ <

1

2
min

(
1

4
,
π

2k

)
, (4.1)

which we shall use in several instances below.

Lemma 4.1. Let S be the surface in C2 that, in a neighborhood of the origin, is
defined by the equation

w = z̄ k + σ(z) + G(z),
where

• γ > 1/2,
• σ is a continuous function that is homogeneous of degree k such that |σ(z)| ≤

2κ|z|k for some κ satisfying condition (3.8), and
• G is a continuous function satisfying G(z) = o(|z|k ) as z → 0.

Then there exists a small constant ε0 > 0 such that P({(z,w) : |z| ≤ ε0} ∩ S ) =
C({(z,w) : |z| ≤ ε0} ∩ S ).

Proof. We follow closely the techniques used in the proof of Theorem 1.1. As
before, let Ψ : C2 → C2 be defined by Ψ (z,w) := (z,wk). We first show that
there exists a δ > 0 such that Ψ −1({(z,w) : |z| ≤ δ} ∩ S ) = ⋃k

j=1 Sj(δ), where
S1(δ), . . . , Sk(δ) are compact sets given by

Sj(δ) : w = e2πi(j−1)/kz̄{1 + H(z)}, |z| ≤ δ,

where H satisfies certain useful size estimates. Recall from (3.11) that

|2γ z̄2k + |z|2k| ≥ (2γ − 1)|z|2k
and that—because γ > 1/2—the quantity on the right is strictly positive when
z �= 0. Now, S is the graph of a function G∗ that may be written as
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G∗(z) = z̄ k
{

1 + σ(z)

z̄k
+ G(z)

z̄k

}
.

Observe that:

(a) owing to the estimate for σ(z) and to (4.1), we have∣∣∣∣σ(z)z̄k

∣∣∣∣ ≤ 2κ < min

(
1

4
,
π

2k

)
; (4.2)

and
(b) limz→0 G(z)/z̄k = 0.

By (a) and (b), we can choose the δ > 0 introduced at the beginning of this proof
to be so small that ∣∣∣∣σ(z)z̄k

+ G(z)

z̄k

∣∣∣∣ ≤ 1

2
∀|z| ≤ δ.

Given this fact, G∗(z) has k distinct kth roots g∗
1(z), . . . , g

∗
k(z) when z �= 0, each

Sj(δ) is the graph of g∗
j (j = 1, . . . , k), and

g∗
j (z) = e2πi(j−1)/kz̄

[
1 +

∞∑
m=1

αm

{
σ(z)

z̄k

}m

+ o(1)

]
, (4.3)

where the αm are exactly as in expression (3.1). The infinite series in equation (4.3)
represents a function h that is homogeneous of degree 0, and we write H(z) :=
h(z) + R(z), where R(z) = o(1) as z → 0. Arguing as before yields

sup
|z|=1

|h(z)| ≤
∞∑
m=1

|αm|
{

min

(
1

4
,
π

2k

)}m

= 1 −
{

1 − min

(
1

4
,
π

2k

)}1/k

< min

(
1

4
,
π

2k

)
. (4.4)

In view of (4.3) and (4.4), it is possible to find a small constant ε1 > 0 such that

|z̄H(z) − ζ̄H(ζ)| ≤ sup
|ξ|=1

|h(ξ)||z − ζ| + |z||h(z) − h(ζ)| + |z̄R(z) − ζ̄R(ζ)|

< |z − ζ| ∀z �= ζ : |z|, |ζ| ≤ δ and ∀δ ∈ (0, ε1]. (4.5)

The estimate (4.5) allows us—as in the proof of Theorem 1.1—to use a result of
Wermer [8, Thm. 1] to conclude that for each Sj(δ) we have P(Sj(δ)) = C(Sj(δ)),
j = 1, . . . , k, assuming, of course, that 0 < δ ≤ ε1.

Consider the polynomial q(z,w) = zw. For any (z,w)∈ S1(δ),

Re{q(z,w)} = |z|2 + Re{|z|2(h(z) + R(z))} ≥ |z|2 − |z|2|h(z)| − |z|2|R(z)|,
|Im{q(z,w)}| ≤ |z|2{|h(z)| + |R(z)|}.
In view of the estimate (4.4) and the fact that R(z) = o(1) as z → 0, we can find
a small constant ε2 > 0 such that

Re{q(z,w)} ≥ 3

4
|z|2, |Im{q(z,w)}| < π

2k
|z|2 ∀|z| ≤ δ,

q(S1(δ)) � {x + iy ∈C : |y| ≤ (2π/3k)x} where δ ∈ (0, ε2 ].
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In other words, q(S1(δ)) is a proper subset of the sector W1 that is centered on the
positive x-axis, and it has an aperture of (4π/3k). Therefore, q(Sj(δ)) is a proper
subset of the sector Wj , which is simply a copy of W1 rotated by (2π(j − 1)/k),
j = 1, . . . , k. Furthermore, Wµ ∩ Wν = {0} for all µ �= ν. The details for show-
ing that there exists an ε0 > 0 such that P(⋃k

j=1 Sj(ε0)
) = C(⋃k

j=1 Sj(ε0)
)

are
no different from those given in the proof of Theorem 1.1. We omit these details.
Finally, from P(⋃k

j=1 Sj(ε0)
) = C(⋃k

j=1 Sj(ε0)
)

we conclude, exactly as in The-
orem 1.1, that P({(z,w) : |z| ≤ ε0} ∩ S ) = C({(z,w) : |z| ≤ ε0} ∩ S ).

Next, we prove the requisite lemmas for showing that the polynomialφε(γ ) : C2 →
C, as defined by equation (3.17), maps the surfaces S1(δ) and S2(δ)—encountered
in the proof of Theorem 1.2—into two sectors inC that intersect only at the origin.

Lemma 4.2. Let Σ1 be the surface in C2 given by the equation

w = z̄ k + σ(z) + G(z),

where γ, σ(z), and G(z) are as in Lemma 4.1. Then there exist small constants
δ1,R1 > 0 such that φε(γ )({(z,w) : |z| ≤ R1} ∩ Σ1) is contained in the sector
W(δ1) = {x + iy ∈C : |y| ≤ (1/δ1)x}.

Proof. For (z,w)∈Σ1 we compute

Re{φε(γ )(z,w)} = −Re

{
2z̄ kσ(z)

4
+ σ(z)2

4
− ε(γ )zkσ(z)

}
+ ε(γ )|z|2k + o(|z|2k ),

Im{φε(γ )(z,w)} = 1

2
Im(z2k ) − Im

{
2z̄ kσ(z)

4
+ σ(z)2

4
− ε(γ )zkσ(z)

}
+ o(|z|2k ).

We consider the following two cases.

Case (i): γ ≥ 1 and ε(γ ) = 3/16. In view of the estimates on σ(z)—including
the upper bound (4.2)—and of (4.1), we can find a R1 > 0 sufficiently small that,
if (z,w)∈Σ1, we have

Re{φε(γ )(z,w)} > 3

16
(1 − 2κ)|z|2k −

{
1

2
+ 1

4
· 1

4

}
2κ|z|2k + o(|z|2k )

≥ 3

32
(1 − 8κ)|z|2k ∀|z| ≤ R1. (4.6)

Notice that, as κ < 1/8, (1 − 8κ) > 0 in (4.6).

Case (ii): 1/2 < γ < 1 and ε(γ ) = min{(2γ − 1)/8γ (1 − γ ), 3/16}. In this
case we first compute that, for all (z,w)∈Σ1,
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Re{φε(γ )(z,w)} > 2γ − 1

8γ (1 − γ )
(1 − 2κ)|z|2k −

{
1

2
+ 1

4
· 1

2

}
2κ|z|2k + o(|z|2k )

= 2γ − 1

8γ (1 − γ )
|z|2k + 2κ

8
|z|2k − 2κ

{
2γ − 1

8γ (1 − γ )
+ 6

8

}
|z|2k

+ o(|z|2k ). (4.7)

At this point we observe that

2κ ≤ 2γ − 1

2γ (3γ + 2)
<

2γ − 1

8γ − 6γ 2 − 1
∀γ ∈ (1/2,1).

In view of this fact and the estimate (4.7), we can find a constant R1 > 0 such that,
if (z,w)∈Σ1, then

Re{φε(γ )(z,w)} > 2γ − 1

8γ (1 − γ )
|z|2k + 2κ

8
|z|2k

− 2γ − 1

8γ − 6γ 2 − 1

{
2γ − 1

8γ (1 − γ )
+ 6

8

}
|z|2k + o(|z|2k )

>
κ

4
|z|2k + o(|z|2k ) > κ

8
|z|2k ∀|z| ≤ R1. (4.8)

It is evident from these expressions that there exists a C > 0 such that

|Im{φε(γ )(z,w)}| ≤ C|z|2k ∀(z,w)∈ {(z,w) : |z| ≤ R1} ∩ Σ1. (4.9)

The result then follows from (4.6), (4.8), and (4.9).

Lemma 4.3. Let Σ2 be the surface in C2 given by the equation

w = −
(

1

γ
zk + z̄ k

)
+ σ(z) + G(z),

where γ, σ(z), and G(z) are as in Lemma 4.1. Then there exists a constant R2 > 0
such that φ({(z,w) : |z| ≤ R2}∩Σ2)\{0} is contained in the open left half-plane.

Proof. Once again, we analyze the problem into two cases.

Case (i): γ ≥ 1 and ε(γ ) = 3/16. We compute to find that, for (z,w)∈Σ2 ,

Re{φε(γ )(z,w)} ≤ −
{

1

2γ
+ ε(γ )

}
|z|2k +

{
ε(γ )

(
1

γ

)
+ 1

4γ 2

}
|Re(z2k )|

+ |z|k|σ(z)|
4

{
2

γ
+ 2 + 4ε(γ ) + |σ(z)|

|z|k
}

+ o(|z|2k )

< −
(

1

2γ
− 1

4γ 2

)
|z|2k − 3

16

(
1 − 1

γ

)
|z|2k

+ |z|k|σ(z)|
4

2 + 3γ

γ
+ o(|z|2k ).

The last inequality is the consequence of the estimate (4.2) and the fact that ε(γ ) =
3/16. Now, exploiting the bounds on |σ(z)| and κ , we obtain
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Re{φε(γ )(z,w)} < −
(

1

2γ
− 1

4γ 2

)
|z|2k − 3

16

(
1 − 1

γ

)
|z|2k

+ 2γ − 1

8γ 2
|z|2k + o(|z|2k )

< − 3

16

(
1 − 1

γ

)
|z|2k + o(|z|2k )

< 0 ∀(z,w)∈ {(z,w) : |z| ≤ R2} ∩ Σ2 , (4.10)

given some sufficiently small R2 > 0. We can find such an R2 because in this case
(1 − 1/γ ) > 0.

Case (ii): 1/2 < γ < 1and ε(γ ) = min{(2γ −1)/8γ (1−γ ), 3/16}. Following
the computation performed in Case (i) yields

Re{φε(γ )(z,w)}

< −
(

1

2γ
− 1

4γ 2

)
|z|2k − ε(γ )

(
1 − 1

γ

)
|z|2k + |z|k|σ(z)|

4

2 + 3γ

γ
+ o(|z|2k ).

This estimate is derived from the very first line of the estimate on Re{φε(γ )(z,w)}
under Case (i), coupled with the fact that ε(γ ) ≤ 3/16. We now use the fact that
ε(γ ) ≤ (2γ − 1)/8γ (1 − γ ) to get

Re{φε(γ )(z,w)} < −
(

1

2γ
− 1

4γ 2

)
|z|2k − 2γ − 1

8γ (1 − γ )

(
1 − 1

γ

)
|z|2k

+ |z|k|σ(z)|
4

2 + 3γ

γ
+ o(|z|2k )

≤ −1

2

(
1

2γ
− 1

4γ 2

)
|z|2k + 2κ

4

(
2 + 3γ

γ

)
|z|2k + o(|z|2k ).

Applying the fact that 2κ < (2γ − 1)/2γ (3γ + 2) to the last inequality, we see
that there exists a constant R2 > 0 such that Re{φε(γ )(z,w)} < 0 for all (z,w) ∈
{(z,w) : |z| ≤ R2} ∩ Σ2.

Given the last conclusion and inequality (4.10), the result is established.
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[2] F. Forstnerič, Analytic disks with boundaries in a maximal real submanifold of C
2,

Ann. Inst. Fourier (Grenoble) 37 (1987), 1–44.
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