
Michigan Math. J. 53 (2005)

Geometry of the Lagrangian Grassmannian LG(3, 6)
with Applications to Brill–Noether Loci

Atanas Il iev & Krist ian Ranestad

Dedicated to Andrei Nikolaevich Tyurin

1. Introduction

A beautiful theorem of Mukai is his interpretation of the general complete inter-
section of the Lagrangian Grassmannian LG(3, 6) ⊂ P13 in its Plücker embedding
with a linear subspace P10 as a non-abelian Brill–Noether locus of vector bundles
on a plane quartic curve [28]. This quartic curve can in a natural way be inter-
preted as the orthogonal plane section of the dual variety to LG(3, 6) in P̌13 (cf.
[11]). In this paper we consider, very much in the spirit of [27], general linear
sections of LG(3, 6) ⊂ P13 of various dimensions, and we show that the orthog-
onal linear section of the dual variety F̌ of LG(3, 6) has an interpretation as a
moduli space of vector bundles on the original linear section. A similar study of
linear sections of the 10-dimensional spinor variety or orthogonal Grassmannian
OG(5,10) ⊂ P15 is taken up by the first author and Markushevich in [12].

The moduli spaces of stable vector bundles on curves is by now a classical sub-
ject dating back to the 1960s and the fundamental work of Narasimhan, Seshadri
and Tyurin (see [30; 36]). More recently, the subvarieties of these moduli spaces
representing bundles with many sections has attracted the attention from many au-
thors [2; 3; 9; 27; 31; 34]. The corresponding theory for vector bundles on K3 sur-
faces becomes particularly nice as explained in Mukai’s fundamental paper [20].
Our purpose here is to present examples in this theory where the moduli spaces are
complete linear sections of the dual variety of LG(3, 6) in P̌13. A general tangent
hyperplane section of LG(3, 6) is nodal; that is, it has a unique tangency point
with a quadratic singularity. We construct a rank-2 vector bundle on a nodal hy-
perplane section of LG(3, 6) blown up in the node. This construction is key to the
proof of Theorem 3.3.4 and Corollary 3.3.10, which are summarized in the fol-
lowing theorem.

Theorem 1.1. The projection of a nodal hyperplane section of LG(3, 6) from
the node is a complete 5-dimensional linear section of a Grassmannian variety
Gr(2, 6). This linear section contains a 4-dimensional quadric, and the general
5-dimensional linear section of Gr(2, 6) that contains a 4-dimensional quadric
appears this way.
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We expect similar results to hold for the homogeneous varieties whose general
curve section are canonical curves of smaller genus. In particular, we expect (i) the
projection from the node of the general nodal hyperplane section of Gr(2, 6) to
be a 7-fold linear section of the spinor variety S10 and (ii) the projection from the
node of the general nodal 5-fold linear section of S10 to be the complete intersec-
tion of a Grassmannian variety Gr(2, 5) and a quadric. These lower-genus cases
will not be treated here.

Given a smooth linear section X of LG(3, 6) of dimension at most 4, each nodal
hyperplane section that containsX gives rise to an embedding ofX into a Gr(2, 6).
In particular, it gives rise to a rank-2 vector bundle on X with a 6-space of global
sections and determinant equal to the restriction of the Plücker divisor on LG(3, 6).
Furthermore, this vector bundle is stable, and when X is at least 2-dimensional
we show that the set F̌(X) of nodal hyperplane sections of LG(3, 6) that contain
X forms a component of the corresponding moduli space of stable rank-2 vec-
tor bundles on X (Theorem 3.4.8, Proposition 3.4.10). When X is a curve, F̌(X)

forms a component of the corresponding Brill–Noether locus in the moduli space
of stable rank-2 vector bundles on X (Theorem 3.4.7).

The paper is organized as follows. Section 2 is devoted to the geometry of
LG(3, 6) and contains a number of results that we think are interesting on their
own. In particular, we describe geometrically the cycles of Lagrangian planes that
contain a given point or intersect a given plane. The Lagrangian Grassmannian
LG(3, 6) is the minimal orbit of an irreducible representation of the symplectic
group Sp6(C). We recall the four orbits of this group and the singular hyperplane
sections corresponding to the four orbits of the group in the dual projective space;
LG(3, 6) ⊂ P13 parameterizes the 6-fold of Lagrangian planes in P5 with respect
to a given nondegenerate 2-form. In Section 3 we show that a hyperplane section
that is singular at a point p ∈LG(3, 6) defines naturally a conic in the Lagrangian
plane represented by p. Furthermore, this conic parameterizes smooth quadric
3-folds contained in the hyperplane section. The correspondence between singu-
lar hyperplane sections and conics in Lagrangian planes manifests itself in various
ways and is the key to the main results of this paper. In particular, the conic corre-
sponding to a nodal hyperplane section is the crucial ingredient in the construction
of a rank-2 vector bundle with a 6-space of global sections on the nodal hyper-
plane section blown up in the node. The application to moduli spaces of vector
bundles and Brill–Noether loci occupies the last part of Section 3.

Notation. We will use Gr(k, n) to denote not only the Grassmannian of rank-k
subspaces of an n-dimensional vector space when k < n but also the Grassmanian
of rank-n quotient spaces of a k-dimensional vector space when n < k.

2. Geometry of the Lagrangian Grassmannian

2.1. The Group Sp6(C) and Its Homogeneous Space LG(3, 6)

Let V = C6 be a 6-dimensional complex vector space, and let α : V × V → C,
α : (v, v ′) �→ α(v, v ′) be a symplectic form on V. It follows that α is bilinear,
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skew symmetric, and nondegenerate (i.e., α(v×V ) = 0 implies v = 0). We may
choose a basis {e1, . . . , e6} of V in which the Gram matrix

J = (α(ei, ej )) =
(

0 I3

−I3 0

)
,

where I3 is the unit 3 × 3 matrix. The complex symplectic group Sp6(C) has a
natural embedding in SL(6, C) as the subgroup of all the complex rank-6 matrices
that leave the matrix J invariant:

Sp6(C) = {Z ∈ SL(6, C) : tZJZ = J }.
A subspace U ⊂ V is called isotropic if α(U,U) = 0. The maximal dimension

of an isotropic subspace in V is 3, and in this case it is called Lagrangian. Any
isotropic subspace is contained in some Lagrangian subspace.

By definition, the complex Lagrangian Grassmannian LG(3,V ) is the set of
Lagrangian subspaces ofV = C6. The group Sp6(C) acts on the set of Lagrangian
subspaces by U �→ A · U ; it is easy to check that this action is transitive, so
LG(3,V ) is a homogeneous space under Sp6(C). More precisely, LG(3,V ) is
a smooth complex 6-fold that admits a representation as a homogeneous space
Sp6(C)/St, where St is the stabiliser group StU of any Lagrangian subspace U ⊂
V. In our fixed base the subspace U0 = 〈e1, e2 , e3〉 ⊂ V is Lagrangian and so St =
StU0 ⊂ Sp6(C) consists of all the matrices of the form

(
A B
0 tA−1

)
, where A and B

are complex 3 × 3 matrices such that A · tB = B · tA.

The Lagrangian Grassmannian has an alternative representation as a quotient
for the compact group Sp(3) = Sp6(C) ∩ U(6) ⊂ Sp6(C) by the subgroup
StU0 ∩U(6) ⊂ Sp(3). It is easy to see that StU0 ∩U(6) consists of all the 6×6 ma-
trices of the form

(
A 0
0 tA−1

)
, where A∈U(3) is a unitary 3×3 matrix. Now one can

see that the Lagrangian Grassmannian LG(3,V ) is diffeomorphic to Sp(3)/U(3)
(cf. [35, Sec. 17]; see also [29]).

2.2. Representations and Plücker Embedding

From now on we fix the form α, the basis {e1, . . . , e6} for V, and a dual basis
{x1, . . . , x6} for V ∗. With respect to this basis for V, the matrix of the form α is

J = (α(ei, ej )) =
(

0 I3

−I3 0

)
,

where I3 is the unit 3× 3 matrix. In the basis {xi ∧ xj | 1 ≤ i < j ≤ 6} for ∧2V ∗,
the symplectic form α has the following expression:

α = x1 ∧ x4 + x2 ∧ x5 + x3 ∧ x6.

It defines a correlation

Lα : V → V ∗, v �→ α(v, –),

which is nonsingular because α is nondegenerate. This correlation induces iso-
morphisms that we also denote by Lα ,

Lα : ∧kV ∼= ∧kV ∗
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for k = 1, . . . , 6. Consider the representations ∧kV and ∧kV ∗ of SL(6, C) and the
induced representation of Sp6(C) ⊂ SL(6, C). The isomorphisms ∧kV ∼= ∧kV ∗
induced by α are clearly isomorphisms of these Sp6(C)-representations.

Consider the SL(6, C) representation ∧3V restricted to the subgroup Sp6(C) ⊂
SL6(C). The form α defines naturally a contraction

α : ∧3V → V.

The representation therefore decomposes as

∧3V = V(14)⊕ V(6),

where
V(14) = {w ∈∧3V | α(w) = 0}

and
V(6) = {w ∈∧3V | Lα(w)∈ α ∧V ∗}

are irreducible representations of Sp6(C) that have dimensions 14 and 6, respec-
tively (cf. [8, p. 258]). Furthermore,

V(14)∗ := Lα(V(14)) = {ω ∈∧3V ∗ | ω ∧ α = 0} ⊂ ∧3V ∗

whereas
V(6)∗ = α ∧V ∗.

For an explicit description of V(14)∗ ⊂ ∧3V ∗, consider the decomposition of V
in two Lagrangian subspaces U0 = 〈e1, e2 , e3〉 and U1 = 〈e4, e5, e6〉. We denote
by U⊥

0 the Lagrangian subspace

Lα(U0) = 〈x4, x5, x6〉 ⊂ V ∗,
and likewise

U⊥
1 = Lα(U1) = 〈x1, x2 , x3〉.

The decomposition
V ∗ = U⊥

1 ⊕ U⊥
0

induces a decomposition of ∧3V ∗:

∧3V ∗ = ∧3U⊥
1 ⊕ (∧2U⊥

1 ⊗ U⊥
0 )⊕ (U⊥

1 ⊗∧2U⊥
0 )⊕∧3U⊥

0 .

The exterior products

eijk = ei ∧ ej ∧ ek , 1 ≤ i < j < k ≤ 6,

form a basis of ∧3V, with dual basis (xijk = xi ∧ xj ∧ xk)1≤i,j,k≤6. Thus we in-
terpret the basis for ∧3V as coordinates on ∧3V ∗. According to the previous de-
composition, the coordinates of a 3-form ω ∈∧3V ∗ may therefore be organized in
matrices:

u∗ := e123, X∗ = (x∗ab) :=

 e423 e143 e124

e523 e153 e125

e623 e163 e126


,
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Y ∗ = (y∗ab) :=

 e156 e416 e451

e256 e426 e452

e356 e436 e453


, z∗ := e456.

The component of ω given by the matrix X∗ defines a bilinear form on U0. If

a1e1 + a2e2 + a3e3, b1e1 + b2e2 + b3e3 ∈U0

then the form defined by X becomes

(a1, a2 , a3) ·

 e423 e143 e124

e523 e153 e125

e623 e163 e126


 · (b1, b2 , b3)

t.

In these coordinates, the subspace V(14)∗ ⊂ ∧3V ∗ has a simple interpretation:

V(14)∗ = {ω ∈∧3V ∗ | ei14 + ei25 + ei36 = 0, 1 ≤ i ≤ 6}.
For the decomposition ω = [u∗,X∗,Y ∗, z∗ ] we have that

ω ∈V(14)∗ ⇐⇒ X∗ and Y ∗ are symmetric 3 × 3 matrices.

In particular, the bilinear form defined by the component X∗ is symmetric on U0.

Therefore, we have shown the following lemma.

Lemma 2.2.1. There are natural isomorphisms

q(U0) : V(14)∗ ∩ U⊥
1 ⊗∧2U⊥

0 → Sym2 U ∗
0

and
q(U⊥

0 ) : V(14) ∩ U1 ⊗∧2U0 → Sym2(U⊥
0 )∗.

For ω ∈∧3U⊥
0 ⊕U⊥

1 ⊗∧2U⊥
0 , we denote the quadratic form associated to the pro-

jection on the second factor by qω(U0) (or just by qω, if U0 is understood from the
context), and by abuse we sometimes use the same notation for the conic in P(U0)

that the quadratic form defines. Similarly, w ∈∧3U0 ⊕U1 ⊗∧2U0 defines a conic

qw(U
⊥
0 ) ⊂ P(U⊥

0 ).

The Plücker embedding & := LG(3,V ) ⊂ Gr(3,V ) ⊂ P(∧3V ) of the La-
grangian Grassmannian LG(3,V ) is the intersection of Gr(3,V ) with P(V(14));
that is,

& = P(V(14)) ∩ Gr(3,V ) ⊂ P(∧3V ).

2.3. Orbits and Pivots

Recall from [15, Sec. 9] that the action ρ of the group Sp6(C) on P13 = P(V(14))
has precisely four orbits:

P13 \ F, F \(, ( \&, &.

The dual action ρ̌ is equivalent to ρ induced by Lα , so it has four corresponding
orbits,

P̌13 \ F̌, F̌ \ (̌, (̌ \ &̌, &̌,
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in P̌13 = P(V (14)∗). In this section we give a geometric characterization of these
orbits.

The smallest orbit &, and the only closed one, is the Lagrangian Grassmannian
itself. The closure of the orbit F \( is the union of the projective tangent spaces
to &, and it forms a hypersurface F ⊂ P13. Similarly, the dual variety to & (the
variety of tangent hyperplanes to &) is a hypersurface F̌ ⊂ P̌13 that is isomorphic
to F. By [33, p. 108] the equation defining F is

f(w) = (uz− trXY )2 + 4u detY + 4z detX − 4&ij det(Xij ) · det(Yij ),

where Xij and Yij are the complementary matrices to the elements xij and yij (see
also [33, p. 83]). Here ( is the singular locus of F defined by the Jacobian ideal
of f. A simple computation in macaulay (see [1]) shows that the ideal I( of (
in S = Sym(V(14)∗) has a resolution

0 ← I( ← F0 ← F1 ← · · · ← F4 ← 0

with Fi = ⊕
j∈Z βijS(−j) and Betti numbers βij :

β00 β11 β22 β33 β44

β01 β12 β23 β34 β45

β02 β13 β24 β35 β46

β03 β14 β25 β36 β47

=
1 0 0 0 0
0 0 0 0 0
0 14 21 0 0
0 0 0 14 6

.

The invariants of the closures of the orbits are as follows.

Proposition 2.3.1.

(i) dimF = 12, degF = 4, KF = OF (−10), and F has quadratic singularities
along ( \&.

(ii) dim( = 9 and deg( = 21.
(iii) dim& = 6, deg& = 16, and K& = O&(−4).

Proof. For F it remains to check the statements on singularities. Let f be the
polynomial defining F. The singularities of f along the subscheme defined by the
partials are quadratic if and only if the subscheme is smooth. But the subscheme
defined by the partials of f is exactly (, which is smooth outside &. The invari-
ants of ( follow from the Betti numbers of the foregoing resolution. To compute
the invariants of & we consider the universal exact sequence of vector bundles on
G = Gr(3, 6):

0 → U → V ⊗ OG → Q → 0,

where U is the universal subbundle. The 2-form α restricts naturally to U—that
is, to a section αU of (∧2U)∗ ∼= ∧2U ∗. The variety & ⊂ G of Lagrangian sub-
spaces of V with respect to α is therefore nothing but the 0-locus Z(αU) of this
section, and the class [&] = c3(∧2U ∗) ∩G = (c1(U

∗)c2(U
∗)− c3(U

∗)) ∩G.

Therefore, we have deg& = c6
1(U

∗)∩& = 16, and the canonical divisor K& =
KG|& + c1(∧2U ∗) ∩ & = −4c1(U

∗) ∩ &. In particular, & is a Fano 6-fold of
index 4.
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Landsberg and Manivel prove the following theorem in [16] (see also [6, Chap. 3]).

Theorem 2.3.2. The representation ρ of Sp6(C) on P13 = P(V(14)) has four
orbits,

P14 = & ∪ (( \&) ∪ (F \() ∪ (P13 \ F ),

where:

(i) & is the 6-fold Lagrangian Grassmannian LG(3, 6);
(ii) w ∈ ( if and only if there exist infinitely many tangent lines to & passing

through w;
(iii) w ∈F \( iff there is a unique tangent line Lw to & through w; and
(iv) w ∈P13 \ F iff there exists a unique secant line Lw to & through w.

We adopt Donagi’s notation and let the pivots of w ∈ P13 \ ( be the intersection
points {a, b} = Lw ∩&, where Lw is the unique secant line through w. Similarly,
if w ∈F \( (the case when a = b) then we call a the pivot of w. When w ∈(, a
pivot of w is any point u∈& such that w lies on a tangent line through u (we will
see in Proposition 2.5.1 that the set of pivots to a point w ∈( \& form a smooth
quadric surface).

The restriction of the universal exact sequence on G to & becomes

0 → U → V ⊗ O& → Q → 0.

The correlation Lα : V → V ∗ (v �→ α(v, –)) sets up a natural isomorphism: Q ∼=
U ∗, so the universal sequence becomes

0 → U → V ⊗ O& → U ∗ → 0. (1)

It follows that the tangent bundle T& is a subbundle of Hom(U,U ∗) = U ∗ ⊗ U ∗.
In fact, it is the subbundle consisting of symmetric tensors:

T& = Sym2 U ∗.

In the coordinates [u : X : Y : z] around the point u = [1, 0, 0, 0] on &, the tan-
gent space Tu& at u to & is defined by

Tu& = P 6
u = 〈{[u : X : 0 : 0] : tX = X}〉.

In particular, we reinterpret the quadratic forms of Section 2.2: If w ∈ Tu&, then
the quadratic form defined by the symmetric matrix X coincides with qw(U

⊥
0 ).

The following result is the Sp6(C) analogue of [6, Lemma 3.4] (see also [16]).

Proposition 2.3.3. Let u ∈ & and, as before, let P 6
u be the tangent projective

space to & ⊂ P13 at u. If w ∈P 6
u, then qw has rank 0, 1, 2, or 3 when w = u, w ∈

& \ u, w ∈( \&, or w ∈P 6
u \(, respectively. Moreover:

(i) Cu := & ∩ P 6
u is a cone over the Veronese surface with a vertex u; and

(ii) ( ∩ P 6
u is a cubic hypersurface.

Proof. The tangent cone Cu = & ∩ P 6
u is defined by rkX ≤ 1 (i.e., the equations

of a Veronese surface), so Cu = & ∩ P 6
u is a cone over a Veronese surface with a
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vertex at u. The secant lines to this Veronese surface fill the determinantal cubic
hypersurface detX = 0 in P 6

u . Since the points on this hypersurface lie on infi-
nitely many tangent lines of the Veronese surface, it follows by Theorem 2.3.2 that
( ∩ P 6

u must coincide with this cubic hypersurface.

2.4. Quadric 3-Folds in &

Consider the restriction of the universal exact sequence on G to & as in (1). If
τi = ci(U

∗), then

H ∗(&) ∼= Z[τ1, τ2 , τ3]/(τ 2
1 − 2τ2 , τ 2

2 − 2τ1τ3, τ 2
3 ).

Thus the Betti numbers are:

(b0(&), b2(&), . . . , b12(&)) = (1,1,1, 2,1,1,1)

(see [32, Sec. 6]). Naturally, the classes τi ∩& are represented by cycles that are
restrictions of special Schubert cycles on G to &.

For v ∈V, let Vv = kerLα(v).

Lemma 2.4.1. For every point p = 〈v〉 ∈ P(V ), the variety Qp of Lagrangian
planes that contain p is a 3-dimensional smooth quadric in &. It is isomorphic to
the Lagrangian Grassmannian LG(2, 4) of Lagrangian subspaces of Vv/〈v〉 with
respect to the 2-form αv on Vv/〈v〉 induced by α.

Proof. The cycle Qp on & represents the class τ3 ∩& and has degree 2. Any La-
grangian 3-space that contains v is itself contained in the 5-space Vv. The restric-
tion of α to Vv has kernel v, so we may identify Qp with the Lagrangian Grass-
mannian with respect to the nondegenerate 2-form αv induced by α on Vv/〈v〉.
This is nothing but a smooth hyperplane section of a Gr(2, 4), that is, a smooth
quadric 3-fold.

Two Incidence Varieties. The span of the quadric Qp is a projective 4-space
P 4
p ⊂ P(V(14)). Consider the incidence variety

IQ = {([P(U)],p) | p ∈P(U)} ⊂ & × P(V ).

By Lemma 2.4.1, IQ is a quadric bundle over P(V ). Now & spans P(V(14)),
and each P 4

p is contained in this span, so we may also consider the incidence

IP = {(q,p) | q ∈P 4
p } ⊂ P(V(14))× P(V ).

The variety IP is a P 4-bundle over P(V ), which has been studied by Decker,
Manolache, and Schreyer [5]. Its associated rank-5 bundle is self-dual, so we de-
scribe a construction that is dual to theirs. Consider the third exterior power of the
Euler sequence on P(V ) twisted by OP(V )(2),

0 → ∧2TP(V )(−1) → ∧3V ⊗ OP5(2) → ∧3TP(V )(−1) → 0,

and restrict the contraction α : ∧3V → V, defined by

u ∧ v ∧ w �→ α(u ∧ v)w + α(v ∧ w)u+ α(w ∧ u)v
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over P(V ), to the subbundle ∧2TP(V )(−1). On the one hand this restriction,

αU : ∧2TP(V )(−1) → V ⊗ OP(V )(2),

is nothing but the form α restricted over each point p = 〈v〉 to 3-dimensional sub-
spaces in V that contain v. On the other hand, Lα defines a map

LαU : V ⊗ OP(V )(2) → OP(V )(3)

by LαU (u)(v) = α(u ∧ v). The composition

LαU � αU : ∧2TP(V )(−1) → V ⊗ OP(V )(2) → OP(V )(3)

is zero, since

α(u ∧ v)α(w ∧ u)+ α(v ∧ w)α(u ∧ u)+ α(w ∧ u)α(v ∧ u) = 0.

The kernel kerLαU is the rank-5 bundle (P(V )(3), so αU defines a bundle map

αU : ∧2TP(V )(−1) → (P(V )(3).

It is easy to check that this map is surjective as soon as α is nondegenerate. De-
note by E the rank-5 kernel bundle ker(αU). If U is a Lagrangian 3-space that
contains v, then ∧3U clearly is contained in the fiber Ep over the point p = 〈v〉.
Thus P(Ep) coincides with the fiber of the incidence IP over p.

Proposition 2.4.2 [5, Props. 1.2 & 1.3]. Let E be the rank-5 kernel bundle of
the natural surjective map

αU : ∧2TP(V )(−1) → (P(V )(3)

as before.
Then E has Chern polynomial ct(E) = 1 + 5t + 12t 2 + 16t 3 + 8t 4, and

H 0(P(V ),E) ∼= V(14)∗. Furthermore, E is the rank-5 bundle associated to the
P 4-bundle IP over P(V ), and the projection of IP into the first factor P(V(14))
is (.

Proof. We need only compute the Chern polynomial, but this is straightforward
from the construction. The twisted bundle E(−1) coincides with the dual of the
bundle B defined in [5], where it is shown that B is self-dual. Thus, the invariants
of the bundle also follow from the results of [5].

2.5. Singular Hyperplane Sections

Landsberg and Manivel describe the hyperplane sections of & corresponding to
the different Sp6(C)-orbits in P(V(14)∗) [16]. We recall their results and apply
them together with the incidences of Section 2.4 to describe the set of quadric 3-
folds contained as subvarieties of singular hyperplane sections. These incidences
are crucial, not only in the analysis of the vector bundles constructed in Section 3
but also in establishing the relation between linear sections of & and orthogonal
sections of the dual variety F̌ described at the end of this section.

Toward these ends, the following four maps provide useful notation. The first
is the basic correlation
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L : & → &̌, P(U) �→ P(Lα(U)).

The second map is the involution

ια : Gr(3,V ) → Gr(3,V ).

The third map, which we call the vertex map, is

v : ( \& → P(V ), q �→ π2π
−1
1 (q),

where π1 and π2 are the projections from the incidence

IP = {(q,p) | q ∈P 4
p } ⊂ P(V(14))× P(V ).

The point v(w) ∈ P(V ) is called the vertex of w ∈ (. The fourth map is the
pivot map:

piv : F \( → &, p �→ the (unique) pivot of p.

The corresponding maps on the dual space are marked with a ∗. Notice that we
have the following relations:

L−1 � piv∗ = piv � L−1 : F̌ \ (̌ → &

and
L−1 � v∗ = v � L−1 : (̌ \ &̌ → P(V ).

The first of these will be denoted by u,

u = L−1 � piv∗ : F̌ \ (̌ → &,

whereas (by abuse of notation) the second one will be denoted by v,

v = L−1 � v∗ : (̌ \ &̌ → P(V ).

For the point ω ∈ P(V(14)∗), denote by P12
ω ⊂ P(V(14)) the hyperplane defined

by ω and denote by Hω = P12
ω ∩& the corresponding hyperplane section of &.

Landsberg and Manivel prove the following [16, Prop. 8.2].

Proposition 2.5.1. (i) If ω ∈P(V(14)∗) \ F̌, then Hω = P12
ω ∩& is smooth.

(ii) If ω ∈ F̌ \ (̌, then Hω has a unique quadratic singularity at the point u =
u(ω) = L(piv∗(ω)).

(iii) If ω ∈ (̌ \ &̌, then Hω = &P1 = &P2 for an involutive pair of planes P1 =
P1(ω) and P2 = P2(ω) := ια(P1(ω)). Furthermore, Hω has quadratic singu-
larities along a smooth quadric surface Qω in Pv(ω) that parameterizes the set of
Lagrangian planes passing through v(ω) and intersecting P1 and P2 in a line.

(iv) If ω ∈ &̌, then Hω is singular along a cone Cu over a Veronese surface,
with vertex u = L−1(ω).

Schubert Hyperplane Sections. The singular hyperplane sections of points on
&̌ and (̌ have a natural description as restrictions of Schubert cycles on Gr(3, 6).
The isomorphism Lα : ∧3V ∼= ∧3V ∗ induces an isomorphism Gr(3,V ) →
Gr(V, 3), which composed with the natural isomorphism Gr(V, 3) → Gr(3,V ),
ω �→ ker(ω), defines an involution
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ια : Gr(3,V ) → Gr(3,V ).

The fixed point locus of this involution is &, the set of Lagrangian planes. More-
over, every involutive pair {P, ια(P )} of planes has a common point P ∩ ια(P ) =
ker(α|P) and is, of course, contained in the corresponding correlated hyperplane.

Let P ⊂ P(V ) be any plane. Then the restriction of the Schubert cycle σ1(P )

in Gr(3,V ) is clearly a hyperplane section of &. Thus we have shown our next
proposition.

Proposition 2.5.2. If P ⊂ P(V ) is a non-Lagrangian plane, then the variety
&P of Lagrangian planes that intersect P coincides with the variety &ια(P ) of La-
grangian planes that intersect ια(P ), and they both define a hyperplane section
of &.

Proposition 2.5.3. For a Lagrangian plane P(U) ⊂ P(V ) corresponding to
u∈&: the variety &u of Lagrangian planes that intersect P(U) is the hyperplane
section defined by Lα(u)∈P(V(14)∗); whereas the variety of Lagrangian planes
that intersect P(U) in a line is a cone Cu over a Veronese surface of degree 4 with
vertex at u in P 6 = P 6

u, the projective tangent space to & at u.

Proof. Observe that &u is a hyperplane section with P(U) invariant under the in-
volution ια. The lines in & through u represent precisely the pencils of Lagrangian
planes that contain P(U). But these lines generate precisely the tangent cone Cu

to & at u, so the result follows from Proposition 2.3.3.

Recall the decomposition V = U0 ⊕ U1 from Section 2.2. The restriction of
the global sections V(14)∗ of the vector bundle E of Proposition 2.4.2 to the La-
grangian plane P = P(U0) decomposes as the restriction of the decomposition

∧3V ∗ = ∧3U⊥
1 ⊕ (∧2U⊥

1 ⊗ U⊥
0 )⊕ (U⊥

1 ⊗∧2U⊥
0 )⊕∧3U⊥

0

to V(14)∗. By the natural map

q(U0) : ∧3U⊥
0 ⊕ U⊥

1 ⊗∧2U⊥
0 → Sym2 U ∗

0

this decomposition becomes

H 0(P,E|P) ∼= ∧3U⊥
1 ⊕ U ′ ⊕ Sym2 U ∗

0,

where the first summand consists of the constant forms, the second summand is
V(14)∗ ∩ (∧2U⊥

1 ⊗U⊥
0 ), and the last summand consists of the quadratic forms on

P. The restriction of the vector bundle E to P therefore decomposes as a sum of
two line bundles and a rank-3 bundle. We thus have the following.

Proposition 2.5.4. For a Lagrangian plane P = P(U) ⊂ P(V ), the restriction
of the vector bundle E to P is E|P = OP ⊕ OP (2) ⊕ EP , where EP is a rank-3
vector bundle with Chern polynomial ct(EP) = 1+ 3t + 6t 2.

Proof. The Chern polynomial follows by a direct calculation.
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Quadric 3-Folds in Singular Hyperplane Sections. Consider the involu-
tive pair of planes P1(ω),P2(ω) that appears in Proposition 2.5.1. It follows from
part (iii) that the union of the planes P1(ω)∪ P2(ω) is the set of points q in P(V )

such that P 4
q ⊂ P12

ω (or, equivalently, quadric 3-folds Qq ⊂ Hω). This fact fits in
the description of the incidence

J = {(p,w)∈P(V )× P(V(14)∗) | P 4
p ⊂ P12

ω } ⊂ P(V )× P(V(14)∗).

Let π : J → P5 = P(V ) and ψ : J → P̌13 = P(V(14)∗) be the two projections
of J.

Proposition 2.5.5. The image of the second projection is precisely the quartic
F̌ ⊂ P̌13. The fiber of the second projection over a point ω ∈ F̌ \ (̌ is the smooth
conic qω(U) ⊂ P(U), where P(U) is the plane of the pivot u(ω). The fiber of ψ

over a point ω on (̌ \ &̌ is the union of the two planes P1(ω) ∪ P2(ω). The fiber
of ψ over a point ω ∈ &̌ is the Lagrangian plane P(U) of u = L−1(ω).

Proof. The last statement follows from Proposition 2.5.3, while the caseω ∈ (̌\&̌
follows (as explained previously) from Proposition 2.5.1(iii). The remainder of
the proposition is an immediate consequence of the next lemma.

Lemma 2.5.6. Let ω ∈P(V(14)∗), and let p ∈P(V ). Then

P 4
p ⊂ P12

ω ⇐⇒ ω ∈ T ⊥
[U ] = T[U⊥]

for some Lagrangian subspace U with p ∈P(U) and qω(U)(p) = 0.

Proof. By abuse of notation we do not distinguish between ω ∈ P(V(14)∗) and
any nonzero vector in V(14)∗ representing it. Thus we consider ω as a section of
the vector bundle E and then analyze its restriction to Lagrangian planes.

Let P = P(U) ⊂ P(V ) be a Lagrangian plane and let u∈& be the correspond-
ing point. According to Proposition 2.5.4, the restriction of the vector bundle E

to P decomposes into three direct summands:

E|P = OP ⊕ OP (2)⊕ EP ,

where EP is a rank-3 vector bundle with Chern polynomial ct(EP) = 1+3t+6t 2.

Therefore, the restriction ωP of ω to P decomposes into ωP = a ⊕ b ⊕ c, where
a is a constant, b is a quadratic form, and c is a section of the rank-3 bundle EP .

Lemma 2.5.7.

(i) If ω ∈ &̌ such that Lα(u) = ω, then a(ω) = b(ω) = c(ω) = 0.
(ii) a(ω) = c(ω) = 0 if and only if ω ∈ F̌ and Lα(u) is a pivot of ω—that is, iff

the line 〈Lα(u),ω〉 is tangent at Lα(u).

(iii) u∈P12
ω iff a = 0.

Proof. Let u ∈ & with corresponding Lagrangian plane P = P(U). By Propo-
sition 2.5.3, the hyperplane P12

ω contains &u iff a = b = c = 0, so (i) follows.
The hyperplane P12

ω contains the tangent cone Cu at u (the cone over a Veronese
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surface) iff the restriction ωP ∈ Sym2(U)∗ (i.e., iff a(ωP) = c(ωP) = 0), so (ii)
follows. Finally, a = 0 if and only if the P12

ω passes through the vertex u of &u.

If ω ∈ F̌ and u is a dual pivot, then the quadratic form b(ωP) is nothing but the
quadratic form qω(U). Let p ∈P = P(U). Then ω(p) = 0 iff ω ∈ F̌ with a dual
pivot u, and qω(U)(p) = 0 by Lemma 2.5.7(ii). On the other hand, ω(p) = 0 if
and only if P 4

p ⊂ P12
ω , so Lemma 2.5.6 follows.

Linear Sections and Sp(3)-Dual Sections. We end this section by describ-
ing the relations between linear sections of & and the orthogonal linear sections
of its dual variety F̌.

For 2 ≤ k ≤ 5, let P13−k ⊂ P(V(14)) be a general linear subspace of codi-
mension k, and let 9k−1 = (P13−k )⊥ ⊂ P(V(14)∗) be the (k − 1)-dimensional
orthogonal subspace of hyperplanes that pass through P13−k. Let

X = & ∩ P13−k and F̌(X) = 9k−1 ∩ F̌

and let
(̌(X) = F̌(X) ∩ (̌ = 9k−1 ∩ (̌.

We call F̌(X) the Sp(3)-dual section to X.

We restrict our attention to general linear subspaces; more precisely, we will as-
sume that X = & ∩ P13−k is a (6 − k)-dimensional smooth variety. Obviously,
there are similar results for singular linear sections.

Lemma 2.5.8. Let P ⊂ P(V(14)) be a linear subspace and let ω ∈ P⊥ ∩ F̌ be
such that a dual pivot u∈& of ω lies in P. Then u∈ Sing(P ∩&).

Proof. Let Hω = & ∩P12
ω be the hyperplane section of & defined by ω. By Prop-

osition 2.5.1, Hω is singular at the pivot u. Since ω ∈ P⊥, the variety P ∩& ⊂
Hω is a complete intersection of Hω and hyperplanes that pass through the singu-
lar point u. Therefore P ∩& is singular at u.

It follows from Lemma 2.5.8 that, if X = & ∩ P13−k is smooth, then u(ω) /∈
P13−k for any ω ∈ F̌(X) \ (̌(X). Combined with Proposition 2.3.1, this yields the
following.

Proposition 2.5.9. Let X be a smooth (6− k)-dimensional linear section of &.

If 2 ≤ k ≤ 4, then (̌(X) = ∅ and F̌(X) ⊂ 9k−1 is a smooth quartic (k − 2)-
fold (e.g., if k = 2 then F̌(X) is a set of four points each with multiplicity 1); and
if X is a curve, then Sing F̌(X) = (̌(X) = {ω1, . . . ,ω21} is a set of 21 ordinary
double points (nodes) of the quartic 3-fold F̌(X).

The linear section X is subcanonical. More precisely, KX = (−4+ k)H where
H is the class of the hyperplane section. When k ≤ 4 and X is general, Pic(X) =
Z[H ].

Proof. Only the last statement remains to be shown, but this follows from [19]
(see also [24]).
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3. Rank-2 Vector Bundles on Linear Sections

We now turn to the main application of our study of &. On each nodal hyperplane
section of & we will construct a rank-2 vector bundle with a 6-space of global
sections.

As before, we use the following notation. For a point ω ∈ P̌13 we consider the
hyperplane P12

ω and the hyperplane section Hω = P12
ω ∩ &. If ω ∈ F̌ \ (̌ ⊂ P̌13

then u(ω)∈& is the pivot of ω on &, and if ω ∈ (̌ \ &̌ ⊂ P̌13 then Qω ⊂ & is the
smooth quadric surface of pivots of ω on & and is also the singular locus of Hω.

3.1. The Projection of Hω from the Pivot u(ω)

Let P12
ω ⊂ P13 be the hyperplane defined by ω ∈ F̌ \ (̌ ⊂ P̌13, let πu : P12

ω ��� P̄11
ω

be the projection from u = u(ω) ∈&, and let the variety H̄ω ⊂ P̄11
ω be the proper

πu-image of the hyperplane section Hω = & ∩ P12
ω ⊂ P12

ω .

Let σ : H ′
ω → Hω be the blowup of u ∈Hω, and let ψ : H ′

ω → H̄ω be the pro-
jection into P̄11

ω . By Proposition 2.5.1(i), u = u(ω) is an ordinary double point of
Hω and so the exceptional divisor Q′ = σ−1(u) ⊂ H ′

ω of σ is isomorphic to a
smooth 4-dimensional quadric; that is, Q′ ∼= Gr(2, C4).

The projection πu contracts the tangent cone Cu ⊂ P 6
u = Tu& at u to a Veronese

surface Su (cf. Proposition 2.3.3):

Q′

��

⊂ H ′
ω ⊃

σ

��

ψ

���
��

��
�

C ′
u

����������������

u ∈ Hω

πu �� H̄ω ⊃ Q̄ ⊃ Su.

Cu

Since the exceptional

∪

divisor Q′ ⊂ H ′
ω is isomorphic to the projectivized tan-

gent cone to Hω at u = u(ω), it follows that the strict transform C ′
u of Cu in H ′

ω

intersects Q′ in a Veronese surface. By Proposition 2.5.1(i), Q′ is isomorphic to
a smooth 4-dimensional quadric; hence the isomorphic image Q̄ = ψ(Q′) ⊂ H̄u

is a smooth 4-dimensional quadric containing the surface Su.

Since H̄ω is a birational projection of Hω from its double point u = u(c), the
degree deg H̄ω = degHω − 2 = 14. Let L be the hyperplane divisor on Hω. We
denote by L also the pullback σ ∗L and let L′ be the strict transform of the general
hyperplane divisor that passes through the point u (i.e., L′ ≡ L −Q′). Next we
summarize some further properties of the morphism ψ.

Lemma 3.1.1. The 5-fold H̄ω ⊂ P̄11
ω has singularities at most on the surface Su ⊂

Q̄, while H ′
ω is a smooth 5-fold. Furthermore, the morphism ψ : H ′

ω → H̄ω con-
tracts the codimension-2 subvariety C ′

u to the surface Su ⊂ Q̄ and is an isomor-
phism outside C ′

u. In particular, H̄ω has singularities at most on the surface Su.
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The canonical divisor on H ′
ω is KH ′

ω
= −3L′, where L′ is the pullback of a hyper-

plane divisor on H̄ω.

Proof. Since ψ induces the projection from u, the divisor L′ = L − Q′ is the
pullback of a hyperplane divisor on H̄ω. It remains only to compute the canonical
divisor. The canonical divisor on & is K& ≡ −4H, so by adjunction the canoni-
cal divisor KHω

= −3L. Since σ : H ′
ω → Hω blows up the double point u∈Hω,

the canonical divisor

KH ′
ω
≡ σ ∗KHω

+ (dimHω − 2)Q′ ≡ σ ∗(−3L)+ 3Q′ ≡ −3L′.

We shall see in Theorem 3.3.4 that the 5-fold H̄ω is in fact a linear section of the
Grassmannian Gr(2, 6) ⊂ P14 with a special codimension-3 subspace in P14.

Let X = P13−k ∩ & be a smooth (6 − k)-dimensional linear section of & as
in Section 2.5. Let ω ∈ F̌(X)− (̌(X). Then, by Lemma 2.5.8, the pivot u(ω) is
not contained in P13−k. Let P14−k

ω be the subspace of P13 = P(V(14)) spanned by
P13−k and u(ω), and let 9k−2

ω = (P14−k
ω )⊥. Clearly 9k−2

ω is a linear subspace of
9k−1 of codimension 1.

Denote by Wω the intersection

Wω = & ∩ P14−k
ω .

Since the (6− k)-fold X is a proper linear section of & and a linear section of Wω

with the codimension-1 subspace P13−k ⊂ P14−k
ω , the dimension dimWω = 7− k.

Furthermore, by Lemma 2.5.8, the pivot u(ω) is a singular point of Wω.

Consider now the projection πu(ω) : P12
ω → P̄11

ω from the pivot u(ω). Since
u(ω) /∈P13−k = 〈X〉, the restriction of πu(ω) to P13−k is a projective-linear isomor-
phism onto P̄13−k

ω := πu(b)(P13−k ); in particular, πu(b) : X → X̄ω = πu(b)(X) ⊂
P̄13−k
b is a projective-linear isomorphism.
Since P13−k ⊂ P14−k

ω is a hyperplane and since u(ω) ∈ P14−k
ω , the projection

πu(ω) maps P14−k
ω onto P̄13−k

ω . The pivot point u(ω) is a quadratic singularity of
Wω, so the proper πu(ω)-image W̄ω of Wω will contain a quadric Q̄ω ⊂ Q̄ of di-
mension 6 − k under the condition 2 ≤ k ≤ 5.

We will show in Theorem 3.3.4 that the projection πu(ω) sends the hyperplane
section Hω = & ∩ P12

ω to a codimension-3 linear section H̄ω = P̄11
ω ∩ Gr(2, C6)

containing a smooth 4-fold quadric Q̄ = Gr(2, C4) for some C4 ⊂ C6. Thus, X̄ω

is a subvariety of the linear section W̄ω of Gr(2, C6), a linear section that contains
a (6 − k)-dimensional quadric.

These observations lie behind our subsequent description of a family of em-
beddings of linear sections of & into Gr(2, C6) or (what amounts to the same)
a description of a family of rank-2 vector bundles on linear sections of & with a
6-space of global sections.

3.2. Del Pezzo and Segre 3-Folds

Here we define special Del Pezzo 3-folds and identify them with projections of
Segre 3-folds. Later we show that these are subcanonical varieties on H̄ω and thus
are zero loci of sections of a rank-2 vector bundle (via the Serre construction).
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Let Gr(2, 5) ⊂ P9 = P(∧2 C5) be the Grassmannian of lines in P 4 = P(C5),
and let Gr(5, 2) ⊂ P̌9 = P(∧2 Č5) be the Grassmannian of lines in the dual space
P̌ 4 = P(Č5). Any plane 9 ⊂ P̌9 is the plane of linear equations of its 0-space
P 6
9 ⊂ P9. The group GL(5, C) acts on P̌9 via its linear representation on ∧2 Č5

and therefore also on Gr(3,∧2 Č5), the Grassmannian of planes in P̌9. We denote
this action by ρ5.

Let U0 ⊂ Gr(3, Č5) be the open set of these planes 9 ⊂ P̌9 such that
9 ∩ Gr(5, 2) = ∅. The linear section V9 = P 6

9 ∩ Gr(2, 5) is singular if and
only if it is contained in a tangent hyperplane, since the contact locus of a tangent
hyperplane is a plane. Therefore, 9 ∈U0 if and only if V9 = P 6

9 ∩ Gr(2, 5) is a
smooth Fano 3-fold of degree 5 and index 2 (i.e., KV9

≡ OV9
(−2)). The action

ρ5 is transitive on U0; in other words, U0 is an orbit of ρ5 [33, Sec. 5, Prop. 14].
Hence all the V9,9∈U0, are conjugate to each other by the action∧2 of GL(5, C)

on P9 (see also [13, Sec. 6.5]).
Let Uxxx ⊂ Gr(3,∧2 Č5) be the subset of planes 9 ⊂ P̌9 such that 9 theoreti-

cally intersects the Gr(5, 2) scheme in exactly three points. These three points of
intersection cannot be collinear because Gr(5, 2) is an intersection of quadrics.

As before, Uxxx is an orbit of ρ5, and all the V9 (9 ∈ Uxxx) are conjugate to
each other by the action ∧2 of GL(5, C) on P9. We call the unique 3-fold V9 (9∈
Uxxx) the Del Pezzo 3-fold of type xxx.

Now we turn to Segre 3-folds. For this we first make a slight detour to 2-forms
on even-dimensional spaces and prove the following result.

Proposition 3.2.1. Let V = C2n and let α,α ′ ∈ ∧2V be two general 2-vectors.
Then there exists a unique (up to scalars) n-tuple γ1, . . . , γn of 2-vectors of rank
2 such that both α and α ′ are linear combinations of the γi.

Remark 3.2.2. The proposition may be reformulated in terms of multisecant
spaces to the Grassmannian Gr(2, 2n) of lines in P2n−1 embedded in a Plücker
space: A general line in the Plücker space is contained in a unique n-secant (n−1)-
space to Gr(2, 2n).

Proof of Proposition 3.2.1. First we prove the uniqueness. Because the pair α,α ′
of 2-vectors is general, we may suppose that they both have rank 2n and that

α =
n∑
i=1

γi and α ′ =
n∑
i=1

λiγi,

where the λi are pairwise distinct coefficients. Let

βi = λiα − α ′, i = 1, . . . , n.

Then the βi are precisely the 2-vectors of the pencil generated by α and α ′ that
have rank less than 2n. Furthermore, their rank is exactly 2n − 2 since λi $= λj
for i $= j. Thus each βi ∈∧2Vi for a unique rank-(2n− 2) subspace Vi ⊂ V. Let
Uj = ⋂

i $=j Vi . Then Uj is 2-dimensional and γj is a nonzero 2-vector that gener-
ates the subspace ∧2Uj ∈∧2V, so the 2-vectors γi are determined uniquely by the
pencil generated by α and α ′.
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For the existence we use a dimension argument. On the one hand, the Grass-
mannian of lines in the Plücker space P(∧2V ) has dimension 2(n(2n−1)− 2) =
4n2 − 2n − 4. On the other hand, the Grassmannian Gr(2, 2n) has dimension
4n − 4, so the family of lines contained in n-secant (n − 1)-spaces to Gr(2, 2n)
has dimension at most (4n − 4)n + 2(n − 2) = 4n2 − 2n − 4. By the unique-
ness argument, such a line in general lies in a unique n-secant (n − 1)-space, so
the two dimensions actually coincide. Since there is an obvious inclusion of the
latter into the former and since the former is irreducible, we may conclude.

This result leads to a simple description of Segre n-folds in the Grassmannian
Gr(2, 2n): embeddings

s : Xn = P1 × P1 × · · · × P1 ↪→ P(
2n
2 )−1,

which factors through the Segre embedding sn : Xn → P2n−1, and a linear map
P2n−1 ↪→ P(

2n
2 )−1 and where s(Xn) ⊂ Gr(2, 2n) ⊂ P(

2n
2 )−1.

Proposition 3.2.3. Let V = C2n and let α,α ′ ∈ ∧2V ∗ be two general 2-forms
on V. Then the set of common Lagrangian n-spaces of V with respect to the forms
α and α ′ form a Segre n-fold P1×P1× · · ·×P1 in the Grassmannian Gr(2, 2n).
Let γ1, . . . , γn be the unique n-tuple of 2-forms of rank 2 such that both α and α ′
are linear combinations of the γi, and let Ui ⊂ V be the (2n−2)-dimensional ker-
nel of γi. Then the common Lagrangian n-spaces U with respect to the forms α
and α ′ are precisely the n-spaces that intersect eachUi in an (n−1)-space. Equiv-
alently, if Wi = ⋂

i $=j Uj then Wi is 2-dimensional, and an n-space is Lagrangian
with respect to α and α ′ if and only if it has a nontrivial intersection with each Wi.

Proof. Clearly, the two characterizations of Lagrangian n-spaces are equivalent.
Furthermore, the last one describes a family of n-spaces that form a Segre n-fold,
since every n-space intersects each line P(Wi) in a unique point.

An n-space U that intersects each Ui in an (n−1)-space is clearly isotropic with
respect to each 2-form γi and is thus also Lagrangian for α and α ′.

On the other hand, it is a straightforward exercise in Schubert calculus to show
that the set of common Lagrangian n-spaces for α and α ′ is n-dimensional of de-
gree n!—that is, the degree of the Segre n-fold. Since we have an inclusion, the
result follows.

We now return to the case n = 3.

Lemma 3.2.4. Let X = X3 ⊂ P7 be a Segre 3-fold, and let u ∈ X. Then the
projection V̄ of X from u is a Del Pezzo 3-fold of type xxx.

Conversely, the Del Pezzo 3-fold V̄ of type xxx is a projection of the Segre 3-fold
X from a point u∈X.

Proof. Consider the blowup X ′ → X centered at u, and let E denote the excep-
tional divisor. Let Li be the pullback to X of OP1(1) on each factor of X, and let
FX = L1 ⊕ L2 ⊕ L3. Let su be the unique global section of FX whose zero locus
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is u, and let FX ′ be the pullback of FX to X ′. The pullback of su to FX ′ vanishes on
E and corresponds to the unique nonvanishing section s ′ of FX ′(−E). The exte-
rior multiplication with s ′ defines a surjective map ∧2FX ′(−E) → ∧3FX ′(−2E)

that fits into an exact sequence

0 → F0 → ∧2FX ′(−E) → ∧3FX ′(−2E) → 0,

where F0 is a rank-2 vector bundle on X ′. Notice that ∧3FX ′(−2E) is the line
bundle OX ′(HX − 2E), where HX is the pullback to X ′ of the hyperplane class
on X in the Segre embedding. Furthermore, c1(∧2FX ′(−E)) = 2HX − 3E, so
c1(F0) = HX − E. Similarly, one computes c2(F0) = (HX − E)2. On the other
hand, h0(OX ′(HX − 2E)) = 4 while h0(∧2FX ′(−E)) = 9, so h0(F0) ≥ 5. Hence
the morphism defined by HX −E (i.e., the projection of X from u) maps X ′ into
Gr(2, 5); it is a 3-fold of degree 5 that spans a P 6, so it is a linear section of
Gr(2, 5).

The 3-fold X contains three quadric surfaces that meet pairwise along a line
through u. Thus the projection X̄ (i.e., the image of X ′) contains three planes that
meet pairwise in three points. Evidently these points are precisely the singularities
of X̄, so X̄ is a Del Pezzo 3-fold of type xxx.

The converse is clear by the transitivity of ρ5.

Lemma 3.2.5. Let X = X3 ⊂ & be a Segre 3-fold, and let H be a hyperplane
section of & that contains X. Then H is singular—that is, a tangent hyperplane
section to &—and the point of tangency of H lies in X.

Proof. For each point u on X there is a P2 of hyperplanes tangent to & at u that
contain X. Because such a hyperplane is in general tangent to & at u only, there
is altogether a 5-dimensional family of tangent hyperplanes that contain X. But
X spans a P7, so there is a P5 of hyperplanes that contain X. Therefore, the two
sets must coincide and the lemma follows.

3.3. A Rank-2 Vector Bundle on Singular Hyperplane Sections

Recall the universal sequence of vector bundles on &, the restriction of the uni-
versal sequence on G = Gr(3,V ):

0 → U → V ⊗ O& → Q → 0;
here U is the universal subbundle and U ∗ ∼= Q by the natural map induced by α.

Any global section of the rank-3 bundle ∧2U ∗ comes from a 2-form α ′ ∈ ∧2V ∗.
In the previous section we saw that if the 2-form α ′ is general then the zero locus
X = Z(α ′) is a Segre 3-fold. In fact, the characterization in Proposition 3.2.3
yields a straightforward argument that any Segre 3-fold in & is the zero locus of
a section of ∧2U ∗.

From Lemma 3.2.5 we know that any hyperplane that contains the Segre 3-fold
X is tangent to &. So we fix an ω ∈ F̌ such that the hyperplane P12

ω contains X
and assume that it is tangent to & only at u∈X. Thus u = u(ω) in the notation of
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Section 2.5. Then X has codimension 2 in this hyperplane section, and it is still
the zero locus of the 2-form α ′ restricted to the hyperplane.

Consider the blowup H ′
ω of the hyperplane section Hω = & ∩ P12

ω in the sin-
gular point u. Let Q′

ω be the exceptional divisor on H ′
ω. It is isomorphic to a

3-dimensional quadric (when ω is general).
In the notation of Lemma 3.1.1, the canonical bundle KX = OX(−2L). On the

strict transform Xω of X, the canonical bundle is therefore

KXω
= OXω

(−2L+ 2Q′
ω) = OXω

(−2L′),

so Xω is subcanonical with respect to the hyperplane line bundle L′ induced by
the projection from u. Hence, by the Serre construction, Xω is the zero locus of a
rank-2 vector bundle on H ′

ω. The aim of this section is to identify this vector bun-
dle. To construct it one may apply the Serre construction starting with Xω. We
choose a different and more direct argument similar to the one used in the proof
of Lemma 3.2.4.

Let
∧2U ∗

ω = ∧2U ∗ ⊗ OH ′
ω
,

and consider the twisted bundle

∧2U ∗
ω(−Q′

ω).

Observe that the section of ∧2U ∗
ω , given by the restriction and pullback of the sec-

tion α ′, vanishes on Q′
ω; it therefore corresponds to a section α ′

ω of ∧2U ∗
ω(−Q′

ω).

The vector bundle ∧2U ∗
ω(−Q′

ω) has rank 3, while the zero locus Xω of the section
α ′
ω has codimension 2. We will show that α ′

ω is a section of a rank-2 subbundle of
∧2U ∗

ω(−Q′
ω). Toward this end we consider vector bundle maps:

∧2U ∗
ω(−Q′

ω) → OH ′
ω
(L− 2Q′),

where L is the pullback of the hyperplane divisor on Hω. Let U ⊂ V be the La-
grangian 3-space represented by u ∈ & and let U⊥ = Lα(U) ⊂ V ∗. Then any
element x ∈U⊥ induces (by an exterior multiplication) such a map:

mx : ∧2U ∗
ω(−Q′

ω) → OH ′
ω
(L− 2Q′

ω).

The kernel of this map, which we denote by E ′
x , is of course a torsion-free sheaf.

If the map mx is surjective then the kernel is even a vector bundle of rank 2. There-
fore, E ′

x is our candidate for a rank-2 vector bundle. If we look at the stalks, we
see that the multiplication by x is surjective outside the zero locus of x—that is,
outside the strict transform C(x) on H ′

ω of the quadric cone Qx ∩Hω with vertex
at u. Since Qx is 3-dimensional, C(x) is a (rational) surface scroll whose image
in H̄ω is a conic on the Veronese surface Su. Thus we have an exact sequence

0 → E ′
x → ∧2U ∗

ω(−Q′
ω) → OH ′

ω
(L− 2Q′

ω) → OC(x)(L− 2Q′
ω) → 0.

OutsideC(x), the kernel sheafE ′
x is a rank-2 vector bundle. This will be enough

for our purposes at this point, but eventually we will show that E ′
x is a subsheaf

of a bundle Ex that coincides with E ′
x outside Cx.
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The problem is to get h0(E ′
x) = 6. The sections of O&(L) that are singular at u

can naturally be identified with

V(14)∗ ∩ (∧2U⊥ ⊗ U⊥
1 ⊕∧3U⊥) = Sym2 U ∗ ⊕ ∧3U⊥

(see Section 2.2). By restriction and pullback from &, we therefore have a natural
surjection of sections

rω : V(14)∗ ∩ (∧2U⊥ ⊗ U⊥
1 ⊕∧3U⊥) = Sym2 U ∗ ⊕ ∧3U⊥

→ H 0(OH ′
ω
(L− 2Q′

ω)).

The kernel of this map is generated by qω ∈ Sym2 U ∗, so h0(OH ′
ω
(L− 2Q′

ω) = 6.
Similarly, there is a natural surjection

U⊥ ⊗ U⊥
1 ⊕∧2U⊥ → H 0(∧2U ∗

ω(−Q′
ω)).

Here the kernel is generated by α, and U⊥ ⊗ U⊥
1 ⊕ ∧2U⊥ is 12-dimensional so

h0(∧2U ∗
ω(−Q′

ω)) = 11. Thus h0(E ′
x) = 6 only if the map mx is not surjective on

global sections.
We now consider more carefully the image of the map mx on global sections.

Notice that rω(η) for a form

η ∈V(14)∗ ∩ (∧2U⊥ ⊗ U⊥
1 ⊕∧3U⊥)

is in the image of mx if and only if there exist a 2-form β ∈ U⊥ ⊗ U⊥
1 ⊕ ∧2U⊥

and a 1-form y ∈U⊥ such that

η = α ∧ y + β ∧ x.

The subspace of 3-forms of this kind in ∧2U⊥ ⊗ U⊥
1 ⊕ ∧3U⊥ has dimension 9

(i.e., codimension 1): the 3-forms of the kind α ∧ y form a 3-dimensional space,
whereas the 3-forms of the kind β∧x (where β varies) form a subspace of dimen-
sion 7. Since these two subspaces intersect each other in 〈α ∧ x〉, the dimension
of their sum is 9. The intersection with V(14)∗ has codimension 3 as defined by
the symmetrizer relations (see Section 2.2), so the subspace

Ux = {η = α ∧ y + β ∧ x | η ∧ α = 0} ⊂ V(14)∗ ∩ (∧2U⊥ ⊗ U⊥
1 ⊕∧3U⊥)

has dimension 6. The image of the map mx on global sections is just the projection
of Ux from the form ω. Thus we have shown our next lemma.

Lemma 3.3.1. The exterior multiplication

mx : ∧2 U ∗
ω(−Q′

ω) → OH ′
ω
(L− 2Q′

ω)

is not surjective on global sections if and only if ω is an element of Ux.

Let p = 〈v〉 ∈ P(U) and x = Lα(v) ∈ U⊥. Let qω be the quadratic form defined
by ω on U (see Section 2.2).

Lemma 3.3.2. Let ω ∈V(14)∗ ∩ (∧2U⊥⊗U⊥
1 ⊕∧3U⊥). Then ω ∈Ux if and only

if qω(v) = 0.



Geometry of the Lagrangian Grassmannian LG(3, 6) 403

Proof. First we assume that

ω = α ∧ y + β ∧ x.

The common zero locus of the 2-forms α and β is then contained in Hω. Hence we
may choose a basis and coordinates (ei, xi) on V such that U = U0 = 〈e1, e2 , e3〉
and U1 = 〈e4, e5, e6〉, and we assume that

β = sx14 + tx25 + ux36.

Since α ∧ ω = (x14 + x25 + x36) ∧ ω = 0, it follows that

ω = b(x145 + x356)− c(x416 + x256)− a(x452 + x436)

for suitable scalar coefficients a, b, c.
The quadratic form qω on U is then (see Section 2.2)

qω = bx1x3 − cx1x2 − ax2x3.

In the expression
ω = β ∧ x + α ∧ y,

it is clear that
x, y ∈ 〈x4, x5, x6〉 = Lα(U).

Thus we may write x = β4x4 + β5x5 + β6x6 and y = α4x4 + α5x5 + α6x6. A
straightforward calculation gives the following solutions:

α4 = a
u+ t

u− t
, α5 = b

u+ s

u− s
, α6 = c

t + s

t − s
,

and

β4 = a

u− t
, β5 = b

u− s
, β6 = c

t − s
;

thus

v = L−1
α (x) = a

u− t
e1 + b

u− s
e2 + c

t − s
e3,

and qω(v) = 0.
Conversely, assume qω(v) = 0. Let X be a Segre 3-fold through u = u(ω)

contained in Hω. Then we may assume that X is the zero locus of a 2-form β.

Coordinates may therefore be chosen as before, and qω(v) = 0 implies that

v = a

u− t
e1 + b

u− s
e2 + c

t − s
e3.

With

y = a
u+ t

u− t
x4 + b

u+ s

u− s
x5 + c

t + s

t − s
x6,

we obtain
ω = α ∧ y + β ∧ x.

Corollary 3.3.3. Let v ∈ U and let x = Lα(v) ∈ U⊥. Let E ′
x on H ′

ω be the
kernel sheaf of the map mx described previously. Then h0(E ′

x) = 6 iff qω(v) = 0,
where H ′

ω is tangent at u∈& and qω is the quadratic form defined by ω on U.
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Proof. Since ∧2U ∗
ω(−Q′

ω) has eleven sections, it follows that h0(E ′
x) = 6 if and

only if mx is not surjective on global sections—that is, iff ω = α ∧ y + β ∧ x for
some 1-form y and 2-form β. Hence the corollary follows from Lemma 3.3.2.

For each v ∈ U such that {qω(v) = 0} we have constructed a sheaf E ′
x with x =

Lα(v), locally free of rank 2 outside C(x) on H ′
ω, and with h0(E ′

x) = 6. Each
sheaf gives rise to a rational map of H ′

ω into the Grassmannian Gr(2, 6). This map
is defined by sections of the determinant line bundle of E ′

x , whose first Chern class
is given by

c1(Ex) = c1(∧2U ∗
ω(−Q′

ω))− c1(O&ω
(L− 2Q′

ω))

= (2L− 3Q′
ω)− (L− 2Q′

ω) = L−Q′
ω = L′.

If the natural map
∧2H 0(E ′

x) → H 0OH ′
ω
(L′)

is surjective, then the map to Gr(2, 6) is nothing but the projection of H ′
ω from its

singular point u = u(ω). If it is not surjective, then the image of H ′
ω in Gr(2, 6)

spans at most a P10. Since H ′
ω is not a cone, the image is 5-dimensional and the

intersection of its span with Gr(2, 6) is not proper; that is, it contains a variety of
codimension 3. Now the class of a codimension-3 subvariety in Gr(2, 6) is a non-
negative linear combination of Schubert cycles of degrees 4 and 5. A codimension-
3 cycle of degree 5 is a hyperplane section of a Gr(2, 5) ⊂ Gr(2, 6), whereas a
codimension-3 cycle of degree 4 is the variety of lines in Gr(2, 6) that meet a
fixed line. Thus multiples of the latter are P 4-bundles. The general hyperplane
section of H ′

ω has Picard number 1, so it cannot have an image in a P 4-bundle.
Furthermore, the vector bundle Ex has six sections, so the image of H ′

ω cannot be
contained in a Gr(2, 5), either. Now, since codimension-3 subvarieties in Gr(2, 6)
of degree 9 and 13 are not contained in a P10, we may conclude that the image of
H ′

ω spans P11. Hence the image of H ′
ω in Gr(2, 6) is precisely the projection H̄ω.

Moreover, this map is independent of x.

Theorem 3.3.4. The projection of Hω from its singular point is a linear section
of the Grassmannian Gr(2, 6).

Proof. What remains is to show that the image H̄ω of H ′
ω under the projection is

a linear section of Gr(2, 6). Because & has degree 16 and sectional genus 9, the
projection of Hω must have degree 14 and sectional genus 8; it is 5-dimensional,
spans a P11, and is contained in Gr(2, 6). Also it contains a 4-dimensional quadric,
the image of the exceptional divisor on H ′

ω. Thus H̄ω has the same degree, sec-
tional genus, and codimension as Gr(2, 6), so if the intersection

Gr(2, 6) ∩ 〈H̄ω〉
is different from H̄ω, then this intersection is 6-dimensional and not proper. But
the only codimension-2 varieties in Gr(2, 6) that are contained in a P11 are those
representing special Schubert cycles of codimension 2: one is represented by the
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subvariety of rank-2 subspaces that intersect a given rank-3 subspace, and the other
is represented by the Grassmannian Gr(2, 5). The latter does not span a P11 but
the former do. In the former case, H̄ω is contained in a variety that is a P 4 scroll
parameterized by a P2. Each P 4 must intersect H̄ω in a 3-fold. But Hω is cut
out by quadrics and contains only a 1-parameter family of threefold hypersurfaces
(in fact, the linear 3-spaces that appear as projections of Qp ⊂ H ′

ω in Proposi-
tion 2.5.5), so we have a contradiction and the theorem follows.

The restriction and pullback to H ′
ω of the universal rank-2 quotient bundle on

Gr(2, 6) is clearly a rank-2 vector bundle, which we denote by Eω. This immedi-
ately yields the following corollary.

Corollary 3.3.5. The sheaf E ′
x is a subsheaf of the restriction and pullback Eω

to H ′
ω of the universal rank-2 quotient bundle on Gr(2, 6). The bundle Eω is inde-

pendent of x; we have h0(Eω) = 6 and detEω = OH ′
ω
(L′), and the zero scheme

of Eω’s general section is isomorphic to the strict transform of a Segre 3-fold that
passes through the singular point of Hω.

Proof. Outside C(x) the two sheaves E ′
x and Eω coincide. The zero scheme of

a general section of Eω is precisely the zero scheme of a 2-form on &: the strict
transform on H ′

ω of a Segre 3-fold that passes through the singular point u. Since
C(x) has codimension 3, the corollary follows.

Clearly H̄ω is a special linear section of Gr(2, 6) because it contains a 4-dimen-
sional quadric, but a natural question arises: Is a general P11-section of Gr(2, 6)
that contains a 4-dimensional quadric the projection of a singular section of the
Lagrangian Grassmannian &?

Now we prove that this is the case and give another characterization of these
linear sections of Gr(2, 6). We set

Z = H̄ω,

and observe that the projection ofH ′
ω is an isomorphism on the exceptional quadric

and outside the tangent cone at u. Thus it is singular at most along the image of
the tangent cone, that is, a Veronese surface (inside the 4-dimensional quadric).

First, since F̌ \ (̌ is an orbit of ρ, all the H̄ω are projectively equivalent to
the same 5-fold Z. To fix the notation, let V ∼= C6 and let P14 = P(∧2V ). Let
Gr(2,V ) be the Grassmannian of 2-dimensional subspaces U ⊂ V, and let

Gr(2,V ) → P14, U �→ P(∧2U),

be the Plücker embedding.
Let P̌14 = P(∧2V ∗) be the dual space to P14. The space ∧2V ∗ is isomorphic to

the space Alt(V,V ∗) of skew-symmetric linear maps A : V → V ∗. Recall that the
rank of A is even. The rank stratification is given by the inclusions

Gr(V, 2) = Gr(2,V ∗) ⊂ P̌f ⊂ P̌14,
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that is, by the Grassmannian variety parameterizing C∗-classes of maps A $= 0
such that rank(A) = 2 and by the Pfaffian cubic hypersurface parameterizing C∗-
classes of maps A such that rank(A) ≤ 4.

Let 92 ⊂ P̌14 be the plane of linear equations that define P11 ⊂ P14, so that the
5-fold Z ′ = P11 ∩ Gr(2,V ) contains a smooth 4-dimensional quadric Q. Obvi-
ously, Q = Gr(2,W) ⊂ Gr(2,V ) for some 4-dimensional subspace W ⊂ V.

Lemma 3.3.6. 92 ⊂ P̌f.

Proof. The set of forms in V ∗ that vanish on the 4-dimensional subspace W ⊂ V

is a rank-2 subspace W⊥ ⊂ V ∗, so

(∧2W)⊥ = V ∗ ∧W⊥ ⊂ ∧2V ∗.

Therefore, any A∈ (∧2W)⊥ is of rank at most 4; that is,

P((∧2W)⊥) ⊂ P̌f.

Since Q = Gr(2,W) ⊂ Z ′, the lemma follows.

Fix a 4-dimensional subspace W ⊂ V, and let P8
W = P((∧2W)⊥) ⊂ P̌f. Then

P8
W intersects the Grassmannian Gr(V, 2) along the 5-fold Schubert cycle YW :=

σ30(W
⊥) of 2-dimensional subspaces of V ∗ that intersect the rank-2 subspace W⊥

nontrivially. Therefore, the general plane in P8 does not intersect YW .

When A has rank 4, the kernel is a rank-2 subspace UA ⊂ V. Hence there is a
natural kernel map,

pker : P̌f \ Gr(V, 2) → Gr(2,V ), [A] �→ [UA].

This map can also be seen as the map

∧2V ∗ → ∧4V ∗ ∼= ∧2V, α �→ α ∧ α,

so it is quadratic in the coordinates. Now, the hyperplane section HA ∩ Gr(2,V )

is singular precisely in P(∧2UA). On the other hand, P(∧2UA) ∈ Gr(2,W ′) for
any 4-dimensional subspace W ′ ⊂ V that contains UA. Clearly UA ⊂ W for any
A∈∧2W⊥. Therefore,

Z ′ =
⋂
A∈92

(HA ∩ Gr(2,V ))

contains the image of

s : 92 → Gr(2,V ), A �→ P(∧2UA).

Since P(∧2UA) is a singular point in HA ∩ Gr(2,V ), the image of s is contained
in the singular locus of Z ′.

Lemma 3.3.7. Sing(Z ′) is contained in a Veronese surface if and only if

92 ∩ Gr(V, 2) = ∅.
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Proof. Indeed, the preceding map s is defined everywhere on 92 only if

92 ∩ Gr(V, 2) = ∅,

and in this case the image is clearly a Veronese surface. On the other hand, if A∈
92 ∩Gr(V, 2) and UA ⊂ V is the kernel of A (regarded as a skew-symmetric map
as before), then the hyperplane section HA ⊂ Gr(2,V ) defined by A is singular
along a 4-fold quadric QA = Gr(2,UA) ⊂ Gr(2,V ). Thus

Z ′ =
⋂
A∈92

(HA ∩ Gr(2,V ))

is singular at least along a codimension-2 linear section of a 4-fold quadric QA,
which is clearly not contained in a Veronese surface.

Proposition 3.3.8. The linear sectionZ = H̄ω of Gr(2,V ) is defined by a plane
92 of linear equations in P̌f \ Gr(V, 2). The singular locus of Z is a Veronese
surface.

Proof. We have noted that the singular locus of Z is contained in a Veronese
surface. It follows from Lemmas 3.3.6 and 3.3.7 (respectively) that the singular
locus of Z is a Veronese surface and that the orthogonal plane does not intersect
Gr(2,V ∗).

The following result of Sato and Kimura on the orbits of the GL(V )-action on P̌14

fits well with the foregoing remark.

Proposition 3.3.9 [33, p. 94]. The action ∧2 of GL(V ) on P̌14 is transitive on
the set of planes 92 ⊂ P̌f \ Gr(V, 2).

Propositions 3.3.8 and 3.3.9 immediately imply the following corollary and the
second part of Theorem 1.1.

Corollary 3.3.10. Let Z ⊂ Gr(2,V ) be a 5-fold linear section. Then the fol-
lowing statements are equivalent.

(i) Z contains a 4-dimensional smooth quadric, and SingZ is aVeronese surface.
(ii) The orthogonal complement 〈Z〉⊥ is contained in P̌f \ Gr(V, 2).

(iii) Z is the projection of a nodal hyperplane section of & = LG(3, 6) ⊂ P13

from its node.

Let S = Z ∩ P8 be a general linear surface section of Z. Then, clearly, S is a K3
surface with a conic C.

Corollary 3.3.11. The Picard group of a general linear surface section S of Z
has rank 2 and is generated by the class of a hyperplane and the class of the conic
on S.

Proof. According to the refined versions of Mukai’s linear section theorem [21;
25], the general K3 surface S—with Picard group generated by a very ample line
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bundle OS(H ) of degree H 2 = 14 and the line bundle OS(C) of a rational curve C
with C ·H = 2—is a linear section of Gr(2, 6). The conic C lies then in a unique
4-dimensional quadric Gr(2, 4) inside Gr(2, 6), and S is therefore a linear sec-
tion of a subvariety Z.

3.4. Stable Rank-2 Vector Bundles on Linear Sections

Theorem 3.3.4 allows us to construct families of rank-2 vector bundles on linear
sections of & as promised at the end of Section 3.1. Let 1 < k < 6, and consider
a (6 − k)-dimensional smooth linear section X = P13−k ∩ & and its Sp(3)-dual
linear section F̌(X) of the quartic F̌. Then, to each point ω ∈ F̌(X) \ (̌(X) we
may associate a rank-2 vector bundle Eω,X on X with Chern classes c1(Eω,X) =
H and c2(Eω,X) = σX, where σX is the class of a codimension-(k−1) linear sec-
tion of a Segre 3-fold. In case X is a curve, the class c2(Eω,X) = 0 but the vector
bundle is special with h0(Eω,X) ≥ 6.

In fact, if ω ∈ F̌(X) \ (̌(X), then by Theorem 3.3.4 the projection πu(ω) from
the pivot u(ω) = L(piv∗(ω)) sends the hyperplane section Hω = & ∩ P12

ω to the
linear section H̄ω = Gr(2, 6) ∩ P̄11

ω . Now ω ∈ F̌(X) ⊂ (P13−k )⊥, so Hω ⊃ X.

By assumption X is smooth, so Lemma 2.5.8 implies that u(ω) /∈ P13−k = 〈X〉.
Therefore, the projection πu(ω) : P12

ω → P̄11
ω restricts to a linear embedding of X ⊂

P13−k. If Eω is the rank-2 vector bundle on H ′
ω constructed in Corollary 3.3.5, then

the restriction Eω,X = Eω|X is a rank-2 vector bundle on X. Via the linear em-
bedding X ⊂ Gr(2, 6), we obtain that Eω,X is the pullback of the universal rank-2
quotient bundle. Hence h0(Eω,X) ≥ 6, and c1(Eω,X) = HX. By Corollary 3.3.5,
the general section of Eω vanishes on the projection of a Segre 3-fold inside Hω

through u(ω). Since X does not pass through u(ω), the restriction to X is that of
a codimension-(k − 1) linear section of this Segre 3-fold, so c2(Eω,X) = σX.

Denote by MX(2,H, σX) the moduli space of stable rank-2 vector bundles on
X with Chern classes c1(E) = H and c2(E) = σX. This moduli space exists as a
quasiprojective variety (see also [17; 18; 34]).

Proposition 3.4.1. Let 1 < k < 6. Let X = & ∩ P13−k be a smooth linear sec-
tion of & without nontrivial automorphisms and let F̌(X) be its Sp(3)-dual linear
section of the quartic F̌. Then there is a natural map

eX : F̌(X) \ (̌(X) → MX(2,H, σX), ω �→ [Eω,X],

where [Eω,X] is the isomorphism class of Eω,X and where σX = 0 if X is a curve.
Furthermore, the map is injective on the set where H 0(Eω,X) = 6.

Proof. First we prove stability. Recall that a rank-2 vector bundle E is Takemoto–
Mumford stable (resp. semistable) with respect to the polarization H if, for each
line subbundle L, the inequality

2H i · L < H i · c1(E) (resp. 2H i · L ≤ H i · c1(E))

holds, where i = dimX − 1.
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It is clear from the definion of Takemoto–Mumford that it is enough in our case
to check stability when X is a curve; instability in the other cases would imply
instability by restriction to a curve section of X.

So let C = X ⊂ & be a smooth linear curve section, and let ω ∈ F̌(C) \ (̌(C).

We may assume that C has no automorphisms and that C has no g1
5 (see Theo-

rem 3.4.5). Consider the vector bundle Eω,C. By assumption it is the pullback
of the universal rank-2 quotient bundle on Gr(2, 6), so the associated map of the
P1-bundle

P(Eω,C) → P5

is a morphism. Let SC ⊂ P5 be the image ruled surface of this morphism. The
curve C is contained in a 5-dimensional linear section Z ⊂ Gr(2, 6) that contains
a 4-dimensional quadric. The linear span of C intersects Z in a surface, which
by Corollary 3.3.11 is a K3-surface section Y containing a unique conic section
that does not intersect C. Assume now that Eω,C has a subbundle of degree d ≥
6. Then SC has d members of the ruling contained in a hyperplane H. In particu-
lar, C ⊂ Gr(2, 6) meets the Grassmannian Gr(2,H ) in d points. But Gr(2,H )

has degree 5, so Gr(2,H ) must intersect the surface Y in at least a curve. Since
Y is an irreducible surface, the intersection must be a curve that spans at most a
P 4. Since d ≥ 6, the corresponding divisor on C of degree d spans at least a P 4.

Therefore this curve has degree 5. But by Corollary 3.3.11 the Picard group of Y
is generated by the class of H and the class of the unique conic, so in particular
every curve on it has even degree—a contradiction. Therefore Eω,C is stable.

For injectivity, note that for a given embedding of X ∈Gr(2, 6) the linear span
of X cuts the Grassmannian in a variety Y of dimension dimX + 1. Given two
elements ω and ω ′ in F̌(X) \ (̌(X), the vector bundles Eω,X and Eω ′,X are iso-
morphic only if the two linear sections Yω and Yω ′ are projectively equivalent. In
fact, the global sections of Eω,X define the map into Gr(2, 6), and the linear span
of the image defines Yω. Now Yω is the projection from u(ω) of the linear section
Ỹω of & defined by the span of X and u(ω). Therefore, Yω and Yω ′ are projectively
equivalent if and only if Ỹω and Ỹω ′ are projectively equivalent. Mukai proves in
[29, Thm. B] that two linear curve sections of & are projectively equivalent if and
only if they lie in the same orbit of the group action ρ. This clearly extends to sur-
face sections, so the linear span of X and u(ω) and the linear span of X and u(ω ′)
are in the same orbit under the action ρ. As soon as X has no nontrivial automor-
phisms, this can no longer happen.

We next analyze the image of the map eX, starting with the curve case. The general
stable rank-2 vector bundle with canonical determinant on C = X has no sections.
The subset of MC(2;K) corresponding to vector bundles with a given number of
sections has the structure of a subvariety, which has been studied by several au-
thors [3; 27; 28; 31]. Following their notation, we define the Brill–Noether locus
MC(2;K, k) to be the subvariety of MC(2;K) corresponding to vector bundles
with at least k + 2 sections. Let E be a rank-2 vector bundle on a general lin-
ear curve section C ⊂ & with [E ]∈MC(2;K, 4). Assume that E is generated by
global sections, and let
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∧2H 0(C,E) → H 0(C,K)

be the natural map. If this map is surjective, then E clearly is in the image of the
map eC as soon as the induced image C ⊂ Gr(2,H 0(C,K)) is contained in a sub-
variety isomorphic to Z. By Corollary 3.3.10 this condition is satisfied as soon
as the orthogonal complement of the span of C in P(∧2H 0(C,K)) does not meet
Gr(H 0(C,K), 2). Thus we have our next lemma.

Lemma 3.4.2. The isomorphism class [E ]∈MC(2;K, 4) fails to be in the image
of eC only if

(i) ∧2H 0(C,E) → H 0(C,K) is not surjective, or
(ii) the orthogonal complement of the span of C meets Gr(4,H 0(C,K)), or

(iii) E is not globally generated.

We will not show that the cases of the lemma do not occur; we simply note that they
represent closed subvarieties of MC(2;K, 4). A more general result is as follows.

Proposition 3.4.3 ([28, Thm. 4] or [3, pp. 260–261]). Let C be a curve of
genus 9 with no g1

5 . If MC(2;K, 5) = ∅, then MC(2;K, 4) is smooth and of di-
mension 3 precisely at the points representing bundles E for which the Petri map
µ : Sym2 H 0(C,E) → H 0(C, Sym2 E) is injective.

The injectivity of the Petri map is shown by Bertram and Feinberg [3] for g(C) ≥ 2
and for any stable rank-2 vector bundle with canonical determinant andh0(C,E) ≤
5. The same line of argument yields the following lemma.

Lemma 3.4.4. Let C be a curve of genus 9 as before. Then the Petri map

µ : Sym2 H 0(C,E) → H 0(C, Sym2 E)

is injective for any stable bundle E ∈MC(2;K, 4).

Proof. Let S be the scroll in P(H 0(C,E)∗) defined via mapping P(E) by the
global sections of E. Then an element in the kernel of the Petri map

µ : Sym2 H 0(C,E) → H 0(C, Sym2 E)

defines a quadric hypersurface containing S (see [3, p. 267]). So the Petri map
is injective if and only if S is not contained in any quadric Q. Since detE is the
canonical line bundle, the degree of S is 16. Because C is a section of &, it has
no g1

5, g2
7 , g3

9 , or g4
11. Furthermore, since E is stable, it has no line subbundle of

degree greater than 7, or (equivalently) no section of E vanishes in a divisor of de-
gree 8. In particular, no P 4 contains eight lines on S, and no plane intersects S in
a section. For the latter, it is clear that a plane section of degree at most 7 corre-
sponds to a linear series on C of dimension 2 and degree at most 7; whereas, for a
plane section of degree at least 8, the residual net of hyperplanes defines a linear
series of dimension 2 and degree at most 8. Equality corresponds to a semistable
bundle E.
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Following [3, Sec. 4], we regard separately the cases 1≤ rankQ ≤ 6 as follows.
If rankQ = 6, then the family F(Q) ⊂ Gr(2, 6) of lines on the smooth quadric

Q is isomorphic to the 5-fold

F(Q) = P(TP3(−1)) ⊂ P3 × P̌3,

which is the incidence variety between points and planes in P3. The quadric Q is
then interpreted as the Grassmannian of lines in this P3. Denote the pullbacks of
the hyperplane divisors in P3 and P̌3 to C by h and h′. Then h and h′ are comple-
mentary divisors in a canonical divisor; that is, h+ h′ ≡ KC.

Assume that one of the two projections maps C to a line. Then this line will in-
tersect all lines in P3 that are parameterized by S ⊂ Q. But this means that S is
contained in a tangent P 4 to Q, a contradiction. Thus the linear series defined by h

and h′ both have dimension at least 2. Since C has no g2
7 , the degree of both h and

h′ is at least 8. Since they are complementary in a canonical divisor, this happens
only if they both define g2

8 s. This corresponds to a semistable vector bundle E.

If rankQ = 5, then Q is a cone with vertex a point, and the planes in Q all pass
through the vertex and are parameterized by P3. Therefore F(Q) ⊂ Gr(2, 6) is
a P2-bundle over a P3. Since S is not a cone, only finitely many lines of S, say
d lines, pass through the vertex of Q. Let P be the P 4 of lines in Gr(2, 6) pass-
ing through the vertex, and let p : C → Gr(2, 5) be the projection from P. Then
p corresponds to the projection of S from the vertex of Q, and p maps C into the
double Veronese embedding of P3 in Gr(2, 5). Thus the canonical linear series
has a decomposition as a sum KC = D + 2L, where D = C ∩ P is a divisor of
even degree d. Since D spans at most a P 4 in the canonical embedding of C, the
degree d ≤ 6. If d ≤ 2, then p(C) spans at least a P 6 and so L is of degree at
most 8 and dimension 3, contrary to the assumption for C. If d = 4 or d = 6, then
L is a g2

6 (resp., a g1
5)—also a contradiction.

If rankQ = 4, then Q contains two pencils of P3s. The restriction of these pen-
cils to S defines two pencils of curves |D| and |D ′| on S such that D + D ′ is a
hyperplane section. We may assume that D is a section of S and that D ′ is the
pullback of a divisor on C. Thus degD ′ ≥ 6 and degD ≤ 10. Since C has no g1

5,
only the equality is possible. In this case the decomposition D + D ′ of a hyper-
plane section of S corresponds to an exact sequence

0 → OC(D
′
C) → E → OC(KC −D ′

C) → 0.

The assumption on C actually implies this sequence is exact on global sections—
in other words, that the connecting homomorphism δ[E ] : H 0(OC(KC −D ′

C)) →
H1(OC(D

′
C)) is zero. Therefore E = OC(D

′
C) ⊕ OC(KC − D ′

C); and since
deg(KC −D ′

C) = 10 > 8, the bundle E is not even semistable.
If rankQ = 3, then Q is a cone with vertex a plane P2 over a smooth plane

conic q. Thus the hyperplane divisor H on S decomposes to H = 2D+D0, where
D0 = S ∩ P2 is the intersection of S with the vertex of Q. Note that D0 must be
a curve, for otherwise H = 2D contradicts the fact that H is a section of S over
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C. Hence D0 must be a section of S, but we have already seen that no section of
S lies in a plane and so this case is impossible.

If rankQ = 2 or Q = 1, then the scroll S spans at most a P 4, contrary to the
assumption.

Our next theorem restates one part of Mukai’s famous linear section theorem.

Theorem 3.4.5 [29]. Any smooth curve C of genus 9 with no g1
5 is isomorphic

to a linear section X of & = LG(3, 6).

On the other hand, we have the following lemma.

Lemma 3.4.6. No smooth linear curve section C of & has a g1
5 .

Proof. Consider the curve C as a subvariety of Gr(3, 6), and let D be a member
of a g1

5 on C. Then D spans a P3 and must therefore correspond to five planes in
a P 4; that is, D ⊂ Gr(3, 5) ⊂ Gr(3, 6). The intersection of & with any Gr(3, 5)
is, however, always a P 4-section of a Grassmannian quadric. Therefore the inter-
secton with the span of D must be a quadric surface, contradicting the fact that C
is a linear section.

Therefore, if we combine Proposition 3.4.3 and Lemma 3.4.4 and the injectivity
of the map eC , we recover Mukai’s result on the Brill–Noether locus as follows.

Theorem 3.4.7 [28, p. 17]. For a smooth linear curve section C of &, the
quartic 3-fold F̌(C) \ (̌(C) is a connected component of the Brill–Noether locus
MC(2;K, 4). The 21 double points (̌(C) ⊂ F̌(C) in the boundary correspond to
semistable vector bundles that are not stable.

Proof. It only remains to check the semistable boundary. The semistable bound-
ary δssMC(2;K) of MC(2;K) is the image of Picg−1(C) under the map

j : Picg−1(C) → MC(2;K), L �→ L⊕K ⊗ L−1

(see [31, Sec. 1]). The semistable boundary of the locus MC(2;K, 4) ⊂ MC(2;K)

is the intersection δssMC(2;K, 4) = δssMC(2;K) ∩MC(2;K, 4). Therefore,

δssMC(2;K, 4) = {L∈ Pic8(C) : L⊕K ⊗ L−1∈MC(2;K, 4)}
= {L∈ Pic8(C) : h0(L⊕K ⊗ L−1) ≥ 6}.

Since C ⊂ LG(3, 6) has no g1
5 it has no g3

8 , so any line bundle L (and likewise any
K⊗L−1) such that h0(L⊕K⊗L−1) ≥ 6 must be a g2

8 . Let Wr
d(C) ⊂ Picd(C) be

the Brill–Noether locus of all the invertible sheaves L of degree d on C such that
h0(C,L) ≥ r. Since C is general of genus g = 9, it follows that the fundamental
class of Wr

d(C) in Picd(C) ∼= J(C) is

[Wr
d ] = r! · (r − 1)! · · · 0!

(g + 2r − d)! · · · (g + r − d)!
I(r+1)(g+r−d ),
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where (J(C),I) is the principally polarized Jacobian of C (see [9, Chap. 2,
Sec. 7]). In particular, dimW 2

8 (C) = 0, and since deg(I9/9!) = 1 we have

degW 2
8 (C) = 2! · 1! · 0!

5! · 4! · 3!
9! = 42.

Therefore, on the general curve C of genus 9, there are exactly 42 line bundles
L such that deg(L) = 8 and h0(C,L) = 3. Moreover, since K ⊗ L−1 also has
degree 8 and three sections, the map

¯ : W 2
8 (C) → W 2

8 (C), L �→ L̄ = K ⊗ L−1,

is an involution of W 2
8 (C). The fixed points, if any exist, of the involution ¯ are

these L such that L⊗2 = KC (i.e., such that L is a theta-characteristic of C) and
for which h0(C,L) = 3. But since C is general, it follows that h0(C,L) ≤ 1 for
any theta-characteristic of C; that is, ¯ has no fixed points.

On the general curveC of genus 9, we get exactly 21(nonordered) pairs (Li, L̄i),
1 ≤ i ≤ 21, of line bundles such that

degLi = deg L̄i = 8, h0(C,Li) = h0(C, L̄i) = 3,

andLi⊗L̄i = KC. Hence the semistable boundary δssMC(2;K, 4) ofMC(2;K, 4)
is a finite set of 21 points representing the 21 rank-2 vector bundles Ei = Li ⊕ L̄i,
1 ≤ i ≤ 21.

In our setting, if C is a general linear section of & then the Sp(3)-dual F̌(C)

is a quartic 3-fold that intersects (̌ in 21 nodes. Since this number fits with the
number of semistable vector bundles just computed, we try to extend the map eC
described previously to (̌(C). This is possible, as we now demonstrate.

Let ω ∈ (̌, let u be a dual pivot of ω, and consider the blowup of & at u. Let
Q′

ω be the strict transform of the exceptional divisor on H ′
ω as before. Consider

the exact sequence

0 → E ′
x → ∧2U ∗

ω(−Q′
ω) → OH ′

ω
(L′) → Nx → 0,

where the cokernel sheaf Nx = OC(x)(L
′) is the restriction of the line bundle

O&ω
(L′) to the zero scheme of x. By Lemma 3.3.2 the kernel sheaf E ′

x has a
6-space of sections as soon as P 4

v ⊂ P12
ω , where v = L−1(x). So v belongs to one

of the planes in the involutive pair P1 and P2 corresponding to ω (see Proposi-
tion 2.5.5). Furthermore, the zero scheme of x has codimension 2 and so does not
intersect a general curve section C ⊂ Hω. Therefore, the restriction of E ′

x to C

becomes a rank-2 vector bundle Eω with canonical determinant and six sections.
On the other hand, for any line l in one of the planes Pi, the subvariety &l of
Lagrangian planes that meet l is a Weil divisor on Hω. Thus there are two nets of
Weil divisors on Hω. When restricted to the curve C these divisors become Cartier
divisors, and the vector bundle Eω splits as the sum of the corresponding line bun-
dles. This yields the desired semistable vector bundle corresponding to the point
ω ∈ (̌(C).

Finally, we study the image of the map eX from Proposition 3.4.1 in the cases
where X is a surface, a 3-fold, and a 4-fold. Thus we recover and generalize the
results by Mukai that initiated this investigation.



414 Atanas Il iev & Krist ian Ranestad

Let (S,h) be a polarized K3 surface of genus g = 2n+1, and let s be an integer
such that s ≤ n. By [20, Sec. 10] or [22, Sec. 3], each component of the moduli
space of stable rank-2 vector bundles E on S,

MS(2,h, s) = {E | E is stable, c1(E) = h, and χ(S,E) = s + 2}/(iso),

is a nonsingular symplectic variety of dimension 2(g − 2s). In particular, if s =
n = (g − 1)/2 then each connected component of Ŝ := MS(2,h, s) is a K3 sur-
face. See [9] for a proof of irreducibility that includes references to other proofs.

Let S = X be a general K3 surface of genus 9 embedded as a linear section of
& by a codimension-4 subspace P9 ⊂ P13, and let H be the hyperplane class of
S ⊂ P9. Then the moduli space MS(2,H, σS) coincides with MS(2,H, 4), since
χ(S,E) = 4+ 2 = c2(E) = deg σS. When combined with Proposition 3.4.1, this
yields our last theorem as follows.

Theorem 3.4.8. For the general linear surface section S = X ⊂ &, the K3 sur-
face Ŝ = MS(2,H, 4) is isomorphic to the Sp(3)-dual quartic surface F̌(S).

Proof. The map eX is injective, so F̌(S) is a subvariety of MS(2,H, 4). On the
other hand, MS(2,H, 4) is a K3 surface, so they must coincide.

If we compare this result with Proposition 3.4.1, we see that, in fact, the map eS
for linear surface sections S ⊂ & is surjective.

Proposition 3.4.9. Let X be a general smooth 3-fold or 4-fold linear section
of &, and let E be a stable rank-2 vector bundle on X with h0(X,E) = 6 and
detE = OX(H ). Assume that the natural map ∧2H 0(X,E) → H 0(OX(H )) is
surjective. Then E is in the image of eX.

Proof. Assume that E is a rank-2 vector bundle on X that satisfies the conditions
of the proposition. Then the surjection ∧2H 0(X,E) → H 0(OX(H )) defines an
embedding X ⊂ Gr(2,H 0(X,E)∗). Clearly, E is in the image of eX if and only
if there is a P11 such that X ⊂ ZX = P11 ∩ Gr(2,H 0(X,E)∗) for some ZX

∼= Z

as in Proposition 3.3.8.
Assume that dimX ≥ 3. Since eS is surjective for any general surface section,

it follows that each surface section S intersects the Grassmannian in a 3-fold that
is a linear section of a variety ZS

∼= Z. Hence, the 4-dimensional quadric Q ⊂ ZS

intersects the linear span of S in a quadric surface. If two surface sections S and
S ′ of X give rise to subvarieties ZS and ZS ′ with distinct quadrics Q and Q′, then
these quadrics are Grassmannians Gr(2,W) and Gr(2,W)′ for 4-dimensional
subspaces W and W ′ of H 0(X,E)∗. So Q and Q′ have a plane or a point in com-
mon. But S and S ′ are linear sections ofX, and the corresponding quadric surfaces
may be chosen to be smooth with exactly a conic in common—a contradiction.
Therefore, the subvarieties Z for distinct surface sections of X contain the same
4-dimensional quadric Q.

The linear span ofX intersects the quadricQ in a quadric of dimension dimX−1.
Therefore the linear span of X ∪Q has dimension 11 and cuts Gr(2, 6) in a sub-
variety that is projectively equivalent to Z.
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By [23], any smooth Fano 3-fold X of degree 16, with rank Pic = 1, and of index 1
(called a prime Fano 3-fold of degree 16) is a linear 3-fold section of &, and the
hyperplane class H of X = & ∩ P10 is the ample generator of PicX over Z.

If X is general, then its Sp(3)-dual linear section F̌(X) is a smooth plane quar-
tic curve that does not intersect (̌.

Proposition 3.4.10. Let X = X16 ⊂ P10 be a general prime Fano 3-fold of de-
gree 16. Then the Sp(3)-dual to X, the plane quartic curve F̌(X), is isomorphic
to an irreducible component of the moduli space MX(2;H, σX) of stable rank-2
vector bundles on X with c1 = [h] and c2 = σX, where [h] is the class of the
hyperplane section and σX is the class of an elliptic sextic curve on X.

Proof. The condition in Proposition 3.4.9 is certainly an open one, so the com-
plement of the image of the map eX is closed. Since eX is injective (by Proposi-
tion 3.4.1) and its image is closed, the proposition follows.

We end with an easy corollary in the 4-fold case.

Corollary 3.4.11. For a general linear 4-fold section X ⊂ &, the Sp(3)-dual
F̌(X) consists of four points. Whenever X has no automorphisms, these four
points define precisely the four isomorphism classes of stable rank-2 vector bun-
dlesE onX with c1(E) = H and c2(E) = σX, where σX is the class of a Del Pezzo
surface of degree 6 on X such that the natural map ∧2H 0(X,E) → H 0(OX(H ))

is surjective.
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