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Isospectral Metrics and Potentials on
Classical Compact Simple Lie Groups

Emily Proctor

1. Introduction

Given a compact Riemannian manifold (M, g), the eigenvalues of the Laplace op-
erator� form a discrete sequence known as the spectrum of (M, g). (In the case of
M with boundary, we stipulate either Dirichlet or Neumann boundary conditions.)
We say that two Riemannian manifolds are isospectral if they have the same spec-
trum. For a fixed manifoldM, an isospectral deformation of a metric g0 onM is a
continuous family F of metrics onM containing g0 such that each metric g ∈ F is
isospectral to g0.We say that the deformation is nontrivial if none of the other met-
rics in F are isometric to g0 and that the deformation is multidimensional if F can
be parameterized by more than one variable. For two functions φ,ψ ∈ C∞(M),
we say that φ and ψ are isospectral potentials on (M, g) if the eigenvalue spec-
tra of the Schrödinger operatorsh2�+ φ andh2�+ψ are equal for any choice of
Planck’s constanth.

In this paper, we prove the existence of multiparameter isospectral deforma-
tions of metrics on SO(n) (n = 9 or n ≥ 11), SU(n) (n ≥ 8), and Sp(n) (n ≥ 4).
For these examples we follow a metric construction developed by Schueth, who
had given one-parameter families of isospectral metrics on orthogonal and unitary
groups. Our multiparameter families are obtained by a new proof of nontrivial-
ity that establishes a generic condition for nonisometry of metrics arising from the
construction. We also show the existence of noncongruent pairs of isospectral po-
tentials and nonisometric pairs of isospectral conformally equivalent metrics on
Sp(n) for n ≥ 6.

The industry of producing isospectral manifolds began in 1964 with Milnor’s
pair of 16-dimensional isospectral, nonisometric tori [M]. Several years later, in
the early 1980s, new examples began to appear sporadically (e.g. [GW1; I; V]).
These isospectral constructions were ad hoc and did not appear to be related until
1985, when Sunada began developing the first unified approach for producing
isospectral manifolds. The method described a program for taking quotients of a
given manifold so that the resulting manifolds were isospectral. Sunada’s original
theorem and subsequent generalizations [Be1; Be2; DG; P; Su] explained most of
the previously known isospectral examples and led to a wide variety of new ones;
see, for example, [BGG], [Bu], and [GWW].
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In1993 Gordon produced the first examples of closed isospectral manifolds with
different local geometry [G] and then, in a series of papers, generalized the con-
struction to the following principle based on torus actions.

Theorem 1.1. Let T be a torus and suppose (M, g) and (M ′, g ′) are two princi-
pal T -bundles such that the fibers are totally geodesic flat tori. Suppose that, for
any subtorus K ⊂ T of codimension 0 or 1, the quotient manifolds (M/K, ḡ) and
(M ′/K, ḡ ′), where ḡ and ḡ ′ are the induced submersion metrics, are isospectral.
Then (M, g) and (M ′, g ′) are isospectral.

Gordon’s initial application of Theorem 1.1 was to give a sufficient condition
for two compact nilmanifolds (discrete quotients of nilpotent Lie groups) to be
isospectral. In 1997, Gordon and Wilson furthered the development of the sub-
mersion technique by constructing the first examples of continuous families of
isospectral manifolds with different local geometry [GW2]. The base manifolds
were products of n-dimensional balls with r-dimensional tori (n ≥ 5, r ≥ 2),
realized as domains within nilmanifolds. Here Gordon and Wilson proved a gen-
eral principle for local nonisometry within their construction. They were also able
to exhibit specific examples of isospectral deformations of manifolds with bound-
ary for which the eigenvalues of the Ricci tensor (which, in this setting, were
constant functions on each manifold) deformed nontrivially. It was later proven in
[G+] that the boundaries S n−1 × T r of the manifolds in [GW2] were also exam-
ples of isospectral manifolds. These were closed manifolds that were not locally
homogeneous. A general abstract principle was given for nonisometry but specific
examples were also produced for which the maximum scalar curvature changed
throughout the deformation, thereby proving that maximal scalar curvature is not
a spectral invariant.

Expanding on the ideas in [G+], Schueth produced the first examples of sim-
ply connected closed isospectral manifolds; in fact, she even produced continuous
families of such manifolds [S1]. Schueth’s basic principle was to embed the torus
T 2 into a larger, simply connected Lie group G (e.g., G = SU(2) × SU(2) �
S3 × S3) and then extend the metric in order to find isospectral metrics on prod-
ucts of n-dimensional spheres with G (e.g., S 4 × S3 × S3). Since the torus was
embedded in the group, the torus action on the manifold was the natural group ac-
tion. Schueth’s examples were not locally homogeneous. For these examples, the
critical values of the scalar curvature changed throughout the deformation, prov-
ing that the manifolds were not locally isometric. Furthermore, by examining heat
invariants related to the Laplacian on 1-forms, Schueth was able to prove that these
examples were isospectral on functions but not on 1-forms.

Schueth continued to capitalize on the notion of embedding the torus in a larger
group in [S2]. In this case, Schueth specialized Gordon’s theorem (Theorem 1.1
here) to compact Lie groups (see Theorem 2.5) in order to produce one-dimensional
isospectral deformations of each of SO(n)× T 2 (n ≥ 5), Spin(n)× T 2 (n ≥ 5),
SU(n)×T 2 (n ≥ 3), SO(n) (n ≥ 8), Spin(n) (n ≥ 8), and SU(n) (n ≥ 6). Here
the metrics were left-invariant and so the manifolds were homogeneous. As with
many previous examples, Schueth’s metrics were constructed from linear maps j
into the Lie algebra of the Lie group in question. In order to prove nonisometry,
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Schueth expressed the norm of the Ricci tensor in terms of the associated linear
map and chose her linear maps so that the norm of the Ricci tensor varied through
the deformation.

These particular examples of Schueth’s were the inspiration for the first part
of this paper. We will use Schueth’s specialization of Theorem 1.1 to produce
our metrics. However, in this paper we will produce multidimensional families of
metrics and will develop a general nonisometry principle for families of metrics
arising from linear maps according to Schueth’s construction. Furthermore, we
will expand the class of Lie groups for which such families exist to include all of
the classical compact simple Lie groups of sufficient dimension.

More recently, Gordon and Schueth have constructed conformally equivalent
metrics φ1g and φ2g on spheres S n and balls Bn+1 (n ≥ 7) and on SO(n) (n ≥
14), Spin(n) (n ≥ 14), and SU(n) (n ≥ 9) [GS]. They also showed that the con-
formal factors φ1 and φ2 were isospectral potentials for the Schrödinger operator
h2�+φ on each of these manifolds. In this paper, we extend their result to include
Sp(n) for n ≥ 6.

The outline of the paper is as follows. In Section 2 we describe the metrics and
potentials to be used and state the theorems by Gordon and Schueth that we will
apply. Next, in Section 3 we give our examples of multiparameter isospectral de-
formations of metrics on the classical compact simple Lie groups. Section 4 is
devoted to proving the nontriviality of these examples. Finally, in Section 5 we
give our examples of noncongruent isospectral potentials and nonisometric con-
formally equivalent isospectral metrics on Sp(n) for n ≥ 6.

The author is pleased to thank Carolyn Gordon and Dorothee Schueth for many
helpful conversations about this work.

2. Metric and Potential Constructions

In this section, we describe the metrics and potentials that are considered in the
remainder of the paper. The constructions, which are due to Schueth and Gordon
[S; GS], are based on linear maps.

Consider a Lie groupG with Lie algebra g and bi-invariant metric g0. By torus
we mean a nontrivial, compact, connected abelian Lie group. Suppose thatH <G

is a torus with Lie algebra h and that K < G is a closed connected subgroup with
Lie algebra k. Assume that h is g0-orthogonal to k and that [h, k] = 0.

Notation 2.1. Given a linear map j : h → k ⊂ g, we define j t : g → h by
g0(j

t(X),Z) = g0(X, j(Z)) for allX ∈ g and Z ∈ h. In other words, j t is the g0-
transpose of j. We then have an inner product gj on g given by gj = (Id + j t )∗g0.

Let gj also denote the left-invariant metric on G that is associated to this inner
product.

Notice that gj differs from g0 only on k ⊕ h, where we have used the linear map j
to redefine orthogonality. In particular, j determines a subspace S = {X−j t(X) |
X ∈ g} that is gj -orthogonal to h and such that gj restricted to S is linearly isomet-
ric to g0 restricted to k via the map X − j t(X) �→ X.
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Recall that a Lie algebra is compact if it is the Lie algebra of a compact Lie
group.

Definition 2.2. Let g be a compact Lie algebra with associated Lie group G,
and let h be a real inner product space. Suppose j, j ′ : h → g are linear maps. We
say that j and j ′ are isospectral, denoted j ∼ j ′, if for each z ∈ h there exists an
Az ∈ G such that j(z) = Ad(Az)j ′(z). We say that j and j ′ are equivalent, de-
noted j � j ′, if there exist A∈G and C ∈O(h) such that j(z) = Ad(A)j ′(C(z))
for all z∈ h.

Remark 2.3. Note that in the case G = SO(n), SU(n), or Sp(n), the map
Ad(A) : g → g is given by matrix conjugation. Thus we may rewrite the iso-
spectrality condition as Azj(z)A−1

z = j ′(z) and the equivalence condition as
Aj(z)A−1 = j ′(C(z)).

Remark 2.4. We use the definition of equivalence that was introduced in [GW2]
for the case g = so(n) and in [S2] for the case g = su(n). This differs slightly
from the one cited in [GS] by Gordon and Schueth, whose definition states that
j and j ′ are equivalent if there exist a C ∈ O(h) and any automorphism φ of g
such that j(z) = φ(j ′(C(z))) for all z∈ h. This means that Gordon and Schueth’s
definition is less restrictive except in the cases of so(n) (n odd) and sp(n) where
every automorphism of g is an inner automorphism by some element of SO(n) or
Sp(n), respectively.

The following theorem by Schueth is a specialization of Gordon’s submersion the-
orem (Theorem 1.1).

Theorem 2.5 [S2]. Let G be a compact Lie group with Lie algebra g, and let
g0 be a bi-invariant metric on G. Let H < G be a torus in G with Lie algebra
h ⊂ g. Denote by u the g0-orthogonal complement of the centralizer z(h) of h
in g. Let λ, λ′ : g → h be two linear maps with λ|h⊕u = λ′|h⊕u = 0 that satisfy:
For every z ∈ h there exists an Az ∈G such that Az commutes with H and λ′

z =
Ad(Az)∗λz, where λz := g0(λ(·), z) and λ′

z := g0(λ
′(·), z). Denote by gλ and gλ′

the left-invariant metrics on G corresponding to the scalar products (Id + λ)∗g0

and (Id + λ′)∗g0 on g. Then (G, gλ) and (G, gλ′) are isospectral.

In particular, if j, j ′ : h → k ⊂ g are isospectral maps, then letting λ = j t and
λ′ = j ′t allows us to conclude that the metrics gj and gj ′ on G described previ-
ously are isospectral.

We have a similar theorem for producing pairs of isospectral potentials and pairs
of conformally equivalent isospectral metrics.

Theorem 2.6 [GS]. Let G be a compact Lie group with Lie algebra g, let P be
a compact Lie subgroup with Lie algebra of the form p = k ⊕ k for some Lie al-
gebra k, and let H < G be a torus with Lie algebra h. Suppose that [p, h] = 0
and that h is orthogonal to p with respect to a bi-invariant metric g0 on G. Let
j1, j2 : h → k be isospectral linear maps as in Definition 2.2, and define j : h →
k ⊕ k = p by j(Z) = (j1(Z), j2(Z)). Denote by gj the associated left-invariant
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metric onG. Let φ be a smooth function onG that is right invariant underH and
invariant under conjugation by elements of P. Suppose there exists an isometric
automorphism τ of (G, g0) such that τ |H = Id and such that τ∗ restricts to the
map (X,Y ) �→ (Y,X) on k ⊕ k = p ⊂ g. Then:

(1) φ and τ ∗φ are isospectral potentials on (G, gj ); and
(2) if, in addition, φ is positive, then φgj and (τ ∗φ)gj are conformally equivalent

isospectral metrics on G.

3. Examples of Isospectral Deformations
of Metrics on Lie Groups

We now apply the material in Section 2 to produce examples of isospectral defor-
mations of metrics on Lie groups. All of our examples arise from the following
theorem. In Section 4 we prove the nontriviality of the examples.

Theorem 3.1. Suppose g is one of so(n) (n = 5, n ≥ 7), su(n) (n ≥ 4), or
sp(n) (n ≥ 3) with associated group SO(n), SU(n), or Sp(n), respectively. Sup-
pose h is the Lie algebra of the two-dimensional torus. Let L be the space of all
linear maps j : h → g. Then there exists a Zariski open set O ⊂ L such that each
j0 ∈ O is contained in a continuous d-parameter family of linear maps that are
isospectral but pairwise not equivalent. Here d depends on g as follows.

g d

so(n) d ≥ n(n− 1)/2 − [
n
2

]([
n
2

] + 2
)

su(n) d ≥ n2 − 1 − n2+3n
2

sp(n) d ≥ n2 − n

(
Here

[
n
2

]
denotes the largest integer less than or equal to n

2 .
)

Note that for so(n)
we have d > 1 when n = 5 or n ≥ 7. For su(n), d = 1 when n = 4 and d > 1
when n ≥ 5. For sp(n), d > 1 when n ≥ 3.

Remark 3.2. This theorem was originally proven by Gordon and Wilson in
[GW2] for the case of so(n) with the associated group O(n). However, for fixed
j0 ∈ O, since the d-parameter family of linear maps that are isospectral to j0 is
continuous it follows that, for each z ∈ h, the family {j(z) | j is an element of
the d-parameter family} is the orbit of j0(z) under the adjoint action of a contin-
uous set of elements of O(n). The identity is contained in this set and so the set
is, in fact, contained in SO(n). Thus we have that each of Gordon and Wilson’s
families consists of maps that are isospectral via SO(n). We will use this in our
Example 3.6. On the other hand, for any pair of maps within one of Gordon and
Wilson’s families, there is no element of O(n) that makes them equivalent. This
is stronger than pairwise nonequivalence via SO(n). Indeed, for n = 5, 6, 7 and
n ≥ 9, the automorphism group of so(n) is contained in {Ad(A) | A ∈ O(n)}.
Thus we see that, except for n = 8, Gordon and Wilson’s families consist of linear
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maps that are not equivalent even by the definition given in [GS] (cf. Remark 2.4).
This will prove useful at the end of Section 4 when we prove nontriviality of our
isospectral examples.

Remark 3.3. Though Gordon and Wilson’s original proof for so(n) broke down
in the case n = 6

(
since n(n − 1)/2 − [

n
2

]([
n
2

] + 2
) = 0 for n = 6

)
, they ex-

plicitly exhibited one-parameter families of isospectral, nonequivalent linear maps
j : h → so(6).

Remark 3.4. In [S2], Schueth gives examples of one-dimensional families of
isospectral, nonisometric metrics on SO(n) (n ≥ 9), Spin(n) (n ≥ 9), and SU(n)
(n ≥ 6) that arise from continuous one-dimensional families of isospectral lin-
ear maps from h to so(n) (n ≥ 5) and su(n) (n ≥ 3), respectively. However,
her proof of nonisometry differs from ours. Schueth’s proof has the advantage of
showing nonisometry in a geometric way by using the norm of the Ricci tensor,
whereas ours has the advantage of giving a generic condition for linear maps to
produce nonisometric metrics.

Remark 3.5. Gordon and Wilson’s proof extends in a straightforward way to
su(n) and sp(n), making obvious adjustments depending on the Lie algebra. For
full details see [Pr]. Here, for sp(n) we have proved the case where n ≥ 3.
However, since sp(2) is isomorphic to so(5), the result is also true for n = 2.

Let T r denote an r-dimensional torus.

Example 3.6 (Isospectral Deformations of Metrics on SO(n)). Observe that
SO(n)×T r is contained as a subgroup of SO(n)× SO(2r) that is itself contained
as a subgroup of SO(n+ 2r) in the form of diagonal block matrices. From Theo-
rem 3.1 and Remarks 3.2 and 3.3 we have examples of one-dimensional families
of pairwise isospectral linear maps j : h → so(6) and multidimensional families
of pairwise isospectral linear maps j : h → so(n) for n = 5 or n ≥ 7. Hence,
according to the construction described in Section 2, this gives one-dimensional
families of isospectral metrics on SO(10) and multidimensional families for SO(9)
and SO(n) (n ≥ 11). By Theorem 2.5, within each family the metrics are pairwise
isospectral.

Example 3.7 (Isospectral Deformations of Metrics on Spin(n)). By lifting from
SO(n) to Spin(n), we may consider Spin(n)×T r a subgroup of Spin(n+2r). The
orbits of Ad(Spin(n)) in so(n) are equal to the orbits of Ad(SO(n)), so if j and
j ′ are isospectral with respect to SO(n) then they are also isospectral with respect
to Spin(n). Fix j0 ∈ O. By an argument similar to the one for SO(n), we con-
clude that there exist one-dimensional families of isospectral metrics on Spin(10)
and multidimensional families of isospectral metrics on Spin(9) and Spin(n) for
n ≥ 11.

Example 3.8 (Isospectral Deformations of Metrics on SU(n)). Here we have
SU(n) × T r contained as a subgroup of SU(n) × SU(r + 1), which in turn is
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contained as a subgroup of SU(n + r + 1). From Theorem 3.1, we have one-
dimensional families of pairwise isospectral linear maps j : h → su(4) and mul-
tidimensional families of pairwise isospectral linear maps j : h → su(n) for n ≥
5. Thus we have one-dimensional isospectral deformations of metrics on SU(7)
and multidimensional families of isospectral metrics on SU(n), n ≥ 8.

Example 3.9 (Isospectral Deformations of Metrics on Sp(n)). Sp(n) × T r is
contained as a subgroup of Sp(n)× Sp(r), which itself is contained as a subgroup
of Sp(n + r). Theorem 3.1 and Remark 3.5 give us multidimensional families of
pairwise isospectral linear maps j : h → sp(n) for n ≥ 2. Thus we have multi-
dimensional families of isospectral metrics on Sp(n) for n ≥ 4.

4. Nonisometry of Examples

In this section we prove nontriviality of Examples 3.6–3.9. Here we let Gn de-
note one of SO(n), Spin(n), SU(n), and Sp(n) and let gn denote the associated
Lie algebra so(n), su(n), or sp(n). Recall that for Examples 3.6–3.9 we embed-
ded Gn × T 2 into a higher-dimensional group. In this section, we will refer to
the higher-dimensional group as Gn+p, where p = 4 in the cases of SO(n) and
Spin(n), p = 3 in the case of SU(n), and p = 2 in the case of Sp(n). Let I0(gj )

denote the identity component of the isometry group of (Gn+p, gj ), and let I e0(gj )
denote the isotropy subgroup at e of I0(gj ). For x ∈ Gn+p, use Lx (resp. Rx) to
denote left (resp. right) translation by x.

Theorem 4.1 [OT]. LetG be a compact, connected, simple Lie group and let g
be a left-invariant Riemannian metric onG. Then, for each isometry f contained
in the identity component of the group of isometries of (G, g), there exist x, y ∈G
such that f = Lx � Ry.
In particular, for α ∈ I e0(gj ), we have that there exists some x ∈Gn+p such that α
is equal to conjugation of Gn+p by x. Since α fixes the identity, at the Lie algebra
level we have that α∗ is equal to Ad(x).

Proposition 4.2. SupposeG is a compact simple group with left-invariant met-
rics g and g ′, neither of which is bi-invariant. If µ : (G, g) → (G, g ′) is an isom-
etry such that µ(e) = e, then µ is an automorphism of G.

Proof. Sinceµ is an isometry, we have that I e0(gj ) is isomorphic to I e0(gj ′) via con-
jugation by µ. Because G is compact, the isometry groups of (G, g) and (G, g ′)
are also compact. Thus we may write the isometry group of (G, g) asG1 ×G2 ×
· · ·×Gs ×T/Z and the isometry group of (G, g ′) asG′

1 ×G′
2 ×· · ·×G′

t ×T ′/Z ′,
where each G(′)

i is simple, T (′) is a torus, and Z(′) is central. Each isometry group
contains a copy of G in the form of left translations. Furthermore, since neither
g nor g ′ is bi-invariant, each isometry group contains (by Theorem 4.1) exactly
one copy of G. Any isomorphism from the isometry group of (G, g) to the isom-
etry group of (G, g ′) must carry simple factors to simple factors. Since G is the
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only simple factor of its dimension, it follows that any isomorphism carries G to
G. This means that for every x ∈ G there exists an x ′ ∈ G such that µLxµ−1 =
Lx ′ . Hence, for each x, y ∈G,

µ(xy) = µ(Lxy)(e) = µ(LxLy)(e) = µLxµ
−1µLy(e)

= Lx ′µLy(e) = Lx ′Ly ′µ(e) = Lx ′Ly ′(e)

= x ′y ′ = µ(x)µ(y). (1)

Remark 4.3. If µ : (G, g) → (G, g ′) is an isometry that does not carry the iden-
tity to itself, then composing µ with Lµ(e)−1 yields an automorphism of G.

The following corollary is immediate.

Corollary 4.4. Let Gn+p be one of SO(n + 4), Spin(n + 4), SU(n + 3), or
Sp(n+ 2). Given two nonzero linear maps j and j ′, suppose there exists an isom-
etry µ : (Gn+p, gj ) → (Gn+p, gj ′), where gj and gj ′ are as in Notation 2.1. Then
Lµ(e)−1 � µ is an automorphism of Gn+p.

Lemma 4.5. LetGn+p be one of SO(n+4), Spin(n+4), SU(n+3), or Sp(n+2),
where T 2 is embedded (as before) in Gp ⊂ Gn+p. Let j, j ′ : h → gn be nonzero
linear maps and let gj and gj ′ be as in Notation 2.1. Suppose there exists an isom-
etry µ : (Gn+p, gj ) → (Gn+p, gj ′) such that µ(e) = e and µ(T 2) = T 2. Then
there is an element C ∈O(h) such that j(z) = µ−1∗ j ′(Cz) for all z∈ h.

Proof. From Corollary 4.4 we know that µ is an automorphism ofGn+p. Thus µ∗
maps left-invariant vector fields to left-invariant vector fields; that is,µ∗ : gn+p →
gn+p. If µmaps T 2 to itself then it must isometrically map the Lie algebra h to it-
self. This implies that there is an element C ∈O(h) such that µ∗ restricted to h is
equal to C.

Furthermore, since µ is an automorphism of Gn+p, if µ maps T 2 to itself in
Gn+p then it must also isomorphically map the identity component of the central-
izer of T 2 in Gn+p to itself. At the Lie algebra level, direct calculation shows that
the centralizer of h in

• so(n+ 4) is so(n)⊕ h. Hence the identity component of the centralizer of T 2

in SO(n + 4) is SO(n) × T 2 and the identity component of the centralizer of
T 2 in Spin(n+ 4) is Spin(n)× T 2.

• su(n+ 3) is su(n)⊕ tu⊕ h, where

u =




i/n

...
i/n

−i/3
−i/3

−i/3


 ∈ su(n+ 3). (2)

LettingU denote the one-parameter subgroup associated to u, we have the iden-
tity component of the centralizer of T 2 in SU(n+ 3) is SU(n)× U × T 2.
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• sp(n+ 2) is sp(n)⊕ h. Thus the identity component of the centralizer of T 2 in
Sp(n+ 2) is Sp(n)× T 2.

In each case, the identity component of the centralizer of T 2 is the product of
a simple group, Gn, with a torus. Therefore µ(Gn) = Gn and µ∗ is a Lie algebra
automorphism of gn. As a result, for any X ∈ gn we have that X − j t(X) ∈ h⊥gj

is mapped to µ∗X − Cjt(X).

On the other hand, since µ∗X ∈ gn and Cjt(X) ∈ h and since µ∗ : h⊥gj →
h

⊥gj ′, it must be the case that Cjt(X) = j ′t(µ∗X) for all X ∈ gn. Otherwise,
Cjt(X) = j ′t(µ∗X) + Z for some nonzero Z ∈ h depending on X, but in this
case µ∗X − Cjt(X) = µ∗X − j ′t(µ∗X)− Z, which is not in h

⊥gj ′.

Finally, taking transposes, we see that the condition j t(X) = C−1j ′t(µ∗X) for
all X ∈ gn implies j(z) = µ−1∗ j ′(Cz) for all z∈ h.

Remark 4.6. From the proof of Lemma 4.5, we see that µ restricted toGn is an
automorphism. Suppose µ restricted to Gn is an inner automorphism, so that µ∗
restricted to gn is equal to Ad(A) for some A ∈ Gn. Then, by the proof, j(z) =
Ad(A−1)j ′(Cz) for all z∈ h. In other words, j and j ′ are equivalent.

Genericity Condition 4.7. We say that j : h → gn is generic if there are only
finitely many A∈Gn such that j(z) = Ad(A)j(z) for all z∈ h.

From the proofs found in [GW2] and [Pr], the linear maps j used in Examples 3.6–
3.9 are generic.

Lemma 4.8. Let Gn+p be one of SO(n + 4), Spin(n + 4), SU(n + 3), or
Sp(n + 2). Let j : h → gn be generic and let gj be the associated metric on
Gn+p. For Gn+p equal to SO(n + 4), Spin(n + 4), or Sp(n + 2), let D be the
group of isometries of (Gn+p, gj ) generated by the set {Lx � Rx−1 | x ∈ T 2}. For
Gn+p equal to SU(n + 3), let D be the group of isometries of (Gn+p, gj ) gener-
ated by the set {Lx �Rx−1 | x ∈U ×T 2}, whereU is as in the proof of Lemma 4.5.
Then D is a maximal torus in I e0(gj ).

Proof. It is straightforward to check that D ⊂ I e0(gj ). Recall that every element
of I e0(gj ) is of the form Lx � Rx−1 for some x ∈ Gn+p. Let C(Gn+p) denote the
finite center of Gn+p. We identify I e0(gj ) with a subgroup of Gn+p/C(Gn+p) via
the map that sends Lx � Rx−1 to the coset of x in Gn+p/C(Gn+p). Under this cor-
respondence, we consider D a subgroup of Gn+p/C(Gn+p).

Suppose that {yt | t ∈ (−ε, ε)} is a continuous family of elements of Gn+p with
y0 = e. Suppose furthermore that, for each t, Lyt � Ry−1

t
is an element of I e0(gj )

that commutes withD. If Lyt � Ry−1
t

commutes withD then, under the identifica-
tion of D with a subgroup of Gn+p/C(Gn+p), for each x ∈ T 2 (resp. U × T 2) we
have y−1

t xyt = xzt for some zt ∈ C(Gn+p). But C(Gn+p) is discrete, so it must
be the case that zt = e for all t and all x ∈ T 2. This implies for any t that, when
yt acts by isometry (i.e. conjugation) on Gn+p, it fixes T 2 pointwise. Thus the
continuous family {yt | t ∈ (−ε, ε)} is contained in the identity component of the
centralizer of T 2 in Gn+p.
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Since yt is contained in the identity component of the centralizer of T 2 for each
t, it follows that:

• for SO(n+ 4), Spin(n+ 4), and Sp(n+ 2), yt is equal to a product AtZt ; and
• for SU(n+ 3), yt equals AtUZt
for some At ∈Gn and Zt ∈ T 2. In both cases, (Lyt �Ry−1

t
)∗ restricted to gn equals

Ad(At ). By the proof of Lemma 4.5, j(z) = Ad(A−1
t )j(Cz) for some C ∈O(h).

But since Lyt � Ry−1
t

fixes T 2 pointwise, we have that C is equal to the identity
and so

j(z) = Ad(A−1
t )j(z) for all z∈ h. (3)

But by the genericity of j, there are only finitely many At for which equation (3)
holds and thus only finitely many At such that yt = AtZt (resp. AtUZt) for some
Zt ∈ T 2. Because our family {yt | t ∈ (−ε, ε)} is continuous, it must be that At is
the identity for all t ∈ (−ε, ε). Therefore {yt | t ∈ (−ε, ε)} ⊂ T 2. In other words,
D is not contained in a higher-dimensional connected torus and hence is a maxi-
mal torus in I e0(gj ).

Theorem 4.9. Let Gn+p be one of SO(n + 4), Spin(n + 4), SU(n + 3), or
Sp(n + 2). Let j and j ′ be generic linear maps such that µ : (Gn+p, gj ) →
(Gn+p, gj ′) is an isometry. Then there exists an element C ∈ O(h) such that
j(z) = µ−1∗ j ′(Cz) for all z ∈ h. By Remark 4.6, if µ restricts to an inner auto-
morphism of Gn, then j and j ′ are equivalent.

Proof. Suppose that µ : (Gn+p, gj ) → (Gn+p, gj ′) is an isometry. We may as-
sume that µ(e) = e. By Lemma 4.5, it suffices to show that µ(T 2) = T 2.

We know that I e0(gj ) is isomorphic to I e0(gj ′) via conjugation by µ. According
to Lemma 4.8, D is a maximal torus in I e0(gj ) and so the isomorphism carries D
to a maximal torus in I e0(gj ′). All maximal tori in a compact Lie group are con-
jugate; we may therefore assume (after possibly composing µ with an element of
I e0(gj ′)) that conjugation by µ carries D to the similarly defined set in I e0(gj ′).

Case I. For SO(n + 4), Spin(n + 4), and Sp(n + 2), this implies that for any
a ∈ T 2 we have µ � La � Ra−1 � µ−1 = Lb � Rb−1 for some b ∈ T 2. On the other
hand, by Corollary 4.4, we know that µ is an automorphism of Gn+p. Thus, for
any x ∈Gn+p,

µ � La � Ra−1 � µ−1(x) = µ(aµ−1(x)a−1) = µ(a)xµ−1(a) = Lµ(a) � Rµ(a−1)(x).

In other words, µ(a) = bz for some z ∈ C(Gn+p). For each of SO(n + 4),
Spin(n + 4), and Sp(n + 2), C(Gn+p) is finite. Since µ is continuous and since
µ(e) = e, we have that µ(T 2) = T 2.

Case II. For SU(n+ 3), a similar argument implies that µ(U × T 2) = U × T 2

and thus, at the Lie algebra level, µ∗ maps tu⊕ h to tu⊕ h.
Now considerµ as an automorphism. The automorphism group of SU(n+3) is

generated by the inner automorphisms and one outer automorphism, namely com-
plex conjugation. At the Lie algebra level, conjugating an element X ∈ su(n+ 3)
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by any element of SU(n+ 3) preserves the eigenvalues of X. In particular, u has
eigenvalue i/n with multiplicity n and eigenvalue −i/3 with multiplicity 3. No
other element of tu ⊕ h has the same eigenvalues. Therefore, each inner auto-
morphism of su(n+ 3) maps u to u. Similarly, at the Lie algebra level, the outer
automorphism of SU(n+ 3) negates the eigenvalues of X ∈ su(n+ 3). For each
t ∈ R, this sends tu to −tu. Thus the vector space spanned by u is fixed.

Since µ is an isometry, µ∗ maps the gj -orthogonal complement of the space
spanned by u to the gj ′ -orthogonal complement of the space spanned by u. Thus
µ∗(h) = h and therefore µ(T 2) = T 2.

Theorem 4.10. Let gn be one of so(n), su(n), or sp(n). Suppose j0 : h → gn
is contained in a family of generic linear maps that are pairwise nonequivalent.
Then there are at most finitely other maps j contained in the family such that gj0

and gj are isometric.

Proof. Suppose j and j ′ are two generic linear maps such that gj and gj ′ are both
isometric to gj0 . By Theorem 4.9 we have Lie algebra automorphisms α,α ′ of gn
and elements C,C ′ of O(h) such that

j(z) = αj0(Cz) (4)
and

j ′(z) = α ′j0(C
′z) (5)

for all z∈ h.
If α and α ′ are in the same coset of Aut(g)/Aut0(g), then they differ by an inner

automorphism. But in this case j and j ′ are equivalent. Since our family con-
sists of pairwise nonequivalent linear maps, j is equal to j ′. The theorem now
follows from the fact that, for each of so(n), su(n), and sp(n), Aut(g)/Aut0(g) is
finite.

Finally we may apply Theorem 4.10 to Examples 3.6–3.9. For Examples 3.6 and
3.7, let j0 be a linear map in the set O from Theorem 3.1 and let Fso(n) be a
d-parameter family of linear maps that are isospectral but pairwise nonequiva-
lent. Since the automorphism group of so(n) (n = 5, 6, 7, n ≥ 9) is contained in
{Ad(A) | A ∈ O(n)}, we have from the proof of Theorem 4.10 and Remark 3.2
that no two elements of Fso(n) give rise to isometric metrics on SO(n) or Spin(n).
Thus we have an isospectral deformation of gj0 . For so(8), since the cardinality of
Aut(so(8))/Aut0(so(8)) is 3, for any element of Fso(8) there are at most two other
elements that could give rise to isometric metrics on SO(12) or Spin(12). For fixed
j0 ∈ O, we may choose Fso(8) small enough that no other element of Fso(8) pro-
duces a metric isometric to gj0 , thereby obtaining an isospectral deformation of gj0 .

The analysis of Examples 3.8 and 3.9 is similar. Recall that the automorphism
group of su(n) for n ≥ 4 is generated by inner automorphisms and the outer auto-
morphism that takes an element to its complex conjugate. By choosing j0 in O,
we obtain a d-dimensional isospectral deformation of gj0 such that, for any metric
other than gj0 within the deformation, there is at most one other isometric met-
ric contained in the deformation. Finally, the automorphism group of sp(n) con-
sists entirely of inner automorphisms. Thus, for n ≥ 4, we have multiparameter
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isospectral deformations of metrics on Sp(n) such that no two metrics in a given
deformation are isometric.

Thus we have produced isospectral deformations of metrics on each of SO(n)
(n ≥ 9), Spin(n) (n ≥ 9), SU(n) (n ≥ 7), and Sp(n) (n ≥ 4). Except for low
dimensions, all of these deformations are multidimensional.

5. Examples of Isospectral Potentials and
Conformally Equivalent Metrics on Sp(n)

Here we apply Theorem 2.6 to Sp(n). For a particular choice of φ we will find that
our pairs of isospectral potentials are noncongruent and that our pairs of confor-
mally equivalent isospectral metrics are nonisometric. As before, we let T r denote
an r-dimensional torus with Lie algebra h.

Example 5.1. First, consider T r as an embedded subtorus of Sp(r) and consider
Sp(n)×Sp(n)×Sp(r) as a block-diagonal subgroup of Sp(2n+r). (We are think-
ing of elements of Sp(2n+ r) as complex matrices with (2n+ r)2 2 × 2 blocks.)
Suppose τ is the automorphism of Sp(2n+ r) given via conjugation by the matrix

c =

 0 Id2n 0

Id2n 0 0
0 0 Id2r


 . (6)

By Theorem 3.1 we have continuous families of isospectral linear maps from
the Lie algebra h of T 2 into sp(n) for n ≥ 2. Suppose that j1 and j2 are two ele-
ments of a particular family satisfying the following genericity conditions.

Genericity Conditions 5.2.

(a) The kernel of the map j = (j1, j2) : h → sp(n)⊕ sp(n) is trivial.
(b) The image of j has trivial centralizer in sp(n)⊕ sp(n).

Notice that Condition 5.2(a) is a mild condition that is easily satisfied. Suppose
Condition 5.2(b) is not satisfied by the maps j1 and j2. This would imply that there
is at least a one-dimensional family of elementsX in sp(n) such that [X, j1(Z)] =
0 for all Z ∈ h. But then it would follow that there exists a one-dimensional fam-
ily of elements A in Sp(n) such that Ad(A)j1(Z) = j1(Z) for all Z ∈ h. Thus, if
j1, j2 are generic in the sense of Condition 4.7, then Condition 5.2(b) is automat-
ically satisfied.

Let φ be any smooth function onG that is right-invariant under T 2 and invariant
under conjugation by elements of Sp(n) × Sp(n). Then, following the construc-
tion in Theorem 2.6, we have isospectral potentials φ and τ ∗φ on Sp(2n+ 2, gj )
for n ≥ 2. Furthermore, if φ is positive then φgj and (τ ∗φ)gj are conformally
equivalent isospectral metrics on Sp(2n+ 2).

We now choose φ so that φ and τ ∗φ are not congruent on Sp(2n + 2, gj ) and
so that φgj and (τ ∗φ)gj are not isometric. We follow Gordon and Schueth’s con-
struction and suppose that each matrix in Sp(2n+ r) is written
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X =

 A B C

D E F

H J L


 , (7)

whereA,B,C,D are 2n×2nmatrices,L is a 2r×2r matrix,C andF are 2n× 2r
matrices, and H and J are 2r × 2n matrices. Let c1 > c2 > 0 and define φ by

φ(X) := exp[c1 Re(detA)+ c2 Re(detE)]. (8)

This functionφ is almost exactly the same as the functionφ used for SO(2m+2r)
in [GS] except that here we have taken the real parts of the determinants of detA and
detE to account for the fact that matrices in Sp(n) have complex entries. In their
proof, Gordon and Schueth had to treat the cases of SO(2m+2r) and SU(2m+r+1)

separately because of the elements

[
α Idm

β Idm
γ Idr+1

]
in SU(2m+ r +1) (cf. our

proof of Lemma 4.5). The analogous element does not exist in Sp(2n+ r). Thus
the proofs that φ and τ ∗φ are not congruent and that φgj and (τ ∗φ)gj are not
isometric follow almost exactly the proofs for SO(2m + 2r) once we make the
obvious adjustments for Sp(2n+ r). Therefore, our examples are nontrivial.
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