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Nonstability of the AK Invariant

Tatiana Bandman & Leonid Makar-Limanov

1. Introduction

In this paper we again try to understand (see [BM-L1; BM-L2]) what properties of
a surface are related to the stability of its AK invariant. We call an AK invariant
stable if

AK(S × C) = AK(S).

We provide an example of a surface with a nonstable AK invariant and nontrivial
fundamental group. We also compute the invariant for the cylinders over surfaces
endowed with a C-action that has one singular fiber and where this fiber has re-
duced components.

Until now the surfaces Sn = {xny = p(x, z)}, where p(0, v) does not have
multiple roots, were the only examples of smooth surfaces with unstable invariant
[BM-L1; D; Fie; W]. In particular, the Danielewski surfaces

Sn,m = {xny = zm − 1}
are of this kind. All these surfaces have the following common features:

(i) π1(Sn,m) = 1;
(ii) Sn,m admits a fixed point–free C-action;

(iii) fibering of Sn,m that corresponds to a C-action has only one nonconnected
fiber;

(iv) all components of any fiber are reduced.

As far as nonstability of the invariant is concerned we show that (i) may be re-
placed by

(i′) π1(Sn,m) is finite cyclic.

Condition (ii) is not important. However, (iii) seems to be important (see Sec-
tion 3) and we believe that it cannot be relaxed. Condition (iv) is not crucial: we
provide an example where it is not satisfied.

On the other hand if (iii) and (iv) are satisfied (the so-called generalized Dan-
ielewski surfaces [Du]) and if AK(S) �= C, then the invariant is nonstable.
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Let us call the fundamental group “small” if it is finite cyclic and “large” other-
wise. In Section 2 we review some known facts about surfaces with large funda-
mental group and recall that their invariant is stable.

In Section 3 we give an example of a surface with small (but not trivial) fun-
damental group and unstable invariant. To obtain this example we describe a
homological Q-plane S with a C-action and with π1(S) = Z/mZ (where m is
prime) as a quotient of a surface Sn by the cyclic transformation group. In the case
AK(S) = C this was done by Miyanishi and Masuda [MaMi1; MaMi2].

In Section 4 we prove that, for a surface S with properties (iii) and (iv),

AK(S × C) = C.

2. Surfaces with Large Fundamental Group

Definition 1. Let V be an affine variety and let G(V ) be the group generated
by all C-actions on V. Then AK(V ) ⊂ O(V ) is a subring of all regular G(V )-
invariant functions on V.

We want to know when
AK(S × C) = AK(S). (1)

If the logarithmic Kodaira dimension k̄(S) ≥ 0 then (1) holds by a theorem of
Fujita and Iitaka [FuI]. So, let S be a surface with logarithmic Kodaira dimension
k̄(S) = −∞. Miyanishi and Sugie [MiSu; Su] proved that the equality k̄(S) =
−∞ is equivalent to the existence of a cylinder-like subset (c.l.s.).

Definition 2. A surface S has a cylinder-like subset U (c.l.s.U) if it has a Za-
riski open subset U ⊂ S that is isomorphic to the product B ×C of a smooth affine
curve B and the complex line.

Any c.l.s. provides a line pencil on a surface S (see [Be; Mi1; MiSu]), that is, a
morphism ρ : S → C into a smooth curve C (C ⊃ B) such that the fiber ρ−1(z)

for a general z ∈ C is isomorphic to C. The pencils are different if their general
fibers do not coincide. Any line pencil ρ over an affine curve C on a surface S

corresponds to a C-action ϕρ on S such that its general orbit: (a) coincides with
the general fiber of the pencil (see Lemma 1); and (b) corresponds to a locally
nilpotent derivation (l.n.d.) ∂ρ of the ring O(S) of regular functions on S such that
∂ρf = 0 if and only if f is ϕρ-invariant [KM-L; M-L3; Mi1; S].

Definition 3. Two C-actions are equivalent if they induce the same fibering ρ

(i.e., if they have the same general orbits).

Definition 4. An affine surface is affine rational if there exists a dominant reg-
ular map from Cn into S for some n∈ N.

If in Definition 2 the surface S is affine rational, then C ∼= C or C ∼= P1.
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For a pencil ρ over C, one can find a closure S̄ of S and the extension ρ̄ : S̄ → C̄

such that (a) the general fiber ρ̄−1(z) ∼= P1 and (b) any (−1) curve contained in
a fiber intersects S. For any z ∈ C, the fiber ρ−1(z) = ⋃

C ′
i is a union of smooth

disjoint curves C ′
i
∼= C1 [Mi1, Lemma 4.4.1].

Definition 5 [Fu]. Let Fz = ρ−1(z) = ∑ i=m
i=1 niCi, where the Ci are con-

nected (and irreducible) components. If m = 1 and n1 = 1, then the fiber is called
nonsingular. A singular fiber either is nonconnected or has m = 1 and n1 > 1. If
Fz = ∑ i=m

i=1 Ci (i.e. ni = 1) then the fiber is called reduced. The number µ(z) =
g.c.d.(ni) is called the multiplicity of a fiber. If a fiber has no points in S then, by
definition, µ = ∞.

The topology of surfaces with fibrations has been studied by Fujita. Let k be the
number of fibers with multiplicity µ > 1 (see Definition 5). We shall use the fol-
lowing facts from [Fu].

I. If the fundamental group π1(S) is infinite, then there is no dominant mor-
phism φ : Cn → S.

II. If the fundamental group π1(S) is finite, then k ≤ 3.
III. If π1(S) is finite non-abelian, then k = 3 and for all three fibers 1 < µ < ∞.

IV. If π1(S) is finite abelian and nontrivial, then either (a) k = 3, π1(S) ∼=
Z/2Z⊕Z/2Z , and µ = 2 for all three singular fibers; or k = 2 and π1(S) ∼=
Z/mZ , where m > 1 is the g.c.d. of two multiplicities.

V. If π1(S) is trivial, then either k ≤ 1 or k = 2 and m = 1.

In order to use this information for computing AK(S × C), we need the following
lemmas.

Lemma 1 (see also [MaMi2, Lemma 1.1]). Assume that on a smooth affine sur-
face S there is a C-action φ. Let ρ : S → C be a regular map of S onto a smooth
curve C such that the general fiber is an orbit of φ. Then C is affine.

Proof. Since any C-action on S defines an l.n.d. in O(S) (see [S]), this lemma
follows from Lemma 1 of [M-L1], according to which there should be a regu-
lar nonconstant φ-invariant function in O(S). This function is constant along the
fibers of ρ and so belongs to O(C). But then C cannot be compact.

Lemma 2. Let A be an affine commutative domain. If AK(A) = A then we have
AK(A[x]) = AK(A).

Proof. Let us assume that ∂ is a nonzero locally nilpotent derivation of A[x] that
is not identically zero on A. Let def(r) = deg(∂(r)) − deg(r), where “deg” de-
notes the degree relative to x. Let m = max{def(r) | r ∈A[x]}. Then m < ∞.

Indeed, A is finitely generated. Let y1, . . . , yk be a generating set of A. If a ∈A

then a = p(y1, . . . , yk), where p is a polynomial. Hence ∂(a) = ∑
i ∂(yi)pi,

where the pi are partial derivatives of p relative to yi. Because all pi are ele-
ments of A, we may conclude that def(a) = deg(∂(a)) ≤ max{deg(∂(yi))} is
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uniformly bounded. Now let r ∈ A[x]. Then r = ∑n
i=0 ri x

i where ri ∈ A, so
∂(r) = ∑n

i=0 ∂(ri)x
i + ∑n

i=0 iri x
i−1∂(x). Therefore,

deg(∂(r)) ≤ max{n + max{deg(∂(ri))}, n − 1 + deg(∂(x))}
and so def(r) = deg(∂(r)) − n is uniformly bounded. By our definition of m we
can write ∂(a) = ∑m

i=0 ∂i(a)x
i for any element a ∈A. We also can write ∂(x) =∑m+1

i=0 ei x
i , where ei ∈ A. Let us define a new derivation ε on A[x] by ε(a) =

∂m(a)x
m and ε(x) = em+1x

m+1. It is easy to check that it is, in fact, a derivation
and that it must be locally nilpotent, for otherwise ∂ cannot be locally nilpotent.
Let d(r) denote the degree of r ∈ A[x] relative to ε (see [FLN; KM-L]; this de-
gree is defined by the formula d(r) = max{d | εd(r) �= 0} and is nonnegative
for nonzero r). Then d(x) − 1 = d(em+1) + (m + 1)d(x). Since this equality is
not possible for nonnegative d(x) and d(em+1), we may conclude that em+1 = 0.
Hence x is a constant for ε and ∂m is a locally nilpotent derivation on A, which
implies that AK(A) �= A.

Together these facts yield the following proposition.

Proposition 1. Let S be an affine smooth surface with rational closure and let
W = S × C. Then:

(a) AK(W ) = AK(S) if π1(S) is infinite;
(b) AK(W ) = AK(S) = O(S) if π1(S) is finite and non-abelian;
(c) AK(W ) = AK(S) = O(S) if π1(S) ∼= Z/2Z ⊕ Z/2Z.

Proof. We prove the proposition case by case.
(a) If π1(S) is infinite, then S is not affine rational [Fu]. On the other hand, if

AK(S) = C then the orbit G(S) contains an image of C2 under a dominant map
[BM-L1]. Therefore, AK(S) �= C and only two cases are possible.

• If AK(S) = O(S) (no actions at all), then by Lemma 2 we have AK(W ) =
AK(S) = O(S).

• If AK(S) �= O(S) then AK(S) = O(C), where C is a base of the correspond-
ing fibration (see Definitions 2 and 3).

The general orbit OW of G(W ) contains OS × C, where OS is an orbit of a
C-action on S. On the other hand, OW contains an image of C2 under a dominant
map [BM-L1] and there is no dominant map from C2 into S. Hence, the image of
OW under the projection of W onto S is not dense and contains an orbit OS; that
is, it coincides with OS. Therefore, AK(W ) = O(C) = AK(S).

(b) If π1(S) is finite and nonabelian then, by [Fu], k = 3 and there is no fiber
with µ = ∞ for any linear pencil. By Lemma 1 we obtain that there are no C-
actions on such surfaces (another proof of this fact was explained to the authors
by R.V. Gurjar in a private communication); by Lemma 2, AK(W ) = AK(S) =
O(S).

(c) π1(S) ∼= Z/2Z ⊕ Z/2Z holds only if k = 3 and µ = 2, so there are no C-
actions on these surfaces either.
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3. Surfaces with Small Fundamental Group

The surfaces with finite cyclic fundamental group are much more complicated from
the AK-invariant point of view. We shall investigate three examples of surfaces Si

(i = 1, 2, 3) with π1(Si) = Z/2Z and the AK invariant of all three possible types.
In the discussion of Examples 2 and 3 we shall use the following properties of

locally nilpotent derivations. Let A be a ring with a filtration and let Ā be the cor-
responding graded ring. It is known (see [KM-L, Sec. 5]) that:

A. under some mild conditions (which are satisfied in our examples), a nonzero
locally nilpotent derivation ∂ of A induces a nonzero locally nilpotent deriva-
tion ∂̄ on Ā, so that the kernel Ā∂̄ of ∂̄ contains A∂;

B. a nonzero locally nilpotent derivation ∂ of A allows us to define on A a func-
tion d(a) = max{d | ∂d(a) �= 0} (here a is a nonzero element of A)—this
function is called the degree function relative to ∂ since it possesses all usual
properties of a degree function [FLN];

C. if a nonzero product is a ∂ constant then all the factors are also ∂ constants (see
[FLN]);

D. [Frac(A)]∂ = Frac(A∂). Indeed, if f = αg and ∂α = 0, then ∂kf = α∂kg for
all k ([M-L2], Lemma 1 of O. Hadas).

Example 1. S1 ⊂ C5 is defined by the equations

y2 = x(z − 1), t 2 = u(z − 1), z(z − 1) = yt;
yu = tz, yz = xt, xu = z2.

Observe that S1 has two nonequivalent actions, which correspond to the following
locally nilpotent derivations:

∂x = 0, ∂u = 0,

∂y = x, ∂t = u,

∂z = 2y, ∂z = 2t,

∂t = 3z − 2, ∂y = 3z − 2,

∂u = 4t, ∂x = 4y.

Therefore, AK(S1) = C.

The fibering on S1 is defined by the regular function x. There are two types of
fibers.

1. The general fiber, x �= 0. It is isomorphic to C1 with coordinate y:

z = y2/x + 1, t = y(y2/x + 1)

x
, u = (y2/x + 1)2

x
.

2. x = 0. Then y = 0, z = 0, and u = −t 2; that is, the fiber is isomorphic to C1.

Take as local coordinates h = y/(z − 1) and t. Then

z = ht, u = t 2/(ht − 1), y = h(ht − 1), x = h2(ht − 1),
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which shows that x has a zero of the second order. Hence the multiplicity of
the fiber is 2 and π1(S1) = Z/2Z.

The surface is smooth because it has two fixed point–free C-actions. Actually
this surface is described in Theorem 2.6 of [MaMi2]. The map

(α, β, γ ) →
(
x = α2

δ
, y = αγ

δ
, z = αβ

δ
, t = γβ

δ
, u = β2

δ

)

is an isomorphism of S1 and P2 \C, where (α, β, γ ) are homogeneous coordinates
in P2, {δ = αβ − γ 2}, and C is a conic {δ = 0}.
Example 2.

S2 = {α(αβ + 1) = γ 2} ⊂ C3,

where α, β, γ are coordinates in C3. Here S2 has an action corresponding to the
l.n.d. ∂α = 0, ∂β = 2γ, ∂γ = α2. The fibering on S2 is defined by the regular
function α, and again there are two types of fibers.

1. The general fiber, α �= 0. It is isomorphic to C1 with coordinate γ :

β = γ 2 − α

α2
.

2. α = 0. Then γ = 0, and local coordinates may be chosen as h = β/(αβ + 1)
and γ :

αβ = γ 2h, β = h(hγ 2 + 1), α = γ 2

hγ 2 + 1
;

this shows that α has a zero of the second order, the multiplicity of the fiber is
2, and π1(S2) = Z/2Z.

Let us show that S2 has just one class of l.n.d.s up to equivalence (i.e., all other
l.n.d.s define the same fibration). The ring O(S2) = R can be embedded in C[a, b]
by mapping α to a2, γ to a(1+ a3b), and β to ab(2 + a3b). One l.n.d. on R is de-
fined by ∂(a) = 0 and ∂(b) = 1. Assume that there is another nonzero l.n.d. ε that
does not send a to zero. Let f be from its kernel. Let us take the lexicographic
order b � a on C[a, b] and the induced order on R. We denote by ū the leading
form of an element u and denote by R̄ the ring that is generated by the leading
forms of elements of R.

Clearly f̄ is aibj where j > 0. Since R = C[α, β] + γC[α, β], we see that
R̄ is generated by a2, a4b2, and a4b. Therefore, ε defines a nonzero l.n.d. ε̄ on R̄

and f̄ ∈ ker(ε̄) (see property A). Replacing f by f 2 if necessary, we may assume
that j is even and so f̄ = (a4b2)k (since f̄ is ε̄-constant, if a factorization of f̄

contains two different generators of R̄ then ε̄ is the zero derivation by property C).
Let us consider the degree function induced by ε̄ on R̄. Since deg(a4b2) = 0,

we may assume that deg(a) = d and deg(b) = −2d. Therefore deg(a2) = 2d,
deg(a4b) = 2d, and elements of R̄ have only even degrees. Since application of
ε̄ decreases degree by 1, this is impossible. So ε must be the zero derivation. It
follows that AK(S2) = C[x].
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We derive the same conclusion by considering the “minimal” complement of
this surface: the divisor in the complement is not a “zigzag” (i.e., it is not a linear
chain; see [BM-L2; Be; G]).

A third way of reasoning is as follows: our surface is a hypersurface. On the
other hand, if it had a trivial AK invariant then it should be isomorphic to W =
P2 \ C, where C is a smooth conic [MaMi2, Thm. 2.6]. But this is impossible,
because W has nontrivial canonical class.

Example 3. S3 ⊂ C7 is defined by

uv = z(z − 1), (2)

v2z = uw, (3)

z2(w − 1) = xu2, (4)

u2(z − 1) = tv, (5)

(z − 1)2(t − 1) = yv2, (6)

u2v2 = wt, (7)

yz2 = u2(t − 1), (8)

x(z − 1)2 = v2(w − 1), (9)

v4x = w2(w − 1), (10)

u4y = t 2(t − 1), (11)

v3 = (z − 1)w, (12)

u3 = tz. (13)

The equations (7)–(13) are consequences of the equations (2)–(6). The surface
S3 is smooth, because the rank of the Jacobi matrix of equations (2)–(13) is max-
imal everywhere. It has an automorphism α : (u, v, z, t, w, x, y) → (−v, −u,
1 − z, w, t, y, x).

Now let us consider the fibering over P1 defined by the rational function f =
u/z = (z − 1)/v. It is defined everywhere, since z and z − 1 do not vanish simul-
taneously. We have three cases.

Case 1: The fiber f = k �= 0 is isomorphic to C1 with coordinate z. Then

u = kz, v = z − 1

k
, w = v2z

u
= v2

k
,

x = w − 1

k2
, t = u2k, y = (t − 1)k2.

Case 2: Assume that k = 0. Then u = 0 and z − 1 = 0 so z = 1. We have
v = 0 by equation (3), w = 1 by (4), y = 0 by (8), and t = 0 by (7). The local
parameters near this fiber are two functions: g = x/w2 (which is defined, since
w = 1 in the neighborhood of this fiber) and v. Indeed, we can make the following
statements.
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• (10) gives gv4 = w − 1; that is, w = 1 + gv4 and x = gw2 = g(1 + gv4)2.

• (3) gives f = u/z = v2/w = v2/(1 + gv4), which is defined because v = 0
along this fiber (and hence the denominator does not vanish in a neighborhood
of the fiber).

• By definition, z − 1 = fv = v3/(1 + gv4); that is, z = (v3/(1 + gv4)) + 1.
Hence

u = fz = v2

1 + gv4

(
v3

1 + gv4
+ 1

)
,

t = u2(z − 1)

v
= u2f = u2v2

1 + gv4
,

y = (z − 1)2(t − 1)

v2
= (t − 1)f 2 = (t − 1)v4

(1 + gv4)2
.

In these local coordinates f = v2/(1 + gv4) has order 2, so this component has
multiplicity 2.

Case 3: The fiber f = ∞, f ′ = 1/f = 0. We have v = 0 and z = 0, and from
equations (5) and (6) we obtain u = 0 and t = 1, respectively. From (9) and (7)
we get x = 0 and w = 0. The local parameters in the neighborhood of this fiber
are h = y/t 2 and u. Thus:

• from (11) we have t = u4h + 1;
• from (5) we have

f ′ = u2

t
= u2

u4h + 1
,

z = uf ′ = u3

u4h + 1
, v = f ′(z − 1) = (z − 1)u2

u4h + 1
,

w = v2z

u
= v2u2

u4h + 1
, x = z2(w − 1)

u2
= (w − 1)u4

(u4h + 1)2
.

Once more, f ′ = u2/(u4h + 1) has order 2. Hence this fibration has two fibers of
multiplicity 2, and π1(S3) = Z/2Z.

We want to show now that AK(S3) = O(S3). We do this in nine steps as follows.
1. Express all variables as rational functions in u and z:

v = z(z − 1)

u
, w = v2z

u
,

x = z2(w − 1)

u2
, t = u2(z − 1)

v
, y = u2(t − 1)

z2
.

2. Take u = a(a4c − 1) and z = a3(a4c − 1). Then all variables are polyno-
mials in a and c.

3. We consider two rings: R = O(S3), and R1 as generated by (a, a4c − 1,
c(a4c − 2)) = (√

z/u,
√

u3/z, y
)
. Then R ⊂ R1.
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4. Take weights w(c) = 1 and w(a) = 1+ρ, where ρ is a small irrational num-
ber. Then the corresponding ring R̄ contains only monomials. It certainly contains
the leading forms of all generators: a5c, a7c, a9c, a4c2, a8c2, a20c2, a24c2. The
ring R1 is generated by a, a4c, a4c2 because each of its elements contains only
monomials of this kind.

5. Assume that R̄ has a nonzero l.n.d. ∂. Then R̄ contains a ∂-constant mono-
mial v and a monomial v1 that has degree 1 relative to this derivation. We choose
a monomial v0 ∈ Frac(R̄) in such a way that:

(a) v = vs
0 for some natural s;

(b) v0 has the minimal positive weight among all the monomials meeting condi-
tion (a).

Then R̄ belongs to the algebra generated by v±1
0 and v1.

6. In the plane we consider a set S (respectively, S1) of all the points (n, m)

such that the monomial ancm ∈ R̄ (resp., ancm ∈ R1). Evidently, S ⊂ S1 and
both contain the point (4, 2); both sets are contained in the first quadrant. More-
over, S1 is the cone generated by the vectors (1, 0), (4,1), (4, 2). Thus, the line L =
{(2t, t)} = {x − 2y = 0} is the boundary line for set S and for set S1 (both sets
have two boundary lines of which L is one). Also, S1 ∩ L = {n(4, 2), n∈ N}.

7. Since all monomials of R̄ have nonnegative ∂-degree, v0 corresponds to a
point p0 in a boundary line. Indeed, in computing ∂(ancm) we add to a point
(n, m) the vector that depends on ∂ but does not depend on the point.

8. Assume that p0 ∈ L. Then deg∂ (a) = 1, for otherwise even R1 would not
contain an element of degree 1. On the other hand, R̄∂ is generated by a4c2 in this
case. It follows that Frac(R̄∂) = [Frac(R̄)]∂ is generated by a4c2. Hence R̄ ⊂
span(a, (a4c2)±1) (see step 5) and cannot contain the monomials with odd powers
of c. But R̄ ⊂ R1 and contains a5c, a7c, a9c, a4c2, a8c2, a20c2, and a24c2. Thus,
∂(a4c2) = 0 is impossible.

9. The automorphism α sends a4c2 to a24c2, so this monomial generates the
second boundary line for S. Consequently, if ∂(a4c2) �= 0 then ∂(a24c2) = 0 and
there is another l.n.d. ∂ ′ such that ∂ ′(a4c2) = α∂α(a4c2) = 0, which is impossible
(step 8).

Thus, AK(S3) = O(S3).

Next, we want to build a surface S such that

• π1(S) = Z/2Z ,
• AK(S) = C[x],
• AK(S × C) = C.

We start with a description of the surfaces with only two singular fibers: one
fiber of multiplicity µ = ∞, and one fiber of multiplicity m that consists of the
single curve C ∼= C1. These surfaces are Q-planes (see e.g. [Mi3]). It was proved
in [MaMi2] that any Q-plane S with AK(S) = C is a quotient of the Danielewski
surface S1,m by an action of the group Z/mZ = π1(S). We want to use a similar
description for Q-planes S with AK(S) = C[x].
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Proposition 2. Let S be a smooth Q-plane admitting a C-action. Let π1(S) =
Z/mZ , where m is prime. Then S ∼= V/G, where

• V is a hypersurface in C3 with coordinates (u, y, v): V = {uky = vm − vm
1 +

uq̃(u, v)} for q̃(u, v) a polynomial of degree less than m relative to v and v1∈C;
and

• G is a group of transformations generated by g(u, y, v) = (uε, yε−k, vε−α) for
some α, k ∈ N and ε = e2iπ/m.

Proof. Let ∂ be an l.n.d. corresponding to a C-action on S. From the general prop-
erties of Q-planes and C-actions (see e.g. [Mi3; BM-L2, Prop. 1]), it follows that
there are two functions x ∈ O(S) and z ∈ O(S) such that:

• a fiber {x = c �= 0} = Fc
∼= C is reduced;

• the fiber {x = 0} = F0
∼= C has multiplicity m;

• for c �= 0 the function z|Fc
is linear (i.e., it takes any finite value at exactly one

point);
• z|F0 = 0;
• ∂x = 0, ∂z = xn, and n is the minimum possible for z with these properties.

Now consider a surface U defined as the normalization of S ×C 8, where 8 de-
notes the m-ramified cover of C with the only branch point at γ = 0 over x = 0
(similar to [MaMi2]). Let π : U → S and p : U → 8 be the natural projections.
This surface U has the following properties:

(a) there is a function u∈ O(U) such that π∗x = um;
(b) U is an unramified m-sheeted cover of S;
(c) the fiber E0 = {u = 0} = ⋃m

i=1 Ei is a union of m reduced components
Ei � C1;

(d) U is affine [Sa, Sec. II.5, Thm. 4];
(e) the general fiber Ec = {u = c} � C.

Indeed, we can make the following statements.

• In property (a), u = p∗γ.
• Properties (b) and (c) are proved in [BaPV, Sec. III.9] for proper maps. Since

both properties are local, the same proof is valid in our case as well. The only
modification needed in the proof is to use π∗φf , where φf = 0 is a local equa-
tion of F0 in an appropriate neighborhood of a point f ∈ F0, instead of the
function g (the global equation of the multiple fiber there).

• Property (e) is valid because Ec � Fcm by construction.

Property (e) enables the existence of a C-action ϕ on U with general orbit {u =
const.}. Let ∂1 be a corresponding l.n.d.: ∂1(π

∗(f )) = π∗(∂f ) for f ∈ O(S);
∂1(u) = 0. Since all the fibers {u = const.} are reduced, we have π1(U) = 0. It
follows that U is the universal covering of S and that S = U/G, where G is the
group of deck transformations. Any transformation g ∈ G sends the fiber Eu0 =
{u = u0} to the fiber Eu0εk = {u = u0ε

k}, where k ∈N and ε = e2iπ/m. In partic-
ular, it moves a component Ei of E0 to the component Ej ⊂ E0.
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Since z|F0 = 0, we have π∗z|E0 = 0. But all the components Ei are reduced;
hence π∗z = uα · v for some α ∈ N and v ∈ O(U) such that v|E0 �≡ 0. Further on
we shall use z and x instead of π∗z and π∗x when no confusion may arise.

Lemma 3.

(a) (α, m) = 1.
(b) v is linear along each fiber Eu0 = {u = u0 �= 0}.
(c) v|Ei

= vi is a constant, and vi �= vj if i �= j.

(d) ∂1v = umn−α.

(e) g∗(∂1h) = ∂1(g
∗h) for any h∈ O(U).

Proof. (a) Since z|F0 = 0, there are coprime numbers r and k and a function ψ ∈
O(S) such that zk = xr · ψ and ψ |F0 �≡ 0. It follows that uαkvk = umrπ∗(ψ),
that is, αk = mr. Since m is prime, the following two cases are possible.

(1) α = mr, k = 1, and z = xr ·ψ, with ∂z = xr ·∂ψ = xn and ∂ψ = xn−r. Then
ψ is linear along a general fiber and constant along F0 [BM-L2, Prop. 1]; that
is, n is not minimal.

(2) α = r and k = m. But then (α, m) = (k, r) = 1.

(b) v = z/uα is linear along each fiber {u = c �= 0} because z is linear along a
fiber {x = const.}.

(c) Take now E1 and g a generator of G such that g∗(u) = uε, and let E2 =
g(E1), E3 = g(E2), . . . , Em = g(Em−1). Then

g∗(u) = u · ε, g∗(v) = g∗(z) · g∗(u)−α = z · u−αε−α = vε−α.

If v were not constant along a component E1 ⊂ E0 then it would be nonconstant
along each Ei, i = 1, . . . , m. This means that v would take any value v0 ∈ C at
least m times in E0, which contradicts the fact that v is linear along the general
fiber. (Indeed, {v = v0} intersects each fiber at most at one point).

Thus, v|Ei
= vi = const. Then

v2 = ε−αv1, v3 = ε−2αv1, . . . , vm = ε−(m−1)αv1;
that is, vi �= vj .

(d) ∂1v = ∂1(z/u
α) = xn/uα = umn−α.

(e) Any function h ∈ O(U) may be represented as h = q(u, v)/ul for some
polynomial q, since U is affine rational. The property may then be obtained by a
direct computation.

Lemma 4. The surface U admits a fixed point–free C-action equivalent to ϕ.

Proof. We must prove that ∂1 = uβ∂̃ , where β ≥ 0 and ∂̃ is an l.n.d. of O(U) such
that, for any i = 1, . . . , m, if h∈ O(U) and h|Ei

�= const. then ∂̃h|Ei
�≡ 0.

Let ∂1h|Ei
≡ 0 for all h∈ O(U). That is, let ∂1h = uni(h)ψ, where ψ is rational

on U and where ψ |Ei
�≡ 0 and ψ |Ei

�= ∞. Let ni be the minimal value of ni(h)

for h ∈ O(U). Since the action of group G permutes the components, it follows
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that n1 = n2 = · · · = nm and that ∂̃ = ∂1/u
n1 is defined and corresponds to a

fixed point–free C-action.

Lemma 5. Let ∂̃v = uk. Then there exists a polynomial p(u, v) = p0(v) +
up1(u, v) such that the function y = p(u, v)/uk ∈ O(U) is linear along each Ei,
i = 1, . . . , m.

Proof. The polynomial p0(v) = vm − vm
1 vanishes along E0: p0(v) = us1 · y1,

where y1 ∈ O(U) and y1|Ei
�≡ 0 for at least one value of i. Since g∗(y1) = y1ε

−s1,
it follows that y1 is either constant or nonconstant along all Ei simultaneously and
that y1|Ei

�≡ 0 for all i.
We have

us1y1 = p0(v),

us1 ∂̃y1 = p ′
0(v)u

k,

∂̃y1 = p ′
0(v)u

k−s1 ∈ O(U);
it follows that k ≥ s1. Consider two cases.

Case I: y1|Ei
�= const. Then ∂̃y1 = p ′

0(v)u
k−s1 �≡ 0; that is, k − s1 = 0,

∂̃y1|Ei
= const., and y1 is linear along each component Ei.

Case II: y1|E1 = c1 = const. Then y1|Ei
= c1ε

−s1i. Let h < m be the natural
number such that s1 ≡ αh (mod m) and p1(v) = c1(v/v1)

h. Then y1−p1(v)|E0 ≡
0 and y1 − p1(v) = us2y2 , where y2 ∈ O(U) and y2|Ei

�≡ 0 for at least one value
of i.

Since g∗(y2) = y1ε
−s1−s2 , we have that y1 is either constant or nonconstant on

all Ei simultaneously and that y2|Ei
�≡ 0 for all i. Now

us1+s2y2 = p0(v) − us1p1(v),

∂̃y2 = (p ′
0(v) − us1p ′

1(v))u
−(s1+s2 )+k,

so k ≥ (s1 + s2).

If y2|Ei
�= const. then it is linear along each Ei; if not, we continue the process.

After r steps we obtain

us1+s2+···+sryr = p0(v) − us1p1(v) − · · · − us1+s2+···+sr−1pr−1(v).

Then, either
s1 + s2 + · · · + sr < k, yr |Ei

= const.

or
s1 + s2 + · · · + sr = k, yr |Ei

�= const.,

whence

∂̃yr = (p ′
0(v) − us1p ′

1(v) − · · · − us1+s2+···+sr−1p ′
r−1(v))

and yr is linear along the components Ei.

So, after a finite number of steps we will derive a function y, linear along each
Ei, with

uky = p0(v) + uq̃(u, v).
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Moreover, by construction, g∗y = yε−k and q(u, v) has degree less than m rela-
tive to v.

We may now proceed with the proof of Proposition 2. Let θ : U → C3 be defined
as θ(p) = (u, y, v) for a point p ∈ U. This regular map is bijective: indeed, the
function u distinguishes the fibers, v is linear along the general fiber and distin-
guishes components of the singular fiber, and y is linear along the components of
the singular fiber.

The surface V = θ(U) is given by

{uky = vm − vm
1 + uq̃(u, v)}.

Since V is a smooth surface bijection, θ is an isomorphism.

Example 4. We use Proposition 2 for the case m = 2, s = 2. The Danielewski
surface

S2,2 = {x 2y2 = z2
2 − 1}

is the universal cover of the surface S2 (see Example 2). Consider the following
map:

(x, y2 , z2) → (α = x 2, β = y2 , γ = xz2).

This map glues the points s = (x, y2 , z2) and T s = (−x, y2 , −z2) and is an un-
ramified double covering. Obviously,

α2β + α = γ 2.

The surface S2 has the fundamental group Z/2Z and precisely one singular fiber
{α = 0}, which is a double straight line. All actions on this surface are equivalent:
AK(S2) = C[x].

Now we want to compute the invariant of its cylinder Z = S2 × C. The uni-
versal cover of this cylinder is Y = S2,2 × C ∼= S1,2 × C [D; Fie], where S1,2 =
{xy1 = z2

1 − 1}.
Lemma 6 (communicated by P. Russell).

Y =




xy1 = z2
1 − 1,

x 2y2 = z2
2 − 1,

xu = z1 − z2 ,
y1 − xy2 = u(z1 + z2).

In Y the surface S2,2 is defined as u = const. and the surface S1,2 as w =
u3x + 3u2z2 + 3uxy2 + z2y2 = const.

Proof. Let A = C[x, y1, y2 , z1, z2 , u], where xy1 = z2
1 − 1, x 2y2 = z2

2 − 1,
and xu = z1 − z2. Then A = C[x, y2 , z2 ][u], since z1 = xu + z2 and y1 =
u2x + 2uz2 + xy2.

Similarly, A = C[x, y1, z1][w], where w = u3x +3u2z2 +3uxy2 +z2y2 , since
xw = y1z1 − 2u and wz1 = y2 − u2 + y2

1. Hence 2u = −xw + z1y1, y2 =
wz1 + u2 − y2

1, and 2z2 = x 2w − z3
1 + 3z1.
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The cylinder Z = S2 × C is a quotient of Y by the transformation T ′, which pre-
serves S2,2 (i.e., the value of u) and coincides on S2,2 with T :

T ′ : (x, y2 , z2 , y1, z1, u) → (−x, y2 , −z2 , −y1, −z1, u).

On the other hand, Z = {(α, β, γ, t) : α2β + α = γ 2} ⊂ C4 and the map Y → Z

is defined as
α = x 2, β = y2 , γ = xz2 , t = u.

By Lemma 6 we have

u = 1
2 (−xw + z1y1),

y2 = wz1 + u2 − y2
1,

z2 = 1
2 (x

2w − z3
1 + 3z1).

Any l.n.d. defined on O(S1,2) may be extended to an l.n.d. on O(Y ). In partic-
ular this applies to the l.n.d. defined by

∂y1 = 0, ∂z1 = y1, ∂x = 2z1, ∂w = 0.

Then
∂u = 1

2 (−2z1w + y2
1 ),

∂y2 = (wy1 + u(y2
1 − 2wz1)),

∂z2 = 1
2 (4xwz1 − 3z2

1y1 + 3y1),

and ∂ is invariant under T ′; that is, ∂T ′ = T ′∂. For example,

T ′(∂x) = T ′(2z) = −2z = ∂T ′(x),

and we can check similarly for the remaining generators.
As a result this l.n.d. can be pushed down to O(Z), which is the quotient of Y

by T ′. This means that in Z there is an l.n.d. for which α is not invariant. Hence
AK(Z) = C, though AK(S2) = C[x].

4. Cylinders over Surfaces with Reduced Fibers
and Primitive Danielewski–Feiseler Quotient

We want to show in this section that property (ii) of Danielewski surfaces (see
Section 1) is not essential for nonstability of the AK invariant of a surface. The
Danielewski construction represents a surface admitting a C-action with reduced
components of fibers as an affine bundle over the Danielewski–Fieseler quotient.

For a given c.l.s. U ⊂ S or a corresponding fibering ρ, the Danielewski–Fieseler
(DF) quotientX = S/U = S/ρ is a (nonseparated) prevarietyX such that the points
of X are in one-to-one correspondence with the connected components of ρ−1(c)

for all c ∈C. The precise and detailed definition is given in [D; Fie].
We describe this quotient in the following way.
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Definition 6. A quotient X of a smooth surface S by a pencil ρ is an algebraic
prevariety X included in the commutative diagram

S

ρ
��

��
��

��
�

π �� X

σ
����

��
��

�

C

and having the following properties.

• The maps π, σ, ρ are regular.
• σ is an isomorphism of X \ {xi,j} (i = 1, . . . , r) onto C \ {c1, . . . , cr}, where the

set of points {xi,j} ∈X is finite.
• Let Fci = ρ−1(ci) = ⋃ t

j=1 Cij be the union of t connected (necessarily irre-
ducible; [Mi1, Lemma 4.4.1]) components Cij . Then π|Cij

= xij and xij �= xik

if j �= k. There is a one-to-one correspondence between points xij ∈ σ−1(ci)

and components Cij ⊂ ρ−1(ci).

We call X primitive if C ∼= C and there is only one singular fiber.

Theorem1. Let S be a smooth affine surface and let α : S×C → S be a C-action
on S for which all the components of all the fibers are reduced. Assume that the
DF quotient X = S/α is primitive. Then AK(O(S × C)) ∼= C.

The proof of this theorem is based on the following theorem of Kaliman and
Zaidenberg [KZ].

Theorem KZ. Assume that there exists a dominant morphism f : X → S of a
smooth quasiprojective variety X to a smooth quasiprojective variety S, and as-
sume that a general fiber f −1(s), s ∈ S, is isomorphic to C2. Then there exists a
Zariski open subset S0 of S such that f −1(S0) ∼= S0 × C2. Moreover, if we de-
note by φ the isomorphism f −1(S0) → S0 × C2 and by p : S0 × C2 → S0 the
projection to the first factor, then p−1(s) = φ(f −1(s)) for any s ∈ S0.

Proof of Theorem 1. Since X is primitive, the base of the fibering C ∼= C and we
may assume that the multiple point is c = 0. Let σ−1(0) = {x1, . . . , xk}. Consider
a surface S1 ⊂ C3 defined by

xy = (z − 1)(z − 2) · · · (z − k) = p(z),

where {x, y, z} are coordinates in C3. Here S1 is a smooth affine surface with two
C-actions β and δ. The orbits of β and δ are the curves Rx = {x = const.} and
Ry = {y = const.} (respectively), and the corresponding l.n.d.s of O(S1) are de-
fined as follows.

I. β: ∂x = 0, ∂z = x, and ∂y = p ′(z).
II. δ: ∂y = 0, ∂z = y, and ∂x = p ′(z).
Note that the DF quotients S1/β ∼= S1/δ

∼= X.
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Now consider the commutative diagram

S × C ∼= S ×X S1 = W.

p

����
��

��
�� p1

��
��

��
��

��

S

πα
��

��
��

��
��

S1

πβ
����

��
��

�
πδ

��
��

��
��

�

X

σ

��

X

σ1

��

C C

All the fibers of πβ are reduced, and the action β is fixed point–free. By Danielew-
ski and Fieseler [D; Fie], this means thatW = S×XS1 has the following properties:

(a) W is a C bundle over S;
(b) (W, p) and (W, p1) are locally trivial fiber bundles over S and S1, respectively.

Therefore,

(a′) W ∼= S × C, since any C+-bundle over an affine surface S is trivial.
(b′) Consider a map µ : S × C → C, where µ = σ1 � πδ � p1. The general fiber

Py = µ−1(y), y ∈ C, is a locally trivial fiber bundle (restriction of (W, p1))

over a curve Ry = (σ1 � πδ)
−1(y) ⊂ S1. The fiber of this bundle is reduced

and isomorphic to C, and Ry
∼= C for a general y. Thus, Py

∼= C2 [MiSu]
for a general y.

According to Theorem KZ, there exist a Zariski open subset Z ⊂ S × C and a
U ⊂ C such that Z = µ−1(U), Z ∼= U × C2, and µ is the projection on the first
factor in this product. By [Mi2, Lemma 2.2] there exist two commuting l.n.d.s on
the ring O(S × C) such that the general orbit of the group generated by the corre-
sponding C-actions coincides with Py. The image σ �πβ �p1(Py) = σ �πβ(Ry) =
C. Thus, there is a C-action ε on S × C whose orbit is not contained in a fiber
Qz = p−1

1 � π−1
β � σ−1(z), z ∈ C.

We obtained three C-actions on S × C: α ′, induced by α; ω, acting along the
fibers of the map p : W → S; and ε. The general orbit of the group generated by
α ′ and ω is Qz = p−1

1 � π−1
β � σ−1(z). The orbit of the third action ε is not con-

tained in Qz. Hence, the general orbit of the group generated by all three actions
is three-dimensional, and AK(O(S × C)) ∼= C.

Example 5. Consider a surface

S5 =



x 2y2 = z2
2 − 1,

(z2 − 1)y2 = xt,
xy2

2 = (z2 + 1)t.
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This surface is obtained from S2,2 = {x 2y2 = z2
2 −1} by the following affine mod-

ification: the point {x = 0, z2 = −1, y2 = 0} is blown up, and the curve {x = 0,
z2 = −1, y2 �= 0} is taken off. Since the graph of the complement of this surface
is not linear [Be; G], the surface S5 admits only one class of C-actions; that is, any
l.n.d. is proportional to the following one:

∂x = 0, ∂z2 = x3, ∂y2 = 2z2x, ∂t = 3z2
2 − 2z2 − 1.

The corresponding fibering has one singular fiber {x = 0} with two connected re-
duced components {x = 0, z2 = 1, t = 0} and {x = 0, z2 = −1, y2 = 0}. This
l.n.d. vanishes along the curve {x = 0, z2 = 1, t = 0}; that is, there are fixed
points for any C-action.

According to Theorem 1, AK(C × S5) = C. We will show this explicitly, using
the same formulas as in Example 4 and Lemma 6.

Let B = C[x, y1, y2 , z1, z2 , u, t], where xy1 = z2
1 − 1, x 2y2 = z2

2 − 1,
(z2 −1)y2 = xt, xy2

2 = (z2 +1)t, and xu = z1 − z2. Then B = C[x, y2 , z2 , t][u],
since z1 = xu + z2 and y1 = u2x + 2uz2 + xy2. Therefore, B = O(S5 × C), and
∂ can be extended on B by ∂u = 0.

Substituting into the identity xt = (z2 −1)y2 expressions for y2 and z2 through
x, y1, z1, w (see Example 4), we obtain

xt = (z1 − xu − 1)y2 = −xuy2 + (z1 − 1)
[
wz1 − y2

1 + 1
4 (z1y1 − xw)2

]
= −xuy2 + 1

4 (z1 − 1)(x 2w2 − 2xy1z1w) + (z1 − 1)
[
wz1 − y2

1 + 1
4z

2
1y

2
1

]
.

To simplify this expression, take

s = t + uy2 − 1
4 (z1 − 1)(xw2 − 2y1z1w).

Then
xs = 1

4 (z1 − 1)(4wz1 − 4y2
1 + z2

1y
2
1 ).

Next,

4xs = (z1 − 1)(4wz1 − 4y2
1 + z2

1y
2
1 )

= (z2
1 − 1)(y2

1 (z1 − 1) + 4w) − (z1 − 1)(4w + 3y2
1 )

= xy1[y2
1 (z1 − 1) + 4w] − (z1 − 1)(4w + 3y2

1 ).

Introducing now
r = −4s + y1[y2

1 (z1 − 1) + 4w],

we obtain xr = (z1 − 1)(4w + 3y2
1 ). Since

(z1 + 1)xr = (z2
1 − 1)(4w + 3y2

1 ) = xy1(4w + 3y2
1 ),

we also have (z1 + 1)r = y1(4w + 3y2
1 ). Clearly B = C[x, y1, y2 , z1, z2 , u, r],

and (as in Example 4) B = C[x, y1, z1, r, w].
Let us define now an l.n.d. of B by ∂̃y1 = ∂̃r = 0, ∂̃z1 = 4y1, ∂̃x = 8z1, and

∂̃w = r. It acts on the cylinder, and ∂̃x �= 0. A third l.n.d., ∂ ′, can be derived from
the presentation B = C[x, y2 , z2 , t][u]:

∂ ′u = 1, ∂ ′x = ∂ ′z2 = ∂ ′y2 = ∂ ′t = 0.
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In the notation of Theorem 1, the map µ(x, y2 , z2 , u, t) = y1 and the fiber of
this map is C2 with coordinates (z1, r). Indeed, for y1 = c we have

x = z2
1 − 1

c
,

w = (z1 + 1)r − 3c2

4c
,

u = 1
2 (−xw + z1c),

y2 = wz1 + u2 − c2,

z2 = z1 − xu.
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