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A Cantor Set in the Unit Sphere in C2

with Large Polynomial Hull

Burglind Jöricke

An old question of Walter Rudin, asked in connection with Banach algebras and
approximation by polynomials, concerns how massive the polynomial hulls of
Cantor sets may be. In contrast to expectation (note that Cantor sets have topo-
logical dimension 0), it has been shown by Rudin, Vitushkin, and Henkin that the
mentioned polynomial hull can be rather massive. Rudin himself constructed a
Cantor set in C

2 whose polynomial hull (and even its rational hull) contains an
analytic variety of dimension 1 [12, Thm. 5; 7, Thm. III.2.5]. Later Vitushkin [14]
and Henkin [8] gave examples of Cantor sets with interior points in the polyno-
mial hull.

The problem received new attention in connection with interest in topology on
strictly pseudoconvex boundaries and hulls of their subsets, as well as in con-
nection with removable singularities of CR functions. In particular, it was asked
whether Cantor sets in the unit sphere in C

2 are polynomially convex. The ex-
pectation was that, for subsets of the sphere, the situation would change dramat-
ically as for the case with some other problems. For example, totally real discs
in C

2 are not necessarily polynomially convex [11], but if contained in the sphere
they are so [9]. Further, the polynomial hull of a compact set in C

2 of finite 1-
dimensional Hausdorff measure is not necessarily an analytic variety [1], but if the
set is contained in the sphere it is so [14]. Moreover, the question about polyno-
mial hulls of Cantor sets in the sphere has some relation to a still open conjecture of
Vitushkin on the existence of a lower bound for the diameter of the largest bound-
ary component of a relatively closed complex curve in the ball passing through the
origin.

In [6], the slightly more general question was raised of whether Cantor sets in
boundaries ∂G of strictly pseudoconvex domainsG in C

2 are convex with respect
to the space of holomorphic functions in G that are continuous in the closure Ḡ
of the domain G. The question was answered affirmatively in [6] for some class
of Cantor sets. The main tools used for this in [6] are the theorem of Bedford and
Klingenberg [2], a characterization of tame Cantor sets in R

n due to Bing, and the
nontrivial fact that aC2 manifold that is homeomorphic to R

3 isC2 diffeomorphic
to R

3 (see references in [6]). With the mentioned tools in mind, it was a natural
step to obtain the following result.

Theorem A. Tame Cantor sets in the unit sphere in C
2 are polynomially convex.
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The theorem follows directly from [5] and the mentioned result of Bing, and it was
proved independently a bit later by Lawrence [10].

Recall that a compact set E ⊂ R
n is a tame Cantor set if there is a homeo-

morphism of R
n that carries E to the middle-third Cantor set in a coordinate line.

Bing’s result is that this is equivalent to the following separation property.
For each pair of different points p and q in E and any ε > 0, there exists a set

bn ⊂ R
n that is homeomorphic to a closed n-ball of diameter less than ε and with

boundary ∂bn = S n−1 disjoint from E with p ∈ bn and q /∈ bn.
Theorem A can be stated in a slightly more general form. For a domain G ⊂

C
n, denote by A(G) the algebra of analytic functions in G that are continuous in

Ḡ. For a compact subset K of Ḡ we consider its A(G)-hull,

A(G)-hull(K) = {z∈ Ḡ : |f(z)| ≤ maxK|f | for all functions f ∈A(G)}.
In case G = C

n, we obtain the polynomial hull

K̂ = {z∈ C
n : |p(z)| ≤ maxK|p| for all polynomials p}

of the compact subset K of C
n.

The rational hull of the compact K is defined by replacing, in the last condi-
tion, polynomials by rational functions that are analytic in a neighborhood of the
compact K.

Theorem B. LetGbe a bounded strictly pseudoconvex domain in C
2 with smooth

boundary. Let K ⊂ ∂G be a Cantor set with the following separation property.
For each pair of distinct points p and q in K, there exists a smooth 2-sphere

S 2 ⊂ ∂G\K that separates p and q (i.e., p and q are in different connected com-
ponents of ∂G \ S 2).

Then K is A(G)-convex (i.e., A(G)-hull(K) = K).

Theorem A follows from Theorem B by the result of Bing and the mentioned fact
about homeomorphic and diffeomorphic R

3 (for more detail see [6]). Note that it
is not necessary to require in Theorem B that the 2-spheres bound 3-balls in ∂G
or that these balls have small size. In the description of tame Cantor sets, the con-
dition that the b3 have small diameter is important. There are wild Cantor sets in
R

3 [3] wherein each pair of distinct points can be separated by spheres (but not by
spheres of small size).

The proof of Theorem B follows from the theorem of Bedford and Klingenberg.
Here is a sketch of its proof for the reader’s convenience (see [6; 5; 10]).

If K were not A(G)-convex, then by Zorn’s lemma there would be a minimal
compact subset K ′ of K containing a given point of G in its A(G)-hull. Then
A(G)-hull(K ′) is connected by Rossi’s maximum principle. By the separation
property there is a smooth 2-sphere S 2 ⊂ ∂G \K ′ that divides K ′ and hence also
∂G. By [2] (perhaps after perturbing the 2-sphere), S 2 bounds a Levi-flat 3-ball
B 3 ⊂ G such that B̄ 3 is equal to the envelope of holomorphy of S 2 and to A(G)-
hull(S 2). By a theorem of Alexander and Stout (see the references in [13]), B̄ 3

divides Ḡ. The envelope of holomorphy of ∂G\K ′ equals Ḡ\A(G)-hull(K ′) (see
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the references in [13]), so B̄ 3 does not meetA(G)-hull(K ′). HenceA(G)-hull(K ′)
is contained in a connected component of Ḡ \ B̄ 3, which is impossible.

The mentioned results suggest, for instance, that Cantor sets in the unit sphere
in C

2 are polynomially convex. The purpose of this paper is to construct Cantor
sets in the unit sphere with large polynomial hull.

For a subset A of C
n and a positive number r, we denote by rA the set

{rz : z∈A}. Let B
n denote the unit ball in C

n and ∂Bn its boundary.

Theorem. For any positive number β < 1, there exists a Cantor setE contained
in ∂B2 whose polynomial hull Ê contains the closed ball βB2.

The theorem implies, for example, that there are continuous arcs in the sphere (i.e.,
homeomorphic images of the unit interval of the real line) whose polynomial hull
contains big balls.

The basis of the proof is the following observation. Consider two circles on
the sphere, each of them the intersection of the sphere with a complex line. Then
the polynomial hull of their union is equal to the union of their polynomial hulls.
However, the polynomial hull of the union of their ε-neighborhoods (ε > 0) is
essentially larger than the union of the hull of their ε-neighborhoods. More pre-
cisely, the following lemma holds.

Main Lemma. Let f and g be complex affine functions on C
2 with |∇f | =

|∇g| = 1. Suppose the sets {f = 0} ∩ ∂B2 and {g = 0} ∩ ∂B2 are disjoint cir-
cles. Then there exist positive numbers a = a(f , g) and r ′ = r ′(f , g) < 1 such
that, for any positive ε, the following inclusion holds:

{|f · g| ≤ aε} ∩ (B2 \ r ′
B

2) ⊂ ({|f | ≤ ε} ∪ {|g| ≤ ε}) ∩ (B2 \ r ′
B

2). (1)

By a complex affine function f we mean a mapping f : C
2 → C of the form

f(z) = f0 + f1 · z1 + f2 · z2 for complex numbers f0, f1, and f2.

Corollary 1. With f , g, a, ε, and r ′ as before, the inclusion

{|fg| ≤ aε} ∩ rB2 ⊂ (
({|f | ≤ ε} ∩ r∂B2) ∪ ({|g| ≤ ε} ∩ r∂B2)

)ˆ (2)

holds for any r ∈ [r ′, 1].

Proof. (1) implies in particular that, for any r ∈ [r ′,1],

{|fg| ≤ aε} ∩ r∂B2 ⊂ ({|f | ≤ ε} ∩ r∂B2) ∪ ({|g| ≤ ε} ∩ r∂B2) (3)

holds. The polynomial hull of the left-hand side is {|fg| ≤ aε} ∩ rB2, hence
(2) holds.

Remark 1. Each set on the right-hand side of (3) is the intersection of the sphere
r∂B2 with the closed ε-neighborhood of a circle (i.e., a solid torus in the 3-sphere
if ε is small). Suppose the complex lines {f = 0} and {g = 0} intersect inside
B

2. Then the left-hand side of (2) contains, for example, a ball of radius
√
a · √

ε
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around the intersection point. The radius is much larger than ε for small enough
ε > 0. The proof of the theorem is based on this observation.

Proof of the Main Lemma. Since the circles are disjoint there exist a and r ′ such
that also the sets {|f | ≤ a} ∩ (B2 \ r ′

B
2) and {|g| ≤ a} ∩ (B2 \ r ′

B
2) are dis-

joint. If z ∈ B2 \ r ′
B

2 and |f(z) · g(z)| ≤ a · ε, then either |f(z)| > a and then
|g(z)| ≤ ε, or |f(z)| ≤ a and then |g(z)| > a and hence |f(z)| ≤ ε.

Note that the constants a and r ′ can be chosen so that they serve also for pairs of
complex affine functions close to f and g.

Preparation of Proof of the Theorem. We will find the required set E of the form
E = ⋂∞

N=1EN for a decreasing family of closed sets EN ⊂ ∂B2 such that βB2 ⊂
ÊN for each N. Then Ê ⊃ βB2. Indeed, let z ∈ βB2. For any fixed polynomial
p and for any N, there exists a point zN ∈ EN for which |p(z)| ≤ |p(zN)|. If
(for fixed p) z∗ is an accumulation point of the zN , then z∗ ∈E and by continuity
|p(z)| ≤ |p(z∗)|. This holds for arbitrary polynomials p, hence z∈ Ê.

Each set EN will be the finite union of disjoint solid tori of the form just de-
scribed. We introduce the following notation. For a complex affine function f
with |∇f | = 1 and a positive number σ, we denote Tf (σ) = {z ∈ ∂B2 : |f(z)| ≤
σ}. After a unitary change of coordinates in C

2, we may assume that |f | has the
form |z1 − (1 − s)| for a real number s = sf . The mentioned unitary transfor-
mation takes Tf (σ) to the set T s(σ) = {z ∈ ∂B2 : |z1 − (1 − s)| ≤ σ}. This is a
solid torus if s < 1 and σ < s. For r < 1, denote rTf (σ) = {|f | ≤ σ} ∩ r∂B2;
similarly, we write rT s(σ). Denote, finally, the complex lines (the symmetry axes
of the respective tori) by �f = {f = 0} and �s = {z1 = 1 − s}.

Note that the number σ together with the unitary invariant s of a torus Tf (σ)
contained in ∂B2 determines its diameter. If s and σ are small then the diameter
of T s(σ) (and hence of each unitarily equivalent torus) is also small.

By the following easy lemma, it is enough to cover bidiscs by polynomial hulls of
suitable Cantor sets.

Lemma 1. For any β ∈ (0,1) there is a number q ∈ (0,1) such that βB2 can be
covered by a finite union of bidiscs of the form q(D1 × D2), where Dj are closed
discs in C centered at zero such that ∂D1 × ∂D2 ⊂ ∂B2.

The following proposition allows us to cover bidiscs of Lemma 1 by the poly-
nomial hull of finite unions of disjoint solid tori that are arbitrarily thin tubular
neighborhoods of (in general not small) circles.

Proposition 1. Let D1 and D2 be discs in C centered at the origin and such that
∂D1 × ∂D2 ⊂ ∂B2. Let γ > 0 and q ∈ (0,1). There exist two numbers s1, s2 ∈
(0,1) and a positive number ε ′, all depending only on D1, D2 , q, and γ, such that
for each ε ∈ (0, ε ′) there exist two families of solid tori Tj(ε) = Tfj (ε) and T ∗

k (ε) =
Tgk (ε) with each family containing finitely many tori that are unitarily equivalent
to T s1(ε) and T s2(ε), respectively, and that possess the following properties.
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• All thicker tori Tj(2ε) and T ∗
k (2ε) are pairwise disjoint and contained in the

γ -neighborhood of ∂D1 × ∂D2.

• The polynomial hull of the union satisfies the relation

q(D1 × D2) ⊂
(⋃

j

Tj(ε) ∪
⋃
k

T ∗
k (ε)

)̂
. (4)

Remark 2. For some r ′ < 1 depending only on D1, D2 , q, and γ, the tori in
Proposition 1 can be chosen such that, for all r ∈ [r ′,1], the inclusion

q(D1 × D2) ⊂
(⋃

j

rTj(ε) ∪
⋃
k

rT ∗
k (ε)

)̂
(4r)

also holds.

Let D be the unit disc in C and let T = ∂D.

Proof of Proposition 1. Let D1 = R1D and D2 = R2D. Increasing q, we may as-
sume that q < 1 is as close to 1 as needed. Let ζj1 be equidistributed points on
qR1T with the distance of nearest points being a number betweenBε and (B+1)ε,
where B is any constant, B ≥ 5, and ε > 0 is small enough. For each B such
points can be found if ε is small. Similarly, let ζ k2 be equidistributed points on
qR2T with distance between closest points in [Bε, (B + 1)ε]. Define

fj(z) = z1 − ζ
j

1, gk(z) = z2 − ζ k2 .

All sets Tj(2ε) and T ∗
k (2ε) are nonempty tori if ε is small enough, and they are

pairwise disjoint for such ε. Disjointness is clear for tori of the same family (since
B ≥ 5) and follows from the fact that {fj = 0} ∩ {gk = 0} is contained in B

2 in
the other case.

For any j and k there is a unitary transformation that takes |fj | to |z1 − (1− s1)|
for s1 = 1 − R1q and |gk| to |z2 − (1 − s2)| for s2 = 1 − R2q. It follows
that the Tj(ε) are unitarily equivalent to T s1(ε) and that the T ∗

k (ε) are unitarily
equivalent to T s2(ε). Moreover, by Corollary 1 there exist constants a and r ′ de-
pending only on s1 and s2 (since all pairs (|fj |, |gk|) are unitarily equivalent to
(|z1 − (1 − s1)|, |z2 − (1 − s2)|)) such that

{|fjgk| ≤ aε} ∩ rB2 ⊂ (
({|fj | ≤ ε} ∪ {|gk| ≤ ε}) ∩ r∂B2

)ˆ
for all r ∈ [r ′,1] and all j and k. The left-hand side contains the bidisc

{|fj | ≤ √
aε

} ∩ {|gk| ≤ √
aε

} = (ζ
j

1, ζ k2 )+ √
aε (D × D)

of radius
√
a
√
ε around the intersection point �fj ∩ �gk = (ζ

j

1, ζ k2 ) (with r ′ close
to 1 and ε small enough). If

√
a
√
ε > (B + 1)ε, then we obtain (running over

all pairs (j, k)) that the right-hand side of (4r ) contains the product of the circles
qR1T and qR2T; hence (4r ) holds.
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Finally, initially taking q close to 1 (and ε > 0 small), we ensure that all Tj(2ε)
and T ∗

k (2ε) are contained in a small neighborhood of ∂D1 × ∂D2.

The following proposition allows us to cover small enough neighborhoods of given
complex affine discs (intersections of complex lines with suitable balls) by poly-
nomial hulls of unions of disjoint tori with small diameter contained in the sphere.
Propositions 2, 3, and 4 will be stated for tori related to the function z1 − (1 − s)

for some s ∈ (0,1). They hold also for z1 − (1− s) replaced by any complex affine
function f such that |f | is unitarily equivalent to |z1 − (1 − s)|.
Proposition 2. Let s ∈ (0,1). For any small δ > 0, any q ∈ (0,1) close to 1, and
any small s ′ > 0, one can find two positive numbers s1 < s ′ and s2 < s ′ as well
as a positive number ε ′ = ε ′(s, s1, s2 , δ) such that, for any positive ε < ε ′, there
exist two finite families of complex affine functions fj and gk with the following
properties.

The related solid tori Tj(2ε)
def= Tfj (2ε) and T ∗

k (2ε)
def= Tgk (2ε) are all pairwise

disjoint and contained in {|z1 − (1 − s)| ≤ δ}. The Tj(ε) are unitarily equivalent
to T s1(ε) and the T ∗

k (ε) are unitarily equivalent to T s2(ε). Moreover,

qB2 ∩ {|z1 − (1 − s)| ≤ ε} ⊂
(⋃

j

Tj(ε) ∪
⋃
k

T ∗
k (ε)

)̂
. (5)

The following stronger assertion holds. There exists an r ′ < 1 such that, for
any r ∈ [r ′, 1], the inclusion

qB2 ∩ {|z1 − (1 − s)| ≤ ε} ⊂
(⋃

j

rTj(ε) ∪
⋃
k

rT ∗
k (ε)

)̂
(5r)

also holds.

Note that the number of tori and their symmetry axes will be chosen together
with ε.

Remark 3. Proposition 2 describes a subset of the sphere whose connected com-
ponents have small diameter but whose polynomial hull contains, for instance, the
disc {z1 = 0, |z2| ≤ q} (q < 1). This statement should be contrasted with the fol-
lowing still open conjecture of Vitushkin, which appeared in connection with a
problem of E. Kallin on polynomial convexity of finite unions of disjoint balls.

Conjecture (Vitushkin). Let X be a relatively closed complex manifold of di-
mension 1 in B

2, smooth up to the boundary and transversal to ∂B2. Suppose X
contains the origin. ThenX has a boundary component of diameter bounded from
below by an absolute constant.

The link between Vitushkin’s conjecture and Remark 3 (or the theorem, respec-
tively) is the following open problem.
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Problem. LetK ⊂ C
2 be compact,K �= K̂, and suppose that z∈ K̂ \K. Under

which conditions does the ε-neighborhood Kε of K (for every ε > 0) contain the
boundary of a Riemann surface passing through z?

Note that Proposition 2 does not control the ratio of the numbers ε (the width of
the tubular neighborhood of �s that is covered by the polynomial hull of the union
of small tori) and δ (the width of the tubular neighborhood that contains the small
tori). Propositions 3 and 4 will allow such control, after which the inductive con-
struction of the EN can be easily provided.

Plan of Proof of Proposition 2. The functions fj in Proposition 2 will be chosen
so that �fj will pass through a point pj , where the pj are equidistributed on the cir-
cle {z1 = 1 − s} ∩ R∂B2 for a suitable R < 1 and close to 1. Moreover, the �fj
are complex tangent to the sphere R∂B2. The �gj pass through points p∗

j , which
are equidistributed on the same circle. Furthermore, the p∗

j are obtained from pj
via turning by a fixed angle ψ in the z2-direction and the �gj are obtained via turn-
ing the complex tangents to the sphere R∂B2 at p∗

j by a fixed angle ν. Lemma 2
states that (for suitable pj ,R, ε) the tubes {|fj | ≤ 2ε} ∩ B2 are pairwise disjoint.
(Hence the tori Tj(2ε) = {|fj | ≤ 2ε} ∩ ∂B2 are pairwise disjoint and not linked
with each other in ∂B2.) Moreover, with a suitable choice of the angle ν, the same
is true for the tubes {|gk| ≤ 2ε} ∩ B2 and the tori T ∗

k (2ε).
On the other hand, each complex line �fj intersects several lines �gk inside B

2

(equivalently, the corresponding circles �fj ∩∂B2 and �gk ∩∂B2 are linked in ∂B2).

Lemma 3 allows us to choose the angle ψ in such a way that the tubes {|fj | ≤ 2ε}
and {|gk| ≤ 2ε} intersect at points that are not contained in the sphere ∂B2; in
other words, the tori Tj(2ε) and T ∗

k (2ε) are disjoint. An application of the main
lemma will then give the proposition.

The Tori Tj(ε) and T ∗
j (ε). The Tj(ε) will be determined by the following pa-

rameters: s ∈ (0,1), a small number t > 0, a (large) natural number N, and a small
number ε > 0. The T ∗

j (ε) will be determined by s, t, N, ε, and a small number ν.
Consider the intersection

�s ∩ ∂B2 = {(1 − s,R2e
iφ) : φ ∈ [0, 2π)} (R2

2 = 2s − s2).

Denote byCt the slightly smaller concentric circleCt = {(1−s,R2(1−t)e iφ) : φ ∈
[0, 2π)} = �s∩R∂B2, whereR and t are related by the equality (2t−t 2)(2s−s2) =
1 − R2.

Let pj be equidistributed points on Ct ,

pj = (1 − s,R2(1 − t)e iφj ), where φj = 2π

N j, j = 0, . . . , N − 1.

Define the constant B by the following relation: the distance between the nearest
of the equidistributed points, |pj − pj−1|, equals B · ε. Denote by �j the complex
lines through pj that are tangent to R∂B2,
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�j = {pj + vj · ζ : ζ ∈ C}, vj = ((1 − t)R2 , −(1 − s)e iφj ), (6)

and let fj be annihilating functions of the �j with gradient of norm 1.
For a (small) number ψ, denote by p∗

j the points

p∗
j = (1 − s,R2(1 − t)e i(φj+ψ)).

Finally, for a small constant ν > 0 we denote by �∗
j (j = 0, . . . , N − 1) the com-

plex line obtained from the complex tangent to R∂B2 at p∗
j via turning by a fixed

angle:

�∗
j = {p∗

j + wj · ζ : ζ ∈ C}, wj = ((1 − t)R2 , −(1 − s + ν)e i(φj+ψ)). (7)

Let gj be annihilating functions of �∗
j with gradient of norm 1.

Lemma 2. (a) Let s ∈ (0,1) and let t > 0 be sufficiently small. There exist posi-
tive constants ε ′ = ε ′(s, t) and B ′ = B ′(s, t) such that, if ε ∈ (0, ε ′) and B > B ′,
then for the fj defined previously for chosen parameters s, t, N, ε (with B related
to N and ε as before), the sets {|fj | ≤ 2ε} ∩ B2 are pairwise disjoint.

(b) If, in addition, ν is small enough (depending on s), there exist constants
ε ′ = ε ′(s, t,ν) and B ′ = B ′(s, t,ν) such that, if ε ∈ (0, ε ′) and B > B ′, then for
the gj defined for the parameters s, t, N,ν, ε and an arbitrary parameter ψ, the
sets {|gj | ≤ 2ε} ∩ B2 are pairwise disjoint.

Lemma 3. With suitable constants ε ′ and B ′ that are smaller (resp., greater)
than the constants of Lemma 2(a) and 2(b) and with parameters s, t, N,ν, ε as in
Lemma 2, with B > B ′ one can choose the constant ψ in such a way that the tori
Tj(2ε) and T ∗

k (2ε) of Lemma 2 are disjoint for all j and k.

Proof of Lemma 2. The argument is roughly that, for small t > 0, the intersec-
tion �j ∩ B2 is a disc of small diameter. If two such discs intersect, their centers
pj must be close. But then the corresponding complex tangencies to R∂B2 are
“almost parallel”, so they cannot intersect at points close to the pj .

More precisely, the set {|fj | ≤ 2ε} is the union of complex lines Lj = {p̃j+vj ·ζ :
ζ ∈ C}, with the same direction vj as �j through points p̃j ∈ �s. The p̃j have dis-
tance frompj not exceedingAε for a constantA that depends on the angle between
�s and �j and hence—by unitary equivalence—on s and t only. Therefore,

p̃j = (1 − s,R2(1 − t)e iφj + αj ) with |αj | ≤ Aε. (8)

Let j �= k. For the intersection point Lj ∩ Lk �= ∅, we have

p̃j + vj ζ = p̃k + vkζ
′ for some ζ, ζ ′ ∈ C.

From (6) and (8) we obtain that ζ = ζ ′ and

ζ = R2(1 − t)

(1 − s)
+ αj − αk

(1 − s)(e iφj − eiφk )
with |αj | ≤ Aε, |αk| ≤ Aε. (9)
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For small t > 0 and ε < ε ′(t, s), the absolute value |ζ| of this number can be esti-
mated from below by a positive constant depending only on s, provided that B ≥
B ′(s, t) and that B ′(s, t) is chosen so that

|eiφj − eiφk |−1 · 2Aε ≤ 2Aε

B ′(s, t) · ε <
1

2
R2(1 − t).

On the other hand, �j ∩ B2 is a closed disc of radius
√

1 − R2, which for fixed s
is small if t > 0 is small. Hence for ε < ε ′(t, s) the diameter of the intersection
Lj ∩ B2 is small (Lj , as before, contained in {|fj | ≤ 2ε}). For those t and ε, the
intersection Lj ∩ B2 cannot contain the two points p̃j and p̃j + vj ζ = Lj ∩ Lk ,
since their distance is bounded from below by a constant depending only on s.
Since p̃j ∈ Lj ∩ B2, the point p̃j + vj ζ is not in B2. Part (a) is proved.

To prove assertion (b), increase A if necessary and replace the number (1 − s)

in (9) by (1 − s + ν). Use that for ν small, ν < ν(s), and ε < ε ′(s, t,ν), the
complex lines L∗

j parallel to �∗
j and of distance not exceeding 2ε from �∗

j still
intersect B2 along a disc of small diameter (not exceeding const.(ν + √

t )). The
remaining arguments are the same as for part (a).

Remark 4. Note that the unitary transformation (z1, z2) → (z1, z2e
−iφj ) maps

the torusTj(ε) = Tfj (ε) to the torusT0(ε) = Tf0(ε) andT ∗
j (ε) = Tgj (ε) toT ∗

0 (ε) =
Tg0(ε). Moreover, the tori Tj(ε) are unitarily equivalent to T s1(ε) with

s1 = 1 − R = (1 + R)−1(2t − t 2)(2s − s2) (10)

and the T ∗
j (ε) are unitarily equivalent to T s2(ε) for some number s2 > s1, which

can be estimated from above by const.(t + ν 2).

Proof of Lemma 3. We want to choose ψ so that Tj(2ε) and T ∗
k (2ε) are disjoint

for all j and k. Note that the norm |Pj,k| of the intersection point Pjk = �j ∩ �∗
k

depends only onm = k− j. The idea is as follows. When |P0,m| is close to 1, the
points P0,m form approximately an arithmetic progression with step const ·Bε on
a real line in the complex line �0. Changing the parameter ψ leads approximately
to translating the approximate arithmetic progression by the parameter ψ inside
the real line. If B is large enough, this enables us to choose ψ in such a way that
the intersection points P0,m are not in ∂B2; moreover, a neighborhood of them of
size comparable to ε (containing the intersection {|f0| ≤ 2ε} ∩ {|gm| ≤ 2ε}) does
not meet ∂B2.

Here is the precise argument. Let s, t, N,ν, ε be chosen according to Lemma 2,
with constants ε ′ and B ′ as specified hereafter and smaller (resp., greater) than the
constants in parts (a) and (b) of that lemma. We will change the parameter ψ. The
points p∗

k, the complex lines �∗
k, the intersection points Pjk = �j ∩ �∗

k, and the tori
T ∗
k (ε) will all depend on ψ, but we will indicate the dependence on ψ only when

we want to draw special attention to this fact.
From (6) and (7) it follows that the intersection point Pj,k = Pj,k(ψ) of the

complex lines �j and �∗
k is determined by
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Pj,k(ψ) = pj + vj · ζ(ψ) = p∗
k(ψ)+ wk(ψ) · ζ ′(ψ)

for some ζ(ψ), ζ ′(ψ) ∈ C. From the same formulas we now obtain that ζ(ψ) =
ζ ′(ψ) def= ζj,k(ψ) and

ζj,k(ψ) = R2 · (1 − t)

1 − s

1 − ei(φk−φj+ψ)

1 −Qei(φk−φj+ψ)
, (11)

where
Q = (1 − s + ν)(1 − s)−1 > 1.

Here, as before, we put φj = 2πj/N and assume that the natural number N is
large. Put

F(φ) =
∣∣∣∣ 1 − eiφ

1 −Qeiφ

∣∣∣∣ =
∣∣∣∣2 sin(φ/2)

1 −Qeiφ

∣∣∣∣, (12)

so that

|ζj,k(ψ)| = R2(1 − t)

1 − s
F(φk − φj + ψ). (13)

Note that the function (|1−Qeiφ|)−1 is of classC∞(R), so for smallφ �= 0 we have

F ′(φ) = cos(φ/2) · sgnφ

|1 −Qeiφ| +
∣∣∣∣2 sin

φ

2

∣∣∣∣ ·
(

1

|1 −Qeiφ|
)′
.

Hence
0 < CQ ≤ |F ′(φ)| ≤ 2CQ for φ �= 0 and |φ| ≤ 3Q (14)

for positive constants3Q and CQ depending only onQ. (3Q may be chosen com-
parable to ν and CQ comparable to ν−1.) Since pj ∈ R∂B2 and since vj is the
direction of the complex tangent line to R∂B2, it follows that

|Pj,k|2 = |pj + vj · ζj,k|2 = |pj |2 + |vj |2|ζj,k|2.
By (6), we have |vj |2 = |pj |2 = R2. Hence

|Pj,k(ψ)|2 = R2

(
1 + R2

2(1 − t)2

(1 − s)2
F 2(φk − φj + ψ)

)
, (15)

where
R2 = 1 − (2t − t 2)(2s − s2). (16)

The set {|fj | ≤ 2ε}∩{|gk| ≤ 2ε} is contained in the (closed)A′ε-neighborhood
of Pj,k = Pj,k(ψ). The constant A′ depends only on ν, s, and t. For the square of
the norm of points in {|fj | ≤ 2ε} ∩ {|gk| ≤ 2ε}, this implies that these numbers
are contained in the (open) 4A′ε-neighborhood of |Pj,k(ψ)|2 provided |Pj,k(ψ)| ≤
3/2 and A′ε < 1.

We want to choose ψ so that the 4A′ε-neighborhoods of the |Pj,k(ψ)|2 do not
contain 1. Put m = k − j. Then φk − φj + ψ = φm + ψ = −φ−m + ψ and
|Pj,k(ψ)|2 = |P0,m(ψ)|2 = |P0,−m(−ψ)|2. Hence all possible values of (15) are
obtained when j = 0 and k = m runs over integers.
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If for some ψ and m0 we have∣∣|P0,m0(ψ)|2 − 1
∣∣ < 4A′ε, (17)

then by (15) and (16) it follows that F 2(φm0 +ψ)t−1 can be estimated from above
and below by positive constants depending only on s, provided ε is small com-
pared with t. Hence by (12) in this case φm0 +ψ is comparable to either ν · √t or
−ν · √

t .

Suppose now that for some m0 the 4A′ε-neighborhood of |P0,m0(0)|2 contains
1. (Otherwise we are done.) Note that by symmetry this is true also for −m0. If t
is small then, by the preceding arguments, |φm0 | and |φ−m0 | are much smaller than
3Q. By (14) and (15) we see that, for fixed ψ close to 0 and for integer numbersm
close tom0 (close to −m0, respectively), the possible values of the right-hand side
of (15) have distance from each other at least equal to c(s, t,ν)·R2(1−t)|φm+1−φm|
for a positive constant c(s, t,ν) depending on s, t , and ν. Since |φm+1 − φm| =
2π/N > 2 sin(π/N ) and since R2(1 − t)2 sin(π/N ) = Bε, the difference of the
values of (15) for fixed ψ close to 0 and for m close to m0 (−m0, resp.) is at least
c(s, t ,ν) · B · ε. Take the constant B ′ large enough so that the latter constant is at
least 40A′ε.

Using again (14) and (15), take ψ so that

10A′ε <
∣∣|P0,m0(ψ)|2 − |P0,m0(0)|2

∣∣ < 30A′ε
and the same estimate holds for m0 replaced by −m0. Note that ψ is comparable
to ε with multiplicative constants depending on s, t, and ν, so ψ is small if ε is
small. The 4A′ε-neighborhood of |P0,m0(ψ)|2 does not contain 1, and the same is
true for m0 replaced by −m0. The preceding arguments give that, for all m close
to m0, ∣∣|P0,m(ψ)|2 − 1

∣∣ > 4A′ε;
hence, since the function F is strictly monotonic on the positive half-axis (resp.,
on the negative half-axis), this holds for all m.

With this choice ofψ, we obtain that for all j and k the set {|fj | ≤ 2ε}∩{|gk| ≤
2ε} does not meet ∂B2 if ε is small enough. Hence the tori Tj(2ε) and T ∗

k (2ε) are
disjoint.

Proof of Proposition 2. For s ∈ (0,1) as in the statement, we first choose t and ν
small enough that the numbers s1 and s2 are less than s ′ (see (10) and Remark 4)
andR(t) > q (see (16)). By choosing t and ν small we may also achieve that, with
any choice of the natural number N, the parameter ψ, and a small enough positive
number ε, the sets {|fj | ≤ 2ε} and {|gk| ≤ 2ε} are contained in {|z1 − (1 − s)| ≤
δ}. Choose by Lemmas 2 and 3 the relation of the numbers N, ε, and ψ so that
the tori Tj(2ε) and T ∗

k (2ε) are pairwise disjoint. They are unitarily equivalent to
T s1(ε) and T s2(ε), respectively.

It remains to prove (5). Apply the Main Lemma to the pair �j and �∗
j = �∗

j (ψ)

for any j. Since the pairs obtained for different j are unitarily equivalent to �0 and
�∗

0(ψ) (see Remark 4) and since �∗
0(ψ) is close to �∗

0(0) if ψ is small, there exist
numbers a > 0 and r ′ ∈ (0,1) depending only on s, t,ν such that (1) holds with f
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replaced by fj and g replaced by gj . By Corollary 1, for r ∈ [r ′,1] the polynomial
hull of rTj(ε) ∪ rT ∗

j (ε) contains

{|fjgj | ≤ aε} ∩ rB2 ⊃ {|fj | ≤ √
aε

} ∩ {|gj | ≤ √
aε

} ∩ rB2.

So fj(pj ) = 0 and, since gj(p∗
j ) = 0, we obtain |gj(pj )| = |gj(pj )−gj(p∗

j )| ≤
|pj − p∗

j | = O(ε). This implies that, for small ε, the latter set contains the bidisc
pj + b

√
aε (D̄ × D̄) of radius b · √

aε around the point pj for some constant b
depending only on s, t, and ν. Recall that the pj are equidistributed on the cir-
cle Ct = {1 − s} × {|z| = R2(1 − t)} with distance between nearest points equal
to Bε. If b · √

aε > Bε (i.e., if ε < (b2/B2)a), then the polynomial hull of⋃
j(Tj(ε)∪T ∗

j (ε)) contains {z1}×{|z| = R2(1− t)} for all z1 with |z1− (1− s)| ≤
Bε. Since (1−s)2 +(R2(1− t))2 = R(t)2 > q2 we obtain that, for ε < ε ′ and with
a suitable choice of the constants r ′ and ε ′(s, s1, s2 , δ), the inclusion (5r ) holds for
r ∈ [r ′,1]. The weaker inclusion (5) follows.

The proof of Proposition 2 does not yield good estimates for the ratio of the con-
stants ε and δ. The point is that the Main Lemma gives useful effects essentially
only for the pair �j and �∗

j of complex lines—not for arbitrary pairs �j and �∗
k, when

the intersection point may be close to ∂B2 and the constant a of the Main Lemma
is not bounded away from zero. We shall state and prove the stronger Proposi-
tion 4, which can be directly used for inductive construction of the EN.

The first step toward this goal is Proposition 3, which is in the spirit of Proposi-
tion1. For its proof we use again two families of complex lines. The first family, �∗

k,
consists of certain complex lines parallel to the z2-axis. For some small σ > 0 and
a suitable constant α, their z1-coordinates form an α-net of the 4

3σ -neighborhood
of 1 − s (s ∈ (0,1)). Note that the intersections of these lines with ∂B2 are cir-
cles of diameters comparable to

√
s. The second family, �j , consists of complex

tangent lines to a smaller sphere through equidistributed points on a circle Ct con-
tained in �s = {z ∈ C

2 : z1 = 1 − s}. Here t cannot be chosen arbitrarily small;
it will take a value that is determined by s and σ. As in Proposition 1, the Main
Lemma will be applied to all pairs (�j , �∗

k ).

Proposition 3. For positive numbers σ and α we will denote by ζk all points of
the disc

{
ζ ∈ C : |ζ − s| ≤ 4

3σ
}

that are contained in the lattice s + αZ + iαZ.

Associate to these points functions gk(z) = z1 − (1 − ζk).

Let s ∈ (0,1). Then there exist positive constants σ ′ = σ ′(s) and α = α(s, σ ′)
such that the following holds: For each σ ∈ (0, σ ′) there exist positive constants
ε ′ = ε ′(s, σ) and s∗ = s∗(s, σ) < s (s∗(s, σ) → 0 for σ → 0) such that, for any
ε ∈ (0, ε ′), the following is true.

One can find finitely many complex affine functions fj such that the tori Tj(ε) =
{z ∈ ∂B2 : |fj(z)| ≤ ε} are unitarily equivalent to T s

∗
(ε). Moreover, the tori

Tj(2ε) and T ∗
k (2ε) = {z ∈ ∂B2 : |gk(z)| ≤ 2ε} ( for gk as defined previously)

are all pairwise disjoint and contained in {|z1 − (1 − s)| ≤ 2σ}. Finally, for the
polynomial hull of the union of the tori, we have
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{|z1 − (1 − s)| ≤ σ} ∩ (1 − ρ)B2 ⊂
(⋃

j

Tj(ε) ∪
⋃
k

T ∗
k (ε)

)̂
(18)

for a constant ρ = ρ(s, σ) such that ρ(s, σ) → 0 for s fixed and σ → 0.
The following sharper statement holds: There exists a constant r ′ = r ′(s, σ) >

0 such that, for r ∈ [r ′, 1],

{|z1 − (1 − s)| ≤ σ} ∩ (1 − ρ)B2 ⊂
(⋃

j

rTj(ε) ∪
⋃
k

rT ∗
k (ε)

)̂
. (18r)

Proof. Let s and σ be as in the statement of the proposition. The complex lines �j
will be obtained as in our plan for the proof of Proposition 2 for some parameters
t and N : they will be complex tangent to the sphere R(t)∂B2 (see (16)) through
equidistributed points pj ∈Ct with distance |pj+1 − pj | depending on N.

Determine now the parameter t (so far, N is arbitrary). Let t be maximal so
that �j ∩ ∂B2 ⊂ {|z1 − (1− s)| ≤ 5

3σ
}

and hence, for this parameter t, �j ∩ ∂B2 ⊂{|z1 − (1 − s)| = 5
3σ

}
(see (6)). This number t does not depend on N or j, and t

tends to zero for σ → 0. Hence, we also have s∗(s, σ) → 0 for σ → 0 . More-
over, if σ ′ is small then there is a uniform estimate from below of the angle of
intersection of �s

′
and �j for s ′ ∈ (s − 2σ, s + 2σ), with σ ∈ (0, σ ′) and t related

to σ as just described. Indeed, �s
′

is transversal to the complex tangent space of
∂B2 with a uniform estimate of the angle for the mentioned s ′. Therefore, if σ ′ is
small and σ < σ ′ then t is small; hence R(t) is close to 1 and so the �j (as com-
plex tangents to R(t)∂B2) are transversal to the �s

′
with uniform estimate of the

angle.
The positive number α will be specified later. Let ζk , gk , and �∗

k = {gk = 0} be
as in the statement of the proposition. The �∗

k are parallel to �s, and �∗
k ∩ ∂B2 is

contained in
{|z1 − (1− s)| ≤ 4

3σ
}

while �j ∩∂B2 is contained in
{|z1 − (1− s)| =

5
3σ

}
. The foregoing observations imply two facts as follows.

(i) If σ ′ and hence t is small, if ε is small depending on s ′ and σ, and if more-
over the parameters N and ε satisfy the conditions of Lemma 2(a), then all
tori Tj(2ε) and T ∗

k (2ε) are disjoint and contained in {|z1 − (1 − s)| ≤ 2σ}.
(ii) The Main Lemma can be applied to all pairs (�j , �∗

k ) with uniform constants
a and r ′.

Furthermore, using the notation �ξ = {z ∈ C
2 : z1 = 1 − ξ} with ξ ∈ C and

|ξ − s| ≤ 4
3σ, we obtain that for each positive number η the set �ξ ∩ {|fj | ≤ η}

is a closed disc in �ξ of radius at least D · η around the intersection point �ξ ∩ �j ,
where the constant D depends only on s and σ ′.

We now prove the assertion on the polynomial hull of the union of the tori for
suitably chosen α. Note first that, for |ξ − s| ≤ 4

3σ, the intersection points �ξ ∩ �j
(j = 0, . . . , N − 1) are equidistributed on the circle {1 − ξ} × {|z| = R ′

ξ } ⊂ B
2

for a number R ′
ξ that is close to

√
1 − |1 − ξ|2 if σ < σ ′ is small. This is because

the unitary transformation (z1, z2) → (z1, eiφjz2)maps the pair (�ξ, �0) to the pair
(�ξ, �j ).
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Corollary 1 implies that, for r ∈ [r ′,1] and all k and j, the polynomial hull of
rT ∗
k (ε) ∪ rTj(ε) contains the set

{|z1 − (1 − ζk)| · |fj(z)| ≤ aε} ∩ rB2. (19)

Let ε be as small as hitherto required (i.e., ε < ε ′(s, σ)) and let B > B ′, with
B ′ the constant of Lemma 2(a). Choose N so that the distance between nearest
points |pj+1 −pj | is between Bε and (B+1)ε. If σ is small, then for |ξ − s| ≤ 4

3σ

the distance between the nearest of intersection points �ξ ∩ �j (j = 0, . . . , N −1)
does not exceed 2(B + 1)ε. Take a constant C such that C ·D > 2(B + 1). The
set in (19) contains the set

{z∈ rB2 : |z1 − (1 − ζk)| ≤ a/C, |fj(z)| ≤ Cε}.
Hence, for any fixed ξ with |ξ − ζk| ≤ a/C and for r as before, the polynomial
hull of rT ∗

k (ε)∪
⋃
j
rTj(ε) contains the circle {1− ξ}× {|z| = R ′

ξ }. Take any α <
a/C. Then, for r ∈ [r ′,1],(⋃

k

rT ∗
k (ε) ∪

⋃
j

rTj(ε)

)̂
⊃

⋃
|ξ−s|≤σ

{1 − ξ} × {|z| ≤ R ′
ξ }.

The right-hand side contains {|z1 − (1 − s)| ≤ σ} ∩ (1 − ρ)B2 for suitable ρ =
ρ(s, σ), with ρ(s, σ) → 0 for σ → 0.

Now we are ready to state and prove the main proposition.

Proposition 4. Let s ∈ (0,1). There is a positive constant σ ′ = σ ′(s) such that,
for any σ ∈ (0, σ ′), there exist finitely many numbers sm ∈ (0,1) (their number
depends on s and σ, and each of them tends to zero for σ → 0) and a positive
number ε ′ = ε ′(s, σ, sm) such that the following holds.

For any ε ∈ (0, ε ′) there exist finitely many complex affine functions fn and re-
lated tori Tn(2ε), where each torus is unitarily equivalent to T sm(2ε) for somem,
with Tn(2ε) pairwise disjoint and contained in {|z1 − (1− s)| ≤ 2σ} and such that

(1 − ρ)B2 ∩ {|z1 − (1 − s)| ≤ σ} ⊂
(⋃

n

Tn(ε)

)̂
(20)

for a constant ρ = ρ(s, σ) such that, for fixed s, we have ρ(s, σ) → 0 if σ → 0.
Moreover, there exists an r ′ = r ′(s, σ, sm) such that, for r ∈ [r ′, 1],

(1 − ρ)B2 ∩ {|z1 − (1 − s)| ≤ σ} ⊂
(⋃

n

rTn(ε)

)̂
. (20r)

Proof. Let σ ′, r ′ and α be as in Proposition 3, let σ < σ ′, and let ε ′(s, σ) be the
constant from the statement of that proposition. Recall that Proposition 3 gives
two families of functions fj and gk. If σ is small, then the tori related to the fj
have small diameter but the tori related to the gk have large diameter. Our aim is
to apply Proposition 2 to each gk.
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Let s(gk) be the number for which |gk| is unitarily equivalent to |z1−(1−s(gk))|.
For each k, apply Proposition 2 with s = s(gk), δ = α/3, and q = r ′. For each kwe
obtain two numbers sk,1, sk,2 ∈ (0,1) (we can make them as small as we wish) and
a bound for ε below which we can find finitely many nonintersecting tori T(2ε),
unitarily equivalent to T sk,1(2ε) or T sk,2(2ε) and contained in {|z1− (1−s(gk))| ≤
α/3}, with the following property:

r ′ B2 ∩ {|z1 − (1 − s(gk))| ≤ ε} ⊂
(⋃

rT (ε)

)̂
(21r)

for all r ∈ [r̃k ,1] with a suitable r̃k.
Assume that ε is less than all the mentioned bounds and also that ε < ε ′(s, σ).

Consider the second family of tori Tj(2ε) from Proposition 3. The Tj(2ε) are re-
lated to complex affine functions fj and to complex lines �j = {fj = 0}.

Labeling our collection of all tori (i.e., the tori obtained for each k by Proposi-
tion 2 and the tori Tj(2ε) from Proposition 3) yields the family Tn(2ε). The Tn(2ε)
are pairwise disjoint. Indeed, by the choice of δ the tori obtained by Proposition 2
for different k do not intersect. Since �j ∩∂B2 ⊂ {|z1 − (1− s)| = 5

3σ
}

and {gk =
0} ∩ ∂B2 ⊂ {|z1 − (1− s)| ≤ 4

3σ
}
, the tori obtained by Proposition 2 do not meet

the Tj(2ε) from Proposition 3 if ε is small. Together with (21r) applied for each k
with r ∈ [r̃k ,1], the inclusion (18r ′) from Proposition 3 implies (20r), with r larger
than the maximum of all r̃k and also larger than r ′ from Proposition 3. Proposi-
tion 4 is proved.

Proposition 4 enables us to construct the sets EN inductively.

Proof of the Theorem.

Step 1. Lemma 1 and Proposition 1 give us, for any sufficiently small ε > 0, a
finite collection of tori. More precisely, we obtain a number r1 (see Remark 2) and
a finite collection of numbers s(1)m such that, for each small ε > 0 and for each m,
there exists a finite number of tori unitarily equivalent to T s

(1)
m (ε) with the follow-

ing properties. Denote all the tori by T (1), skipping labeling indices but indicating
that they are obtained at step 1. The T (1)(2ε) are pairwise disjoint, and

βB2 ⊂
(⋃

r1T (1)(ε)

)̂
. (22)

The number ε will be chosen at the second step of the induction. (Note that the
number of tori as well as the choice of the complex lines that are the symmetry
axes of the tori also depend on ε.)

Step 2. For any s(1)m of step 1 we apply Proposition 4. We obtain a bound σ ′(s(1)m ).
Choose now the number ε of step 1 (and hence the tori of that step). It has to sat-
isfy the following requirements. First, it must be so small that it fits for step 1.
Next, for each m we require ε < σ ′(s(1)m ). Further, for chosen s = s(1)m and σ = ε,
Proposition 4 allows us to find new s-parameters that tend to zero for σ = ε → 0.
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We denote the collection (over all m) of all new s-parameters at the second step
by s(2) (again we skip labeling indices) and require σ = ε to be so small that each
s(2) is less than 1/22. Finally, Proposition 4 asserts for each m and ε the existence
of a number ρ(s(1)m , ε) (see (20)). We wish to estimate 1 − ρ(s(1)m , ε) > r1 for each
m. Choose an ε > 0 satisfying all these conditions and denote it by ε1.

Denote E1 = ⋃
T (1)(2ε1), so E1 is the union of pairwise disjoint closed tori of

diameter determined by the s(1) and ε1. Then (22) implies that

βB2 ⊂ Ê1.

Indeed, T (1)(2ε1) ⊃ T (1)(ε1) and (T (1)(ε1))ˆ ⊃ r1T (1)(ε1) for any of the toriT (1)(ε1).

Having constructed the set E1, we now describe the construction of E2 modulo
the choice of the parameter ε2.

Denote the functions corresponding to the T (1)(ε1) by f (1) (omitting indices as
before). By applying Proposition 4 to each of the T (1)(ε1)we obtain the aforemen-
tioned collection of numbers s(2) < 1/22; we also obtain a number r2 (see (20r))
such that the following holds: For each sufficiently small ε > 0 there exist finitely
many pairwise disjoint tori T (2)(2ε) contained inE1, each of them unitarily equiv-

alent to a torus T s
(2)
m (2ε) for some of the numbers s(2)m of the collection s(2), such

that (since 1 − ρ(s(1)m , ε) > r1 for each m)

r1B
2 ∩

⋃
{|f (1)| ≤ ε1} ⊂

(⋃
r2T (2)(ε)

)̂
;

hence, by (22),

βB2 ⊂
(⋃

r2T (2)(ε)

)̂
.

This describes the construction of the set E2 modulo the choice of the parame-
ter ε2.

Step N. This is the general step of the induction. Let N > 2. Suppose that the
sets E1 ⊃ · · · ⊃ EN−2 are constructed with ÊN−2 ⊃ βB2 and that the construc-
tion of the set EN−1 is described modulo the choice of the parameter εN−1. We
want to choose the parameter εN−1 and describe the construction of EN modulo
the choice of the εN .

More precisely, we suppose the following has been done at step N − 1. There
was found a finite collection of numbers s(N−1), all less than 1/2N−1, and a number
rN−1 ∈ (0,1) such that for each sufficiently small ε > 0 there exist finitely many
pairwise disjoint tori T (N−1)(2ε) contained inEN−2 , each of them unitarily equiv-

alent to a torus T s
(N−1)
m (2ε) for some number s(N−1)

m of the collection s(N−1), with
the following relation for the polynomial hull:

βB2 ⊂
(⋃

rN−1T (N−1)(ε)

)̂
. (23)

We want to choose a suitable number εN−1 for ε. Here are the requirements for
the number ε. First, it must be small enough for stepN−1 to go through. Further,
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apply Proposition 4 using any of the numbers s(N−1) in place of s. We thus obtain
an upper bound for σ. Let σ ′ be the least of all such upper bounds over numbers
s(N−1) and require that ε < σ ′. Now, for s equal to any of the s(N−1) and for σ =
ε, Proposition 4 allows us to choose new s-parameters that tend to zero together
with σ = ε. Require ε to be so small that all the new s-parameters denoted by
s(N ) are less than 2−N. Finally, the proposition asserts the existence of a number
ρ(s(N−1)

m , ε) for each number s(N−1)
m of the s(N−1) (see (20)). We wish to estimate

1 − ρ(s(N−1)
m , ε) > rN−1 for each m. Choose a number ε > 0 satisfying all these

conditions and denote it by εN−1. Put

EN−1 =
⋃
T (N−1)(2εN−1).

Thus the set EN−1 is constructed (recall that also the number of the tori and the
choice of their symmetry axes depend on εN−1) and, by (23),

βB2 ⊂ ÊN−1.

Use now Proposition 4 to define EN modulo the choice of εN . Denote the func-
tions corresponding to the tori T (N−1)(εN−1) of the previous generation by f (N−1).

We already mentioned the numbers s(N ) obtained by Proposition 4. This proposi-
tion (applied with s being any of the s(N−1) and with σ = εN−1) also gives, for each
sufficiently small ε > 0, finitely many pairwise disjoint tori T (N )(2ε) contained

in EN−1 (each of them unitarily equivalent to T s
(N )
m (2ε), with s(N )m being some of

the numbers s(N )) as well as a number rN ∈ (0,1) with the following relation for
the polynomial hull:

rN−1B
2 ∩

⋃
{|f (N−1)| ≤ εN−1} ⊂

(⋃
rNT (N )(ε)

)̂
. (24)

Here we have used that 1 − ρ(s(N−1)
m , ε) > rN−1 for each m. Hence, using (23)

with the ε replaced by εN−1 yields

βB2 ⊂
(⋃

rNT (N )(ε)

)̂

for sufficiently small positive ε of stepN and for the tori T (N )(ε) whose existence
is obtained at step N.

The induction is now complete and hence the theorem is proved.

After this paper was written, L. Stout informed me that he had constructed a Cantor
set in C

n with nontrivial polynomial hull in case n ≥ 4. He uses purely topological
results and the existence of suitable plurisubharmonic Morse functions, a method
that does not work in dimensions 2 and 3.

Remark 5. Not every wild Cantor set in the sphere has nontrivial polynomial
hull.

Indeed, this can be seen even by varying the previous construction. Let the gen-
eral step N of the present construction look as follows. Suppose we obtained sets
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E∗
1 ⊃ · · · ⊃ E∗

N−1, so that the E∗
k are disjoint unions of closed solid tori (the same

kind as before) of width 2ε∗
k. Suppose the polynomial hull of E∗

k is contained in
the δk-neighborhood of

( ⋃
�(k)

)∩B2 for some sufficiently small positive number
δk. Here �(k) denotes the collection of complex lines that are the symmetry axes
of the tori in E∗

k. At step N, choose disjoint tori T ∗(N ) ⊂ E∗
N−1 by first doing the

construction from the proof of Proposition 4 and then fixing the symmetry axes of
the tori and taking ε∗

N so small that the polynomial hull of E∗
N = ⋃

T ∗(N )(2ε∗
N)

is contained in the δN -neighborhood of
( ⋃

�(N )
) ∩ B2. This is possible because( ⋃

�(k)
) ∩ B2 is the polynomial hull of

( ⋃
�(k)

) ∩ ∂B2. If δN → 0 for N → ∞
fast enough, then

(
since

( ⋃
�(N )

) ∩ B2 is close to the sphere for large N
)

the ac-
cumulation points of the mentioned δN -neighborhoods are contained in the sphere.
Hence the set E∗ = ⋂

E∗
N is polynomially convex. Using Bing’s theorem, one

can prove that this set is a wild Cantor set.

Remark 6. The set E constructed in the theorem is rationally convex.

In fact, each pair of points ofE can be separated by a 2-torus T in ∂B2 \E. Indeed,
for the 2-torus T we can take the boundary of a certain solid torus T (N )m (2ε), where
T (N )m (2εN) is one of the tori contributing to EN for someN and where ε is slightly
bigger than εN . The 2-torus T is contained in the cylinder {z ∈ C

2 : |f (N )m (z)| =
2ε}, which is the union of complex lines and does not meet E. Hence, the cylin-
der does not meet the rational hull of E. Now the same argument works as for
polynomial convexity of tame Cantor sets in the sphere.

We do not know whether Cantor sets in the sphere are always rationally convex.
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