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1. Introduction

In the study of the local Fatou theorem for harmonic functions, Carleson [Ca]
proved the following crucial estimate for positive harmonic functions, now re-
ferred to as the Carleson estimate. Given a bounded Lipschitz domain D in the
Euclidean space R

n, there exist constants K,C > 1, depending only on D, with
the following property: If ξ ∈ ∂D, if r > 0 is sufficiently small, and if xr is a point
in D with |xr − ξ| = r and dist(xr , ∂D) ≥ r/C, then

u ≤ Ku(xr) on D ∩ B(ξ, r)

whenever u is a positive harmonic function in D ∩ B(ξ,Cr) vanishing continu-
ously on ∂D ∩ B(ξ,Cr). Here B(ξ, r) denotes the open ball with center ξ and
radius r.

The Carleson estimate has been verified for more general Euclidean domains
such as NTA domains, and it plays an important role in the study of harmonic
analysis on nonsmooth domains. There are at least three different proofs of the
Carleson estimate, based on (i) uniform barriers, (ii) the boundary Harnack prin-
ciple, and (iii) the mean value inequality of subharmonic functions.

(i) Carleson’s original proof, as well as the extension to NTA domains due to
Jerison and Kenig [JK], are based on uniform barriers. This method was used
also by the second author, together with Holopainen and Tyson, in [HoST]
to study conformal Martin boundaries of bounded uniform domains in met-
ric measure spaces of bounded geometry. This approach requires the notion
of uniform fatness of the boundary introduced by Lewis in [Le].

(ii) In [A1], the first-named author proved the boundary Harnack principle di-
rectly and verified the Carleson estimate as a corollary. This method does not
rely on uniform barriers and is applicable to uniform domains with a small
boundary and, more generally, even to an irregular uniform domain. How-
ever, this method does not seem to be applicable to nonlinear equations.
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(iii) In the study of Denjoy domains, Benedicks [Be] employed Domar’s argu-
ment [D] based on the mean value inequality of subharmonic functions. His
approach was generalized to Lipschitz Denjoy domains by Chevallier [Ch].
The first author, together with Hirata and Lundh, utilized Domar’s argument
in [AHiL] to prove a version of the Carleson estimate for John domains in
Euclidean spaces.

The first goal of this paper is to show that Domar’s argument applies not only
to harmonic functions on a Euclidean domain but also to solutions of certain non-
linear equations on metric measure spaces. Throughout we assume that (X, d,µ)
is a proper metric measure space with at least two points and that µ is a doubling
Borel measure. Here we say that X is proper if closed and bounded subsets of X
are compact and that µ is doubling if there is a constant Cd ≥ 1 such that

µ(B(x, 2r)) ≤ Cdµ(B(x, r)),

where B(x, r) = {y ∈ X : d(x, y) < r} is the open ball with center x and
radius r. Moreover, we fix 1 < p < ∞ and assume that X supports a (1,p)-
Poincaré inequality (see Definition 2.1). We shall establish a Carleson-type esti-
mate (Theorem 5.2) for John domains in the setting of such metric measure spaces
by adapting the version of Domar’s argument found in [AHiL].

Our second goal is the study of conformal Martin boundaries of bounded John
domains whose boundaries may not be uniformly fat. Under the additional as-
sumption that the measure µ is Ahlfors Q-regular (for some Q > 1), we will use
our Carleson-type estimate to extend the results of [HoST] and [S3] to greater
generality. One of our main results is Theorem 6.1, which describes the behavior
of the conformal Martin kernels. The growth estimate (Theorem 6.1(ii)) is new.

In the general setting of metric measure spaces, it is not clear whether there
exists even one bounded uniform domain in X. However, if X is a geodesic space
then every ball in X is a John domain, with the center of the ball acting as a John
center. It is a well-known fact that any doubling metric measure space support-
ing a (1,p)-Poincaré inequality is quasiconvex; that is, there is a constant q ≥ 1
such that, for every pair of points x, y ∈X, there exists a rectifiable curve γxy in X

connecting x to y with the property that the length �(γxy) of γxy satisfies

�(γxy) ≤ q d(x, y). (1)

Thus, in our situation there are a plethora of bounded John domains in X even if
X is not a geodesic space. It is therefore desirable to study the conformal Martin
boundary of bounded John domains in X. The theory developed in [HoST] in-
dicates that the conformal Martin boundary is conformally invariant. The results
developed in this paper are therefore useful in the study of a Fatou-type prop-
erty of conformal mappings between two bounded John domains in metric spaces;
see [S3].

Acknowledgment. The authors wish to thank the referee for helpful sugges-
tions on improving the exposition of this paper.
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2. Definitions and Notation

Unless otherwise stated, C denotes a positive constant whose exact value is unim-
portant, can change even within the same line, and depends only on fixed param-
eters such as X, d, µ, and p. If necessary, we will specify its dependence on other
parameters.

In the setting of metric measure spaces that may not have a Riemannian struc-
ture, the following notion of upper gradients, first formulated by Heinonen and
Koskela in [HeKo1], replaces the notion of distributional derivatives (in [HeKo1],
upper gradients are referred to as “very weak” gradients). A Borel function g on
X is an upper gradient of a real-valued function f on X if, for all nonconstant
rectifiable paths γ : [0, lγ ] → X parameterized by arc length, we have

|f(γ (0)) − f(γ (lγ ))| ≤
∫
γ

g ds,

where the inequality is interpreted as saying also that
∫
γ
g ds = ∞ whenever at

least one of |f(γ (0))| and |f(γ (lγ ))| is infinite. See [HeKo1] and [KoMc] for
more on this notion.

Definition 2.1. We say that X supports a (1,p)-Poincaré inequality if there are
constants κ ≥ 1 and Cp ≥ 1 such that, for all balls B(x, r) ⊂ X, all measurable
functions f on X, and all p-weak upper gradients g of f ,

−
∫
B(x,r)

|f − fB(x,r)| dµ ≤ Cpr

(
−
∫
B(x,κr)

gp dµ

)1/p

,

where

fB(x,r) := −
∫
B(x,r)

f dµ := 1

µ(B(x, r))

∫
B(x,r)

dµ.

Following [S1], we consider a version of Sobolev spaces on X.

Definition 2.2. Let

‖u‖N1,p =
(∫

X

|u|p dµ
)1/p

+ inf
g

(∫
X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian space on
X is the quotient space

N1,p(X) = {u : ‖u‖N1,p < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p = 0.

The space N1,p(X) equipped with the norm ‖·‖N1,p is a Banach space and a lat-
tice (see [S1]). An alternative definition of Sobolev spaces given by Cheeger in
[C] yields the same space as N1,p(X) whenever p > 1; see [S1, Thm. 4.10].
Cheeger’s definition yields the notion of partial derivatives in the following theo-
rem [C, Thm. 4.38].
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Theorem 2.3 (Cheeger). Let X be a metric measure space equipped with a pos-
itive doubling Borel regular measure µ admitting a (1,p)-Poincaré inequality for
some 1 < p < ∞. Then there exists a countable collection (Uα ,Xα) of mea-
surable sets Uα and Lipschitz “coordinate” functions Xα : X → R

k(α) such that
µ

(
X \ ⋃

α Uα

) = 0, and for each α the following conditions hold.
The measure of Uα is positive and 1 ≤ k(α) ≤ N, where N is a constant de-

pending only on the doubling constant of µ and the constant from the Poincaré
inequality. If f : X → R is Lipschitz , then there exist unique bounded measur-
able vector-valued functions d αf : Uα → R

k(α) such that, for µ-a.e. x0 ∈Uα ,

lim
r→0+ sup

x∈B(x0,r)

|f(x) − f(x0) − d αf(x0) · (Xα(x) − Xα(x0))|
r

= 0.

We can assume that the sets Uα are pairwise disjoint, and we extend d αf by zero
outside Uα. Regarding d αf(x) as vectors in R

N, let df = ∑
α d

αf. The differen-
tial mapping d : f �→ df is linear, and it is shown in [C, p. 460] that there is a
constant C > 0 such that, for all Lipschitz functions f and µ-a.e. x ∈X,

1

C
|df(x)| ≤ gf (x) := inf

g
lim sup
r→0+

−
∫
B(x,r)

g dµ ≤ C|df(x)|. (2)

Here |df(x)| is a norm coming from a measurable inner product on the tangent
bundle of X created by the Cheeger derivative structure just described (see the
discussion in [C]), and the infimum is taken over all upper gradients g ∈ Lp(X)

of f ; observe that gf is in some sense the minimal upper gradient of f (see [S2,
Cor. 3.7]). Also, by [C, Prop. 2.2], df = 0 µ-a.e. on every set where f is constant.

By [C, Thm. 4.47] or [S1, Thm. 4.1], the Newtonian space N1,p(X) is equal to
the closure in the N1,p-norm of the collection of Lipschitz functions on X with
finite N1,p-norm. By [FHKo, Thm. 10], there exists a unique “gradient” du satis-
fying (2) for every u ∈ N1,p(X). Moreover, if {uj}∞j=1 is a sequence in N1,p(X),
then uj → u in N1,p(X) if and only if, as j → ∞, uj → u in Lp(X,µ) and
duj → du in Lp(X,µ; R

N). Hence the differential structure extends to all func-
tions in N1,p(X). We will use this structure throughout the paper; see for example
Definition 2.5.

Definition 2.4. The p-capacity of a Borel set E ⊂ X is the number

Capp(E) := inf
u

(∫
X

|u|p dµ +
∫
X

|du|p dµ
)

,

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E. A prop-
erty is said to hold p-quasieverywhere in X if the set on which the property does
not hold has zero p-capacity. The relative p-capacity Capp(K;') of a compact
set K with respect to an open set ' ⊃ K is given by

Capp(K;') = inf
∫
'

|du|p dµ,

where the infimum is taken over all functions u ∈ N1,p(X) for which u|K ≥ 1
and u|X\' = 0. If no such function exists, then we set Capp(K;') = ∞. For
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more on capacity, see [AO; HeKo2; KinM1; HeKiM, Chap. 2] and the references
therein.

To compare the boundary values of Newtonian functions, we need a Newtonian
space with zero boundary values. Let ' ⊂ X be an open set and let

N
1,p

0 (') = {u∈N1,p(X) : u = 0 p-quasieverywhere on X \ '}.
Corollary 3.9 in [S1] implies that N1,p

0 (') equipped with theN1,p-norm is a closed
subspace of N1,p(X). By [S2, Thm. 4.8], if ' is relatively compact then the space
Lipc(') of Lipschitz functions with compact support in ' is dense in N

1,p

0 (').

In the rest of this paper, ' ⊂ X will always denote a bounded domain in X with
Capp(X \ ') > 0.

Definition 2.5. Let ' ⊂ X be a domain. A function u : X → [−∞, ∞] is said
to be p-harmonic in ' if u∈N

1,p

loc (') and if, for all relatively compact subsets U
of ' and for every function ϕ ∈N

1,p

0 (U),∫
U

|du|p dµ ≤
∫
U

|d(u + ϕ)|p dµ. (3)

We say that u is a p-subsolution in ' if (3) holds for every nonpositive func-
tion ϕ ∈ N

1,p

0 (U). We say that u is a p-quasiminimizer if there is a constant
Cqm ≥ 1 such that, for all relatively compact subsets U of ' and every function
ϕ ∈N

1,p

0 (U), ∫
U

|du|p dµ ≤ Cqm

∫
U

|d(u + ϕ)|p dµ. (4)

Furthermore, we say that u is a p-quasisubminimizer if (4) holds true whenever ϕ
is a nonpositive function in N

1,p

0 (U).

Remark 2.6. It is easily seen that p-harmonic functions are p-quasiminimizers
and that p-subsolutions are p-quasisubminimizers. See [KinM3; KinS] for more
on quasiminimizers.

Definition 2.7. By HU
p f we denote the solution to the p-Dirichlet problem on

the open set U with boundary data f ∈ N1,p(U); that is, HU
p f is p-harmonic in

U and HU
p f − f ∈N

1,p

0 (U). An upper semicontinuous function u is said to be
p-subharmonic in ' if the comparison principle holds. That is, if f ∈N1,p(U) is
continuous up to ∂U and if u ≤ f on ∂U, then u ≤ HU

p f on U for all relatively
compact subsets U of '.

Definition 2.8. Let ' be a relatively compact domain in X and let y ∈ '. An
extended real-valued function g = g(·, y) on ' is said to be a p-singular function
with singularity at y if it satisfies the following four criteria:

(i) g is p-harmonic in ' \ {y} and g > 0 on ';
(ii) g|X\' = 0 p-q.e. and g ∈N1,p(X \ B(y, r)) for each r > 0;

(iii) y is a singularity (i.e., limx→y g(x) = ∞); and
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(iv) whenever 0 ≤ a < b < ∞,

Capp('
b;'a) = (b − a)1−p, (5)

where 'b = {x ∈' : g(x) ≥ b} and 'a = {x ∈' : g(x) > a}.
In [HoS] it was shown that every relatively compact domain in a metric measure
space equipped with a doubling measure supporting a (1, q)-Poincaré inequality
with q < p has a p-singular function that plays a role analogous to the Green
function of the Euclidean p-Laplace operator. It was shown by Keith and Zhong
[KeZ] that a complete metric space supporting a (1,p)-Poincaré inequality for
some p > 1 also supports a (1, q)-Poincaré inequality for some 1 ≤ q < p.

Hence, we may apply the results of [KinS] and [HoS] without assuming a priori
the better Poincaré inequality.

Note that we have the doubling property on the measure µ as a standing as-
sumption. As a consequence of this doubling property, it can be shown that there
are constants Q > 0 and C1 such that, for all x ∈X, 0 < ρ < R, and y ∈B(x,R),

1

C1

(
ρ

R

)Q

≤ µ(B(y, ρ))

µ(B(x,R))
. (6)

The book [He] has a proof of this fact. The measure µ is said to be Ahlfors Q-
regular if there is a constant C ≥ 1 such that, for every x ∈X and for every r > 0,

rQ

C
≤ µ(B(x, r)) ≤ CrQ. (7)

For the rest of this section we will assume that X = (X, d,µ) is of Q-bounded
geometry; that is,µ isAhlforsQ-regular andX supports a (1,Q)-Poincaré inequal-
ity ([BoHeKo, Sec. 9] or [HoST]). It was shown in [HeKo1] that metric spaces of
Q-bounded geometry possess a Loewner-type property related to the Q-modulus
of curve families connecting compacta. Therefore, we can use the techniques of
[Ho] to show that, for each y ∈', there is exactly one Q-singular function for '
with singularity at y satisfying equation (5). This enables us to define a boundary
in a manner similar to the classical potential theoretic Martin boundary.

Definition 2.9. Fix x0 ∈'. Given a sequence (xn) of points in ', we say that
the sequence is fundamental (relative to x0) if it has no accumulation point in '

and if the sequence of normalized singular functions

Mxn(x) = M(x, xn) := g(x, xn)

g(x0, xn)

is locally uniformly convergent in '. Here g is the Q-singular function for '. We
set M(x, x0) = 0 when x �= x0 and set M(x0, x0) = 1.

Given a fundamental sequence ξ = (xn), we shall denote the corresponding limit
function

M(x) = Mξ(x) := lim
n→∞M(x, xn)
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and call it a conformal Martin kernel function. We say that two fundamental se-
quences ξ and ζ are equivalent (relative to x0), ξ ∼ ζ, if Mξ = Mζ . It is worth
noting that Mξ is a nonnegative Q-harmonic function in ', with Mξ(x0) = 1.
Hence Mξ > 0 in ' by local Harnack’s inequality (see [KinS, Cor. 7.3]). Note
that if x̃0 is another point in ' then g(x, xn)/g(x̃0, xn) = M(x, xn)/M(x̃0, xn).
Hence the property of being a fundamental sequence is independent of the par-
ticular choice of x0. Furthermore, fundamental sequences ξ and ζ are equivalent
relative to x0 if and only if they are equivalent relative to any x̃0 ∈ '. Thus the
following definition is independent of the fixed point x0.

Given a point χ ∈ ∂', we say that a function M is a conformal martin kernel
associated with χ if there is a fundamental sequence (yn) in ' such that yn → χ

and the sequence of singular functions M(·, yn) with singularity at yn converges
locally uniformly to M.

Definition 2.10. The collection of all equivalence classes of fundamental se-
quences in ' (or, equivalently, the collection of all conformal Martin kernel func-
tions) is the conformal Martin boundary ∂cM' of the domain '. This collection
is endowed with the local uniform topology: a sequence ξn in this boundary is said
to converge to a point ξ if the sequence of functions Mξn converges locally uni-
formly to Mξ.

The classical Martin boundary theory can be extended to general domains in met-
ric measure spaces under certain circumstances. However, there are examples of
metric measure spaces with Ahlfors Q-regular measure, Q > 2, supporting a
(1,Q)-Poincaré inequality but not (1, 2)-Poincaré inequality. For domains in such
a metric space, 2-singular functions of Definition 2.8 may not exist and it is not
easy to say what kind of ideal boundary should correspond to the classical Martin
boundary, whereas the conformal Martin boundary can be constructed immedi-
ately as in [HoST].

3. Domar’s Argument

Recall that X is a proper metric space and that µ is doubling and supports a (1,p)-
Poincaré inequality. In this section we assume that ' ⊂ X is a bounded open set.
Increasing the value of C1 in (6) to absorb the terms involving B(x, 2 diam('))

and (2 diam('))Q, we obtain the lower mass bound:

µ(B(y, r)) ≥ rQ

C1
for y ∈ '̄ and 0 < r ≤ 2 diam('). (8)

Let u be a nonnegative, locally bounded p-subharmonic function or a p-quasi-
subminimizer in'. Thenu is ap-quasisubminimizer [KinM2, Cor. 7.8] and hence
u is in the De Giorgi class DGp(') (see [KinM3, Lemma 5.1]). This means that
if B(x,R) ⊂ ' then∫

{y∈B(x,ρ) : u(y)>k}
gp
u dµ ≤ C

(r − ρ)p

∫
{y∈B(x,r) : u(y)>k}

(u − k)p dµ
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for every k ∈ R and 0 < ρ < r < R/κ , where κ is the scaling constant from the
Poincaré inequality. It therefore follows, from [KinS, Thm. 4.2] (with k0 = 0)
and the doubling property of the measure µ, that if B(x,R) ⊂ ' then

u(x) ≤ Cs

(
−
∫
B(x,R)

up dµ

)1/p

, (9)

where Cs ≥ 1 is independent of x, R, and u but depends on the quasisubmini-
mizing constant Cqm. If a function u on an open set U satisfies (9) for every ball
B(x,R) ⊂ U, then we say that u enjoys the weak sub–mean value property in U.

Using the weak sub–mean value property, we shall give the following modifica-
tion of Domar’s theorem (see [D] and [AHiL]). Observe that the weak sub–mean
value property (9) holds for more general classes of functions than the class of
p-harmonic functions. Indeed, [KinS] (see also [KinM3]) proved this property
for p-quasiminimizers and more generally for functions in the De Giorgi class.
Hence the following lemma is phrased for the class of all functions satisfying the
weak sub–mean value property, though in this paper it will later be applied only
to p-quasisubminimizers. For u > 0 we write

log+u =
{

log u if u ≥ 1,

0 otherwise.

Lemma 3.1. Let ' be a bounded open set in X and let δ'(x) = dist(x,X \ ').

Suppose u is a locally bounded nonnegative function on ' satisfying the weak
sub–mean value property (9) in '. If there is a positive real number ε with

I :=
∫
'

(log+u)Q−1+ε dµ < ∞,

where Q is the lower mass bound in (8), then there exists a constant C > 0 inde-
pendent of u such that

u(x) ≤ 4C2
s exp(CI1/εδ'(x)

−Q/ε) for all x ∈'. (10)

Note that in the Euclidean setting we have δ'(x) = dist(x, ∂'), but in the general
setting of metric measure spaces this may not be the case.

Proof. We first prove the following estimate.
Let x ∈X and R > 0 be such that u satisfies the p-sub–meanvalue property on

B(x,R). If u(x) ≥ t > 0, a ≥ 2Cs , and

µ

({
y ∈B(x,R) :

t

a
< u(y) ≤ at

})
≤ µ(B(x,R))

a2p
, (11)

then there exists an x2 ∈B(x,R) such that u(x2) > at. Here Cs is the constant in
(9). To see this, suppose that u(y) ≤ at for every y ∈B(x,R). Then, by (9),
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t ≤ u(x)

≤ Cs

(
−
∫
B(x,R)

up dµ

)1/p

≤ Cs

(
1

µ(B(x,R))

[(
t

a

)p

µ(B(x,R)) +
∫

{y∈B(x,R) : u(y)>t/a}
up dµ

])1/p

≤ 21/pCs

a
t.

Since Cs/a ≤ 1/2 and p > 1 by assumption, we have 1 ≤ 21/pCs/a < 1, which is
not possible. Hence there must be a point x2 ∈B(x,R) such that u(x2) > at.

Whatever the value of C might be, we have C > 0. Hence

exp(CI1/εδ'(x)
−Q/ε) ≥ 1.

Therefore, in order to prove (10), it suffices to show that there exists a constant
C > 0 such that, whenever u(x) > 4C2

s ,

u(x) ≤ exp(CI1/εδ'(x)
−Q/ε). (12)

Fix x ∈' such that u(x) > 4C2
s . Then u(x) > 1 and hence log+u(x) = log u(x).

Therefore, demonstrating (12) is equivalent to showing that there is a constant C >

0 independent of x such that

δ'(x) ≤ CI1/Q(log+u(x))−ε/Q. (13)

Toward this end, let us choose a = 2Cs. This sets us up to use (11). For j ∈ N let

Rj = [
C1a

2pµ({y ∈' : aj−2u(x) < u(y) ≤ aju(x)})]1/Q
,

where C1 is the constant in (8). We claim that

δ'(x) ≤ 2
∞∑
j=1

Rj . (14)

In order to prove (14), we now construct a sequence of points in ', finite or in-
finite depending on the situation, as follows. Let x1 = x. If δ'(x1) < R1, then
consider the singleton sequence (x1). Suppose δ'(x1) ≥ R1. Since B(x1,R1) ⊂
', it follows that[

C1a
2pµ({y ∈B(x1,R1) : a−1u(x1) < u(y) ≤ au(x1)})

]1/Q ≤ R1.

From (8) we then have that

µ({y ∈B(x1,R1) : a−1u(x1) < u(y) ≤ au(x1)}) ≤ R
Q
1

C1a2p
≤ µ(B(x1,R1))

a2p
.

Now, by (11) with t = u(x1), there is a point x2 ∈ B(x1,R1) such that u(x2) >

au(x1). If δ'(x2) < R2 then consider the sequence (x1, x2). Otherwise, we have
B(x2 ,R2) ⊂ ' and, as before, we can apply (11) with t = au(x1) to obtain



174 Hiroaki Aikawa & Nageswari Shanmugalingam

x3 ∈B(x2 ,R2) such that u(x3) > au(x2) > a2u(x1). Inductively, we may con-
struct xJ given (x1, x2 , . . . , xJ−1) such that, for j = 1, . . . , J − 1,

δ'(xj ) ≥ Rj , d(xj , xj−1) < Rj−1, u(xj ) > au(xj−1) > aj−1u(x1).

If δ'(xJ−1) < RJ−1, then we stop here. Otherwise, we may use (11) to find a point
xJ ∈B(xJ−1,RJ−1) such that u(xJ ) > au(xJ−1) > aJ−1u(x1). We will now show
that δ'(x1) ≤ 2

∑∞
j=1Rj . In order to do so, we consider two cases.

Case 1: the sequence is finite. Then there is a positive integer J such that
δ'(xJ ) < RJ . Hence

δ'(x1) ≤
J−1∑
j=1

d(xj , xj+1) + δ'(xJ ) <

J−1∑
j=1

Rj + RJ ≤
∞∑
j=1

Rj .

Case 2: the sequence is infinite. Then, for every j ∈ N, we have u(xj ) >

aj−1u(x1); that is, limj→∞ u(xj ) = ∞. But then, as u is locally bounded on ',
the infinite sequence (xj )j has no accumulation point in '. Since (by assumption)
X is proper and so '̄ is compact, there is a subsequence converging to a point in
∂'. Hence there exists some J ∈ N for which δ'(xJ ) <

1
2δ'(x1). As a result,

δ'(x1) ≤
J−1∑
j=1

d(xj , xj+1) + δ'(xJ ) <

J∑
j=1

Rj + 1

2
δ'(x1),

and we can then conclude that

δ'(x1) ≤ 2
J∑

j=1

Rj ≤ 2
∞∑
j=1

Rj .

Hence (14) follows whether the sequence just constructed is finite or not.
Therefore, to show (13) it suffices to prove that

∞∑
j=1

Rj ≤ CI1/Q(log+u(x))−ε/Q. (15)

Let j0 be the unique positive integer such that aj0 < u(x) ≤ aj0+1. Then j0 ≥ 2,
since we have assumed that u(x) > 4C2

s = a2. Recall that, for j ∈ N,

Rj = [
C1a

2pµ({y ∈' : aj−2u(x) < u(y) ≤ aju(x)})]1/Q
.

We obtain from Hölder’s inequality that
∞∑
j=1

Rj ≤ C

∞∑
j=1

[
µ({y ∈' : aj0+j−2 < u(y) ≤ aj0+j+1})]1/Q

≤ C

∞∑
j=j0−1

[
µ({y ∈' : aj < u(y) ≤ aj+3})]1/Q

= C

∞∑
j=j0−1

j (Q−1+ε)/Q

j (Q−1+ε)/Q

[
µ({y ∈' : aj < u(y) ≤ aj+3})]1/Q
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≤ C

[ ∞∑
j=j0−1

1

j (Q−1+ε)/(Q−1)

](Q−1)/Q[ ∞∑
j=j0−1

∫
{y∈' : aj<u(y)≤aj+3}

jQ−1+ε dµ

]1/Q

≤ Cj
−ε/(Q−1)
0

[ ∞∑
j=j0−1

∫
{y∈' : aj<u(y)≤aj+3}

(
log+u

log a

)Q−1+ε

dµ

]1/Q

.

Note that each y ∈ ' belongs to at most three of the sets {y ∈ ' : aj < u(y) ≤
aj+3}. Hence we see that

∞∑
j=1

Rj ≤ Cj
−ε/Q

0 I1/Q.

By the choice of j0 it can be seen that aj0 < u(x) ≤ aj0+1 and j0 ≥ 2. We
therefore have j0 ≤ log u(x)/log a ≤ j0 + 1 ≤ 2j0, and so

∞∑
j=1

Rj ≤ C

(
log+u(x)

2 log a

)−ε/Q

I1/Q,

which is (15). Note that C is independent of x and u. This completes the proof of
Lemma 3.1.

It should be emphasized that in Lemma 3.1 we do not require that ' be a domain.
It is sufficient to assume merely that ' is a bounded open subset of X such that
X \ ' �= ∅.

4. Geometry of Bounded John Domains in X

Let ' ⊂ X be a domain. For 0 < c < 1, a rectifiable curve γ connecting x, y ∈
' is said to be a c-John curve in ' if δ'(z) ≥ c�(γxz) for every z ∈ γ, where
γxz is the subcurve of γ having x and z as its two endpoints. We say that ' is a
John domain with John center x0 ∈ ' and John constant c if every point x ∈ '

can be connected to x0 by a c-John curve in '. For A > 1, a rectifiable curve γ

connecting x, y ∈' is said to be a A-uniform curve in ' if �(γ ) ≤ Ad(x, y) and
min{�(γxz, �(γzy)} ≤ Aδ'(z) for every z ∈ γ. We say that ' is an A-uniform do-
main if every pair of distinct points x, y ∈' can be joined by an A-uniform curve
γ in '. Obviously, a uniform domain is a John domain; but the converse is not
necessarily true.

Given x ∈X and R > 0, we let B̄(x,R) = {y ∈X : d(x, y) ≤ R}. Note that
in general this may be a larger set than the closure of the open ball B(x,R) itself.
By S(x,R) we mean the sphere centered at x of radius R: S(x,R) = {y ∈ X :
d(x, y) = R}. This set contains ∂B(x,R) but in general could be a larger set.

For domains V ⊂ X, we let kV denote the following quasihyperbolic “metric”
on V. If x, y ∈V, then

kV (x, y) = inf
γ

∫
γ

ds(t)

δV (γ (t))
,
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where the infimum is taken over all rectifiable curves connecting x to y in V. If no
such curve exists in V, then we set kV (x, y) = ∞. It is worth noting that if V is a
John domain then kV is always finite-valued; that is, it is indeed a metric. In fact,
if γ is a c-John curve connecting x to y in ', then

k'(x, y) ≤
∫
γ

ds(t)

δ'(γ (t))
≤

∫ δ'(x)/2

0

ds

δ'(x)/2
+

∫ �(γ )

δ'(x)/2

ds

cs

≤ 1 + log 2/c

c
+ 1

c
log

(
δ'(y)

δ'(x)

)
. (16)

Suppose for a moment that ' is a uniform domain. Let ξ ∈ ∂' and x ∈ ' ∩
B̄(ξ,R/2). By the uniformity we find a point y ∈ S(ξ,R) with δ'(y) ≥ R/(3A)
and a uniform curve γ ⊂ ' connecting x and y. Observe that γ ⊂ '∩B(ξ,CR)

with C > 1 depending only on the uniformity. For this point y we have

k'(x, y) = k'∩B(ξ,2CR)(x, y) ≤ C

[
log

(
R

δ'(x)

)
+ 1

]
.

This property can be generalized to a John domain. Following [AHiL], we give
the following definition.

Definition 4.1. Let N ∈ N. We say that ξ ∈ ∂' has a system of local reference
points of order N if there exist constants Rξ > 0, λξ > 1, and Aξ > 1 such that,
whenever 0 < R < Rξ , we can find y1, . . . , yN ∈' ∩ S(ξ,R) with the following
properties:

(i) A−1
ξ R ≤ δ'(yi) ≤ R for each i = 1, . . . ,N; and

(ii) for every x ∈' ∩ B̄(ξ,R/2), there exist some i ∈ {1, . . . ,N} for which

k'(x, yi) = k'∩B(ξ,λξR)(x, yi) ≤ Aξ

[
log

(
R

δ'(x)

)
+ 1

]
.

Remark 4.2. If ' is a uniform domain, then every ξ ∈ ∂' has a system of local
reference points of order 1. The constants Rξ , λξ , and Aξ depend only on the uni-
formity of '.

Lemma 4.3. Let ' ⊂ X be a John domain with John center x0 and John con-
stant c. Then there exists N0 ∈ N, depending only on x0, c, and the data of X, such
that every ξ ∈ ∂' has a system of local reference points of order at most N0 with
constants Rξ = R0 := min{δ'(x0)/2, diam(')/10}, λξ = 8, and Aξ = A0 :=
max{2/c, 3/2 + c−1 log 2/c}.
Proof. Let ξ ∈ ∂' and 0 < R < R0 and suppose that x ∈ ' ∩ B̄(ξ,R/2). Let
γx be a c-John curve connecting x to x0 and let yx be the point of γx at which γx
leaves the ball B(ξ,R) for the first time. Then

R ≥ δ'(yx) ≥ c�(βx) ≥ cR/2 ≥ R/A0, (17)

where βx is the subcurve of γx that terminates at yx. Let E = {yx : x ∈
'∩ B̄(ξ,R/2)}. By the 5-covering lemma (see e.g. [He]) and the doubling prop-
erty of µ, we find finitely many points y1 = yx1, . . . , yN = yxN ∈ E such that
N ≤ N0,
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E ⊂
N⋃
i=1

B

(
yi,

cR

10q

)
⊂ B(ξ,R),

and {B(yi, cR/(50q))}Ni=1 is pairwise disjoint, where q ≥ 1 is the quasiconvexity
constant in (1).

Let us demonstrate that y1, . . . , yN satisfy the conditions of Definition 4.1. Ob-
viously, (i) holds true by (17). To prove (ii), for x ∈'∩ B̄(ξ,R/2) take the point
yx and the subcurve βx as described after (17). Then δ'∩B(ξ,8R)(z) = δ'(z) for
z∈ βx , so that (16) gives

k'∩B(ξ,8R)(x, yx) ≤
∫
βx

ds(t)

δ'(βx(t))
≤ 1 + log 2/c

c
+ 1

c
log

(
R

δ'(x)

)
.

Since yx ∈ E ⊂ ⋃
i B(yi, cR/(10q)), we can find a positive integer i ≤ N such

that yx ∈B(yi, cR/(10q)). By the quasiconvexity of X there is a rectifiable curve
γ connecting yx to yi with �(γ ) ≤ q d(yx , yi) ≤ cR/10. By (17),

δ'∩B(ξ,8R)(z) = δ'(z) ≥ δ'(yx) − cR/10 > cR/5 for z∈ γ,

so that

k'∩B(ξ,8R)(yx , yi) ≤
∫
γ

ds(t)

δ'(γ (t))
≤ cR/10

cR/5
= 1

2
.

Hence

k'∩B(ξ,8R)(x, yi) ≤ k'∩B(ξ,8R)(x, yx) + k'∩B(ξ,8R)(yx , yi)

≤ A0

[
log

(
R

δ'(x)

)
+ 1

]
.

This completes the proof of Lemma 4.3.

Lemma 4.4. Let ' ⊂ X be a bounded John domain with John center x0 and
John constant c. Then there exist positive constants C and τ depending only on
the data of X and of ' such that, for each ξ ∈ ∂' and 0 < R < 2cδ'(x0)/(10q),∫

'∩B(ξ,R)

(
R

δ'(x)

)τ
dµ(x) ≤ Cµ(B(ξ,R)).

Hajłasz and Koskela [HKo1, Lemma 6] demonstrated the lemma for Euclidean
domains by an indirect proof using Sobolev extension and embedding theorems
(see [HKo1, Remark 11]). The following proof (a modification of the proof from
[AHiL]) is more geometric, and it holds true for all relatively compact John do-
mains in quasiconvex metric measure spaces equipped with a doubling measure
irrespective of whether X supports a Poincaré inequality.

Proof. For each nonnegative integer j, let Ej = ⋃∞
i=j+1Vi with

Vi = {x ∈' ∩ B(ξ,R + (q + 1)22−iR/c) : 2−(i+1)R ≤ δ'(x) < 2−iR}.
We claim that for every x ∈Ej there exist two points yx , y ′

x ∈' such that

(i) x ∈B(yx , (q + 1)2−jR/c) and
(ii) B(y ′

x , 2−(j+2)R) ⊂ Vj ∩ B(yx , (q + 1)2−jR/c).
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To see this, let x ∈Ej . Let γx be a c-John curve connecting x and the John center
x0. Observe that we can choose yx ∈ γx such that δ'(yx) = 2−jR ≥ c d(x, yx),
thus satisfying (i). Because X is proper, there is a point y∗

x ∈X \' with δ'(yx) =
d(yx , y∗

x ). SinceX is quasiconvex, there is a curveβ connecting yx and y∗
x such that

�(β)≤ q2−jR. Let y ′
x ∈β∩' be a point satisfying δ'(y

′
x)= (2−(j+1)+2−j )R/2.

Then, for z∈B(y ′
x , 2−(j+2)R):

d(yx , z) ≤ d(yx , y ′
x) + d(y ′

x , z) < �(β) + 2−(j+2)R <
(q + 1)2−jR

c
;

d(ξ, z) ≤ d(ξ, x) + d(x, yx) + d(yx , z)

< R + (q + 1)21−jR

c
+ 2−jR

c
+ (q + 1)2−jR

c

= R + (3q + 4)22−jR

4c
;

2−(j+1)R < δ'(y
′
x) − d(y ′

x , z) ≤ δ'(z) ≤ δ'(y
′
x) + d(y ′

x , z) < 2−jR.

These three inequalities together yield (ii).
In view of (i), the collection {B(yx , (q + 1)2−jR/c)}x∈Ej forms a covering of

Ej . By the 5-covering lemma, it follows that we have a pairwise disjoint subcol-
lection {B(yk , (q + 1)2−jR/c)}k∈N such that Ej ⊂ {B(yk , 5(q + 1)2−jR/c)}k∈N.

Since µ is a doubling measure, we can find C2 > 1, which depends solely on Cd ,
such that

µ(B(yk , 5(q + 1)2−jR/c)) ≤ C2µ(B(y
′
k , 2−(j+2)R))

≤ C2µ(Vj ∩ B(yk , (q + 1)2−jR/c)).

Here y ′
k is associated with yk in the same manner that y ′

x is paired with yx , and the
second inequality follows from (ii). Therefore,

∞∑
i=j+1

µ(Vi) = µ(Ej ) ≤
∑
k∈N

µ(B(yk , 5(q + 1)2−jR/c))

≤ C2

∑
k∈N

µ(Vj ∩ B(yk , (q + 1)2−jR/c)) ≤ C2µ(Vj ).

Let 1 < t < 1 + 1/C2 and τ = log2 t. Then, proceeding as in [AHiL, Proof of
Lemma 4.1] or [A1, Lemma 5], we can deduce from the preceding inequality that∫

'∩B(ξ,R)

(
R

δ'(z)

)τ
dµ(z) ≤

∞∑
j=0

∫
Vj

(
R

δ'(z)

)τ
dµ(z)

≤
∞∑
j=0

t j+1µ(Vj ) ≤ Cµ(B(ξ,R)).

Definition 4.5. A finite collection {B(xi, ri)}ki=1 of balls is said to be a Harnack
chain, connecting two points x, y ∈' with length k, if:
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(i) for i = 1, . . . , k − 1, B(xi, ri) ∩ B(xi+1, ri+1) �= ∅;
(ii) for i = 1, . . . , k, B(xi, 2κri) ⊂ ';

(iii) x ∈B(x1, r1) and y ∈B(xk , rk).

Here κ is the scaling constant from the Poincaré inequality (see Definition 2.1).

In light of the definition of k'(x, y), we observe that x and y are connected by a
Harnack chain of length no more than 1+Ck'(x, y). Hence the Harnack inequal-
ity for p-quasiminimizers (see [KinS]) gives the following lemma.

Lemma 4.6. If h is a positive p-quasiminimizer on ', then

1

AH

exp(−AHk'(x, y)) ≤ h(x)

h(y)
≤ AH exp(AHk'(x, y)) for x, y ∈',

where AH > 1 is independent of h, x, and y.

5. A Carleson-Type Estimate for p-Harmonic Functions
on a John Domain in Ahlfors Regular Spaces

We will henceforth assume that µ is Ahlfors Q-regular (see (7)). We will also as-
sume from now on that ' ⊂ X is a bounded John domain with John center x0 ∈
' and John constant 0 < c < 1 and that X \ ' �= ∅. If x ∈ ' and γx is a John
curve connecting x to a local reference point yi associated with x as in the proof
of Lemma 4.3, then

k'(x, yi) ≤ C3

[
log

(
δ'(yi)

δ'(x)

)
+ 1

]
.

Therefore, by Lemma 4.6, for every positive p-quasiminimizer h on ' and x ∈'

we have

h(x)

h(yi)
≤ AH exp

(
AHC3

[
log

(
δ'(yi)

δ'(x)

)
+ 1

])
≤ C

(
δ'(yi)

δ'(x)

)λ

,

where C, λ > 0 depend only on AH and C3 but not on x nor on h. Thus we have
a weak estimate

h(x)

h(yi)
≤ C

(
δ'(yi)

δ'(x)

)λ

. (18)

Let N0 be as in Lemma 4.3 and R0 as in the proof of Lemma 4.3. We recall again
the standing assumption that X is a proper metric space.

Proposition 5.1. Let ξ ∈ ∂', let 0 < R < R0/16, and let h be a positive p-
quasiminimizer in'∩B(ξ, 16R) vanishingp-quasieverywhere on ∂'∩B(ξ, 16R).

If h is bounded in '∩B(ξ,R/2) \ B̄(ξ,R/16), then for all x ∈'∩ S(ξ,R/4) we
have

h(x) ≤ C

N∑
i=1

h(yi),

where y1, . . . , yN is a system of local reference points for ξ (N ≤ N0).
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Proof. By (18), for all x ∈ ' ∩ B̄(ξ,R/2) there is an integer i ∈ {1, . . . ,N} such
that

h(x)

h(yi)
≤ C

(
R

δ'(x)

)λ

.

Hence, for every x ∈' ∩ B̄(ξ,R/2),

h(x) ≤ C

(
R

δ'(x)

)λ N∑
i=1

h(yi). (19)

Let
u := 1

C
∑N

i=1h(yi)
h.

Then u is nonnegative and locally bounded on the bounded open set '0 given by
'0 := B(ξ,R/2) \ B̄(ξ,R/16). Moreover, u is a p-quasisubminimizer in '0 be-
cause it is a p-quasiminimizer in '0 ∩ ' and vanishes in '0 ∩ ∂'; see [BBS1,
Lemma 3.11]. By (19),

u(x) ≤
(

R

δ'(x)

)λ

for x ∈'0 ∩ '.

Let τ > 0 be as in Lemma 4.4. Choose ε > 0 such that Q − 1 + ε > 1 and
apply the elementary inequality

(log t)Q−1+ε ≤
(
Q − 1 + ε

τ

)Q−1+ε

tτ whenever t ≥ 1

to the quantity t = R/δ'(x) ≥ 1 whenever x ∈ ' ∩ '0 to obtain the following
estimate:

I =
∫
'∩'0

(log+u(x))Q−1+ε dµ(x) ≤
∫
'∩'0

[
λ log+

(
R

δ'(x)

)]Q−1+ε

dµ(x)

≤
∫
'∩'0

C

(
R

δ'(x)

)τ
dµ(x).

By Lemma 4.4 and the Ahlfors regularity of µ,

I ≤ Cλ,Q,ε

∫
'∩B(ξ,R/2)

(
R

δ'(x)

)τ
dµ(x) ≤ CRQ < ∞. (20)

Therefore, (10) of Lemma 3.1 yields

u(x) ≤ C exp(CI1/εδ'0(x)
−Q/ε) whenever x ∈' ∩ '0.

On the other hand, if x ∈'∩S(ξ,R/4) then δ'0(x) ≈ R. Hence, by (20) we have

u(x) ≤ C exp(CI1/εR−Q/ε) ≤ C.

Now, in view of the definition of u, the desired result follows.

As a corollary to Proposition 5.1 we have the Carleson estimate of Theorem 5.2.
Such an estimate follows from Proposition 5.1 and the strong maximum principle
(see [KinS]) for p-quasiminimizers.
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Theorem 5.2. Let ' ⊂ X be a bounded John domain, ξ ∈ ∂', and 0 < R <

R0/16 whereR0 is as in the proof of Lemma 4.4. Ifh is a positivep-quasiminimizer
in ' ∩ B(ξ, 16R) that is vanishing p-quasieverywhere on ∂' ∩ B(ξ, 16R) and is
bounded in ' ∩ B(ξ,R/2), then

h(x) ≤ C

N∑
i=1

h(yi) for every x ∈' ∩ B(ξ,R/4),

where y1, . . . , yN ∈ ' ∩ S(ξ,R) are a system of local reference points for ξ. The
constant C > 1 is independent of x, ξ, R, and h.

Corollary 5.3. Let ' ⊂ X be a uniform domain, ξ ∈ ∂', and 0 < R < R0/16
where R0 is as in the proof of Lemma 4.4. If h is a positive p-quasiminimizer in
' ∩ B(ξ, 16R) that is vanishing p-quasieverywhere on ∂' ∩ B(ξ, 16R) and is
bounded in ' ∩ B(ξ,R/2), then

h(x) ≤ Ch(y) for every x ∈' ∩ B(ξ,R/4),

where y ∈ ' ∩ S(ξ,R) is such that δ'(y) ≥ R/C. The constant C > 1 is inde-
pendent of x, ξ, R, and h.

Remark 5.4. In light of Remark 2.6, Theorem 5.2 and Corollary 5.3 hold if h is
p-harmonic.

6. The Conformal Martin Boundary
of a Bounded John Domain in X

In this section we assume that X is of Q-bounded geometry and apply the results
of the previous sections with p = Q. Given a Cheeger derivative structure on X,
the corresponding conformal Martin boundary has been defined in [HoST] (see
Definition 2.9). In the following, we let λ > 0 be as in (18).

Theorem 6.1. Let ' ⊂ X be a bounded John domain such that CapQ(X \') >

0. Let M be a conformal Martin kernel for ' with fundamental sequence (yk).

Then (yk) converges to a point ξM ∈ ∂' and the following statements hold:

(i) M is bounded in a neighborhood of ξ for each ξ ∈ ∂' \ {ξM};
(ii) there is a constant C ≥ 1 such that M(x) ≤ Cd(x, ξM)−λ for all x ∈';

(iii) M vanishes continuously Q-quasieverywhere on ∂';
(iv) there is a sequence (xn) in ' converging to ξM such that limn M(xn) = ∞,

and hence the point ξM is uniquely determined from M but does not depend
on the fundamental sequence that gave rise to it.

A crucial result needed to prove part (iv) of the theorem is Corollary 6.2 of [BBS2].
Observe that this corollary is invalid if CapQ(X \') = 0. The proof of this result
uses the fact that solutions to p-Dirichlet problems with boundary data belonging
to N1,Q(X) satisfy a comparison theorem; see [S2] for a proof of this fact as-
suming CapQ(X \ ') > 0. However, if CapQ(X \ ') = 0 then this comparison
theorem obviously fails and, as a consequence, [BBS2, Cor. 6.2] also fails to hold.
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Let U be an open subset of X. Recall that HU
Qf stands for the solution to the

Q-Dirichlet problem on the open set U with boundary data f ∈N1,Q(X). Given
a continuous function f : ∂U → R, the authors of [BBS2] construct a Perron so-
lution in U with boundary data f (in fact, [BBS2] also shows that continuous
functions are resolutive); let PU

Qf denote such a solution. If such a function f

also happens to belong to N1,Q(X), then PU
Qf = HU

Qf. We say that ξ ∈ ∂U is
a Q-regular boundary point for U if limU�x→ξ P

U
Q f(x) = f(ξ) whenever f is a

bounded and continuous function on ∂U.

In order to prove Theorem 6.1, we need the following lemma.

Lemma 6.2. Let ' ⊂ X be a bounded domain such that CapQ(X \ ') > 0.
Then Q-quasievery point ξ ∈ ∂' is a Q-regular boundary point for ' ∩ B(ξ, r)
whenever r > 0.

Proof. Let (rn) be an enumeration of all positive rational numbers. Moreover, let
(xk) be a sequence of points in ' that is dense in '. By [BBS1, Thm. 3.9], the set
Jk,n of all points in B(xk , rn) ∩ ∂' that are Q-irregular points for ' ∩ B(xk , rn)
is of zero Q-capacity. Hence the set J := ⋃

k,n Jk,n is a zero Q-capacity subset
of ∂'. Let ξ ∈ ∂' \ J. We will demonstrate that ξ satisfies the requirements of
Lemma 6.2.

Suppose ξ does not satisfy the requirements of the lemma; that is, suppose there
is an r < diam(') such that ξ is not a Q-regular boundary point for ' ∩ B(ξ, r).
Then, following the notation set up in the proof of [BBS1, Thm. 3.9], we can find
a ball Bl,m centered at some point in ∂' and of radius ρl,m such that ξ ∈ Bl,m,
2Bl,m ⊂ B(ξ, r), and there exists a Lipschitz function ϕl,m that is compactly sup-
ported in 2Bl,m and takes on the value of 1 in Bl,m such that

lim inf
'∩B(ξ,r)�y→ξ

H
'∩B(ξ,r)

Q ϕl,m(y) < 1.

On the other hand, since 2Bl,m ⊂ B(ξ, r) and ξ ∈ Bl,m we can find k and n such
that ξ ∈ B(xk , rn) ⊂ B̄(xk , rn) ⊂ B(ξ, r). Because ξ /∈ Jk,n, we know that ξ is a
Q-regular boundary point of the open set ' ∩ B(xk , rn). By the comparison the-
orem it then follows that

lim inf
'∩B(ξ,r)�y→ξ

H
'∩B(ξ,r)

Q ϕl,m(y) ≥ lim inf
'∩B(xk,rn)�y→ξ

H
'∩B(xk,rn)
Q ϕl,m(y) = 1,

contradicting the previous inequality. Hence such an r does not exist and conse-
quently ξ satisfies the lemma.

Proof of Theorem 6.1. Let (yk) be a fundamental sequence in ' giving rise to the
kernel M; see Definition 2.9. We will show that there is a point ξM ∈ ∂' such
that limk yk = ξM. Since (yk) is a fundamental sequence, it has no accumulation
point in '. Since '̄ ⊂ F is compact, there exist a point ξM ∈ ∂' and a subse-
quence (ykn)n such that limn ykn = ξM. We will demonstrate that, for every ξ ∈
∂' \ {ξM}, the function M is bounded in a neighborhood of ξ and that M satisfies
parts (iii) and (iv) of the theorem. As a consequence, this observation concludes
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that limk yk = ξM. Moreover, if (wn) is another fundamental sequence giving rise
to M, then limn wn = ξM.

Let us begin with the proof of part (i). Fix ξ ∈ ∂' \{ξM}. For ease of discourse
let us denote the subsequence of (yk) that converges to ξM also by (yk). Then
there exists r = 4rξ > 0 such that, for all k ∈ N, yk /∈' ∩ B(ξ,16(q + 1)r/c) and
16(q+1)r/c < R0, where R0 is as in the proof of Lemma 4.3. Let Mk be the func-
tion given by Mk(x) = g(x, yk)/g(x0, yk). Then Mk is positive and Q-harmonic
in '∩B(ξ,16(q +1)r/c) but vanishes Q-quasieverywhere on ∂'. Moreover, Mk

is bounded on '∩B(ξ, r) and so, by Theorem 5.2, for x ∈'∩B(ξ, r/2) we have

Mk(x) ≤ C

N∑
i=1

Mk(yi),

where y1, . . . , yN ∈'∩ S(ξ, r/2) is a system of local reference points for ξ. Note
that δ'(yi) ≥ r/A. Thus we have

k'(yi, x0) ≤ A

cr
d(yi, x0) ≤ A

cr
diam(');

since Mk(x0) = 1, by Lemma 4.6 we have Mk(yi) ≤ exp(AH (A/cr) diam(')).

Consequently, for x ∈' ∩ B(ξ, r/4),

Mk(x) ≤
N∑
i=1

exp

(
AH

A

cr
diam(')

)
≤ N0 exp

(
AH

A

cr
diam(')

)
=: Cξ .

Since M = limk Mk , it follows that M is bounded in a neighborhood of ξ for each
ξ ∈ ∂' \ {ξM}. Thus (i) in the theorem is satisfied.

Let us next prove part (iii). Since by assumption CapQ(X \ ') > 0, by the
Poincaré inequality we see that CapQ(∂') is positive. By Lemma 6.2 we may
assume that ξ ∈ ∂' is Q-regular for ' ∩ B(ξ, r) for every r > 0. We can eas-
ily see that, whenever ρ > 0, we have CapQ(B(ξ, ρ) \ ') > 0. Let r = rξ/4.
We have by the foregoing argument that {Mk}k is a uniformly bounded family of
Q-harmonic functions on ' ∩ B(ξ, rξ ), where Mk ≤ Cξ . Let f be a compactly
supported Lipschitz continuous function on X such that f = Cξ on S(ξ, r) and
f = 0 on B(ξ, r/2). Then we easily see that

Mk(y) ≤ f(y) for every y ∈ ∂(' ∩ B(ξ, r)),

since Mk = 0 on X \ ' by the construction of Mk in [HoS]. Observe that
CapQ(B̄(ξ, 2r) \ ') > 0 and that both f and Mk are in the class N1,Q(B̄(ξ, 2r))
and are Q-harmonic in B(ξ, r) ∩ ' for sufficiently large k. By the regular com-
parison theorem (see [S2]), we therefore have Mk ≤ H

'∩B(ξ,r)

Q f on ' ∩ B(ξ, r).
Since ξ is a Q-regular boundary point for '∩B(ξ, r) and since f is a continuous
boundary data, it follows that for every ε > 0 there can be found ρε > 0 such that
0 < H

'∩B(ξ,r)

Q f < ε on '∩B(ξ, ρε). Hence 0 < Mk(x) < ε on '∩B(ξ, ρε) for
every k. Thus, as M is the pointwise (and locally uniform) limit of Mk in ', we
see that M ≤ ε on ' ∩ B(ξ, ρε). This means that M tends to zero continuously
Q-quasieverywhere in ∂'. This proves (iii) of the theorem.
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Now we prove part (iv). Suppose there is no sequence (xn) in ' converging to
ξM for which limn M(xn) = ∞. Then M is also bounded in a neighborhood of
ξM; consequently (by part (i), just proven), M is a positive Q-harmonic function
in ' that is bounded on ' and, in addition, vanishes Q-quasieverywhere in ∂'. It
then follows from [BBS2, Cor. 6.2] that M is identically zero on ', contradicting
the fact that M(x0) = 1. Thus part (iv) of the theorem is also true.

It now only remains to prove (ii). We have already shown that, whenever R >

0, the function M is bounded in ' ∩ B(ξM ,R/2) \ B̄(ξM ,R/16) and vanishes on
∂' \ {ξM}. Hence, by Proposition 5.1, if 0 < R < R0/32 then M satisfies

M(x) ≤ C

N∑
i=1

M(yi) for x ∈ S(ξM ,R) ∩ ',

where y1, . . . , yN ∈ ' ∩ S(ξM , 2R) is a system of local reference points of order
N for ξM. By the comparison theorem we have

M(x) ≤ C

N∑
i=1

M(yi)

whenever x ∈ ' \ B(ξM ,R). Now an application of (18) to each of the reference
points yi, together with the estimate δ'(yi) ≥ R/C, gives

M(yi) ≤ M(x0)

(
δ'(x0)

R

)λ

=
(
δ'(x0)

R

)λ

= CR−λ.

Therefore,

M(x) ≤ CNR−λ ≤ CN0 d(x, ξM)−λ for x ∈' ∩ B(ξM , 2R) \ B(ξM ,R)

whenever 0 < R < R0/32. The desired result now follows from the fact that '
is bounded.

This completes the proof of Theorem 6.1.

To obtain Theorems 5.2 and 6.1 (as well as other results in this and the previous
sections), it suffices to know only that the Q-quasievery boundary point of ' is a
“John point”. More specifically, a point ξ ∈ ∂' is said to be a John point if there
is a radius Rξ > 0, a point xξ ∈', and a constant Cξ > 0 such that, for every x ∈
B(ξ,Rξ) ∩', there is a compact rectifiable curve γ connecting x to xξ with γ ⊂
' ∩B(ξ,CξRξ ) and such that, for every y ∈ γ, we have δ'(y) ≥ �(γx,y)/Cξ (see
[S3]). Examples of domains satisfying this weak condition include Euclidean do-
mains obtained by pasting outward-pointing cusps to a ball.

7. Compactness of X

The proof of the results discussed in this paper required that the closure of ' be
compact. In this section we demonstrate that, instead of merely assuming the
closure of ' be compact, we may assume the stronger condition that X is a com-
plete metric space. Since a metric space supporting a doubling measure is totally
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bounded, if X is complete then it is proper as well and hence bounded domains in
X are relatively compact.

If X is not a complete metric space, let X̂ denote the completion of X, d̂ the ex-
tension of d, and µ̂ the extension of µ to X̂: µ̂(A) = µ(A∩X) whenever A ⊂ X̂.

Proposition 7.1. If (X, d,µ) is a metric measure space with doubling measure
µ and supporting a (1,p)-Poincaré inequality, then so is (X̂, d̂, µ̂). In this case,
N1,p(X) = N1,p(X̂). In addition, if µ is Ahlfors Q-regular, then so is µ̂.

Proof. We first prove the doubling property of µ̂. Let B(x, r) be a ball in X̂. If
x ∈X, then the doubling property of µ itself guarantees the doubling inequality
for µ̂: µ̂(B(x, 2r)) = µ(B(x, 2r) ∩ X) ≤ Cdµ(B(x, r) ∩ X) = Cdµ̂(B(x, r)).
Suppose x ∈ X̂ \ X. Then, since X̂ is the completion of X, there is a point x ′ ∈X

such that d(x, x ′) < r/8. Thus, by the doubling property of µ we have

µ̂(B(x, 2r)) ≤ µ̂(B(x ′, 3r)) = µ(B(x ′, 3r) ∩ X) ≤ C2
dµ(B(x

′, 3r/8) ∩ X)

≤ C2
dµ(B(x, r) ∩ X) = C2

d µ̂(B(x, r)).

That is, µ̂ is doubling with doubling constantC2
d. A similar argument demonstrates

that if µ is Ahlfors Q-regular then so is µ̂.

Now we demonstrate that if µ is doubling and supports a (1,p)-Poincaré in-
equality then µ̂ also supports a (1,p)-Poincaré inequality. To this end, let u ∈
N1,p(X̂) and let g be an upper gradient of u in X̂. Note that g is also an upper
gradient of u in X since X ⊂ X̂. Suppose B(x, r) ⊂ X̂. If x ∈X then, by the defi-
nition of µ̂ and because µ itself supports a (1,p)-Poincaré inequality, we have the
Poincaré inequality with respect to X̂. If x ∈ X̂ \ X, then taking x ′ ∈X such that
d(x, x0) < r/2 yields

inf
c∈R

−
∫
B(x,r)

|u − c| dµ̂ ≤ inf
c∈R

−
∫
B(x ′,2r)

|u − c| dµ̂ ≤ −
∫
B(x ′,2r)∩X

|u − uB(x ′,2r)∩X| dµ

≤ Cp4r −
∫
B(x ′,2κr)∩X

gp dµ ≤ Cr −
∫
B(x,3κr)∩X

gp dµ

= Cr −
∫
B(x,3κr)

gp dµ̂.

Hence the pair u, g satisfies a (1,p)-Poincaré inequality on X̂.

Finally, we prove that N1,p(X̂)|X = N1,p(X). Observe that N1,p(X̂)|X ⊂
N1,p(X). On the other hand, since X supports a (1,p)-Poincaré inequality, we
know from [S1] that Lipschitz functions are dense in N1,p(X). We may extend a
Lipschitz function u ∈N1,p(X) to X̂, for example via a McShane extension. Be-
cause the minimal p-weak upper gradient gu of such a function has the property
that gu(x) ≈ Lip u(x) for µ-a.e. x ∈X (see e.g. [C]) and hence for µ̂-a.e. x ∈ X̂,
we see that u∈N1,p(X̂) with the N1,p(X̂)-norm of u equaling the N1,p(X)-norm
of u. Now the density of Lipschitz functions in N1,p(X) guarantees the coinci-
dence of the two function spaces.
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The preceding result demonstrates that the requirement that X be proper is not as
stringent as it appears to be, especially since we do not assume much about X \'
apart from the condition that CapQ(X \ ') > 0. The following proposition fur-
ther strengthens this claim. Note that, for every domain ' ⊂ X, there is a domain
'0 ⊂ X̂ such that ' = '0 ∩ X̂. Let '0 denote the largest such domain in X̂.

Proposition 7.2. In the situation of Proposition 7.1, if CapQ(X̂ \ X) = 0 then
∂cM' = ('0 \ ') ∪ ∂cM'0.

Proof. In this proof, balls B(x, r) denote balls in X;
B(x, r) = {y ∈X : d(y, x) < r}.

By B̂(x, r) we then denote the closure of B(x, r) in X̂.

Let (ri) be a sequence of positive real numbers such that limi ri = 0. If y ∈' ⊂
'0, the construction of a Q-singular function on ' with singularity at y is via a
sequence of functions ui ∈N

1,Q
0 (') that are Q-energy minimizers in '\ B̄(y, ri),

taking on the value 1 in B(y, ri) and value 0 ≤ ui ≤ 1 on X; see [HoS]. By a
Q-energy minimizer we mean that, for every φ ∈N

1,Q
0 (' \ B̄(y, ri)),∫

'\B̄(y,ri )

|dui |Q dµ ≤
∫
'\B̄(y,ri )

|d(ui + φ)|Q dµ.

Since by Proposition 7.1 we have N
1,Q
0 (') ⊂ N1,Q(X) = N1,Q(X̂), we see that

ui is extendable to '0 so that ui ∈N
1,Q
0 ('0). We claim that ui is Q-harmonic in

'0 \ B̂(y, ri). Indeed, if ϕ ∈N
1,Q
0 ('0 \ B̂(y, ri)), then ϕ

∣∣
X

∈N
1,Q
0 (') and hence∫

'0\B̂(y,ri )

|dui |Q dµ̂ =
∫
'\B̄(y,ri )

|dui |Q dµ

≤
∫
'\B̄(y,ri )

|d(ui + ϕ)|Q dµ =
∫
'0\B̂(y,ri )

|d(ui + ϕ)|Q dµ̂.

Therefore, the singular function g(·, y) on ' can be extended to be a singular func-
tion on all of '0 with singularity at y.

Now let M ∈ ∂cM' and let (yn) be an associated fundamental sequence in '.

Since this sequence can have no accumulation point in ' and since '̂0 is com-
pact, it follows that this sequence has accumulation points in ('0 \ ') ∪ ∂cM'0.

If it has an accumulation point in '0 \', then M is the normalized singular func-
tion on '0 with singularity at that accumulation point; hence the sequence (yn)

must converge to this unique accumulation point. Otherwise, all of the accumu-
lation points of the sequence lie in the set ∂'0 and hence M ∈ ∂cM'0. We then
have ∂cM' ⊂ ('0 \ ') ∪ ∂cM'0.

To obtain equality, note that every point in '0 \' corresponds to a unique Mar-
tin kernel function in ∂cM'. Moreover, the restriction of every function in ∂cM'0

to ' lies in ∂cM'. To see this, note that every point y0 ∈ '0 is a limit of a se-
quence of points from '; hence every singular function in '0 with singularity at
y can be approximated to any desired accuracy by a singular function in ' with a
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singularity in '. This is because (by our previous discussion) (a) singular func-
tions in ' with singularity in ' are extendable to be a singular function in '0 with
singularity in ', (b) the limit of such a sequence of singular functions is a singu-
lar function in '0 with singularity at y, and (c) only one such singular function
exists. Now a diagonalization argument yields that ∂cM'0 ⊂ ∂cM'.
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