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1. Introduction

Recall that an integer n ≥ 1 is said to be y-smooth if it is not divisible by any prime
p exceeding y. Smooth numbers have played an important role in many number-
theoretic and cryptographic investigations, and there is an extensive body of liter-
ature on the subject, originating with the work of Dickman [5] and de Bruijn [3].
For an interesting account of smooth numbers, we refer the reader to the survey
article by Granville [1]; see also the references contained therein.

As usual, we denote by �(x, y) the counting function for smooth numbers:

�(x, y) = #{n : 1 ≤ n ≤ x and n is y-smooth}.
It is well known that the asymptotic relation

�(x, y) ∼ ρ(u)x

holds in a very wide range within the xy-plane, where u = (log x)/(log y) and
ρ(u) is the Dickman–de Bruijn function defined by

ρ(u) = 1, 0 ≤ u ≤ 1,

and

ρ(u) = 1 −
∫ u

1

ρ(v − 1)

v
dv, u > 1.

For an account of the basic analytic properties of ρ(u), we refer the reader to the
book by Tenenbaum [19].

In this paper, we are interested in finding upper bounds for the number of primes
p ≤ x that lie in a fixed arithmetic progression and such that p − h is y-smooth,
where h �= 0 is a fixed integer.

To describe our results, let us introduce some notation that is used throughout
the sequel. As usual, we denote by π(x) the prime counting function:

π(x) = #{primep ≤ x}.
Next, following [17], we define
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π(x, y) = #{primep ≤ x : p − 1 is y-smooth}.
More generally, for any integer h �= 0, let

πh(x, y) = #{primep ≤ x : p − h is y-smooth}.
Finally, for any integers q, a with q ≥ 1 and gcd(a, q) = 1, we put

πh(x, y; q, a) = #{primep ≤ x : p − h is y-smooth and p ≡ a (mod q)}.
Since one might expect that the set {p −1 : prime p ≤ x} contains roughly the

same proportion of y-smooth integers as the set of all positive integers n ≤ x, it is
reasonable to conjecture (following Erdős [6]; see also [16]) that the relation

π(x, y) ∼ ρ(u)π(x)

holds for all x and y in a fairly wide range. More generally, for fixed h �= 0 one
might also conjecture (see e.g. [14]) that the relation

πh(x, y) ∼ ρ(u)π(x)

also holds in a wide range. Indeed, for all primes p > |h|, the quantity p − h is
relatively prime to h; thus it is reasonable to expect that the set {p−h : primep ≤
x} contains roughly the same proportion of y-smooth integers as the set of all pos-
itive integers n ≤ x coprime to h, and for a fixed value of h the latter proportion is
easily seen to be ρ(u) using a standard sieve to detect coprimality. Finally, argu-
ing that the set of primes p ≤ x such that p − h is y-smooth is likely to be evenly
distributed over all “admissible” arithmetic progressions modulo q (i.e., those that
represent infinitely many primes), it may be true that the relation

πh(x, y; q, a) ∼ ρ(u)

ϕ(q)
π(x) (1)

holds in a wide range. At the present time, however, all of these conjectures ap-
pear to be out of reach.

Over the years, substantial progress has been made on the problem of finding
upper and lower bounds for π(x, y); see [1; 2; 4; 6; 11; 14; 15; 16]. In particular,
highly nontrivial upper bounds for π(x, y) have been found by Fouvry and others
in the case where y > x1/2, while for smaller values of y, the bound

π(x, y) = O(uρ(u)π(x))

has been obtained by Pomerance and Shparlinski [17] in the range

exp
(√

log x log log x
) ≤ y ≤ x. (2)

In the shorter range
exp((log x)2/3+ε) ≤ y ≤ x, (3)

the slightly stronger estimate

π(x, y)  ρ(u)π(x)

follows from Theorem 4 of Fouvry and Tenenbaum [8].
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In this paper, we show how the methods of [17] combined with results of
Granville [10] (see also [9]) and Fouvry and Tenenbaum [7] on smooth integers in
arithmetic progressions can be used to prove that the estimate

πh(x, y; q, a) = O

(
uρ(u)c(h)

ϕ(q)
π(x)

)
(4)

holds uniformly (with respect to each of the involved parameters) for all x, y, and
q in a wide range, where

c(h) =
∏
p |h
p �=2

p − 1

p − 2
.

Moreover, we obtain an explicit value (though somewhat modest) for the implied
constant in (4). For a precise statement of this result, see Theorem 2. We re-
mark that the conjecture (1) suggests that our upper bound (4) is probably not tight
because it contains the extra factors u and c(h); it remains an interesting open
question as to whether these factors can be removed from (4).

Our result immediately implies that rather sparse arithmetic progressions con-
tain a positive proportion of primes for which p −1 has a large prime divisor; see
the discussion in Section 5.

Our result also has an interesting cryptographic consequence. It is well known
that primes p for which p − 1 is smooth are not suitable for most cryptographic
applications derived from Diffie–Hellman or RSA schemes. The results of [17]
show that, in fact, such primes are very rare. However, primes p such that p − 1
is not smooth are occasionally chosen to satisfy some additional conditions; for
example, for the applications described in [20], what is needed is a good supply
of nonsmooth primes lying in a certain arithmetic progression. The results of this
paper imply, in a quantitative form, that almost all primes p in any arithmetic pro-
gression with a modulus of moderate size are such that p − 1 is not smooth.

Throughout the paper, the implied constants in the symbols O,  , and � may
occasionally depend, where obvious, on the small parameter ε > 0 but are absolute
otherwise. We recall that the expressions A  B and B � A are each equivalent
to the statement that A = O(B). Throughout, the letters p and � always denote
prime numbers, while n and q always denote positive integers.

Acknowledgments. We wish to extend a special note of thanks to Glyn Har-
man, whose detailed comments on the manuscript helped to improve the exposition
and the quality of our results. We also thank Roger Baker and Carl Pomerance for
several enlightening discussions. The first two authors would like to thank Mac-
quarie University for its hospitality during the preparation of this paper.

2. Preliminaries

Here we collect some preliminary estimates to be used in the sequel.
For any integer n ≥ 2, let P +(n) denote the largest prime divisor of n, and put

P +(1) = 1. As in Section 1, we define
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�(x, y) = #{n ≤ x : P +(n) ≤ y}.
Throughout the sequel, the parameter u is defined, as usual, to be the ratio u =
(log x)/(log y) whenever x and y are given.

The following result of Hildebrand [13] concerns the asymptotic nature of the
function �(x, y); see also Corollary 9.3 in Chapter III.5 of [19].

Lemma 1. For every ε > 0, the estimate

�(x, y) = ρ(u)x

(
1 + O

(
log(u + 1)

log y

))

holds uniformly provided that exp((log log x)5/3+ε) ≤ y ≤ x.

For any integers q and a with gcd(a, q) = 1, let

�(x, y; q, a) = #{n ≤ x : P +(n) ≤ y and n ≡ a (mod q)}
and put

�q(x, y) = #{n ≤ x : P +(n) ≤ y and gcd(n, q) = 1}.
We need the following result of Granville [10] about smooth numbers lying in a

fixed arithmetic progression.

Lemma 2. For any ε > 0, the estimate

�(x, y; q, a) = 1

ϕ(q)
�q(x, y)

(
1 + O

(
log q

uc log y
+ 1

log y

))

holds uniformly, provided that gcd(a, q) = 1 and q1+ε ≤ y ≤ x for some constant
c > 0 that depends only on ε.

Here, as usual, ϕ denotes the Euler function.
We also need the following result of Fouvry and Tenenbaum [7] about smooth

numbers relatively prime to a fixed modulus.

Lemma 3. For any ε > 0, the estimate

�q(x, y) = ϕ(q)

q
�(x, y)

(
1 + O

(
log log(qy) log log x

log y

))

holds uniformly, provided that x ≥ x0(ε), exp((log log x)5/3+ε) ≤ y ≤ x, and

log log(q + 2) ≤
(

log y

log(u + 1)

)1−ε

.

We also need the following two lemmas concerning the Dickman–de Bruijn ρ-
function.

Lemma 4. For any u ≥ 0 and 0 ≤ δ ≤ u with δ log(u + 1) → 0, the following
estimate holds:

ρ(u − δ) = ρ(u)(1 + O(δ log(u + 1))).
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Proof. In Lemma 1 of [13], we find the estimate

−ρ ′(u)
ρ(u)

≤ log(u log2 u), u ≥ e4.

In particular,
|ρ ′(u)|  ρ(u) log(u + 1), u ≥ 0. (5)

If 0 ≤ δ ≤ u then, for some v in the interval [u − δ, u],

ρ(u − δ) − ρ(u) = δ|ρ ′(v)|  δρ(v) log(v + 1) ≤ δρ(u − δ) log(u + 1);
that is,

ρ(u) = ρ(u − δ)(1 + O(δ log(u + 1))).

Taking into account that δ log(u + 1) → 0, we obtain the desired estimate.

Lemma 5. For all u ≥ 1,∫ ∞

u−1
ρ(t) dt ≤

(
u + 1 + 1

u

)
ρ(u).

Proof. Using the well-known identity

ρ(u) = 1

u

∫ u

u−1
ρ(t) dt, u ≥ 1

(see e.g. [13, Lemma 1]), it follows that ρ(u) ≤ ρ(u − 1)/u; by induction, we
obtain the estimate

ρ(u + j) ≤ ρ(u)

(u + j)(u + j − 1) · · · (u + 1)
, j ≥ 1.

Thus, for all u ≥ 1, we have∫ ∞

u−1
ρ(t) dt =

∞∑
j=0

(u + j)

∫ u+j

u+j−1
ρ(t) dt =

∞∑
j=0

(u + j)ρ(u + j)

≤ uρ(u) + ρ(u) + ρ(u)

∞∑
j=2

1

(u + 1)j−1
=

(
u + 1 + 1

u

)
ρ(u).

This completes the proof.

Finally, we recall the following result from sieve theory; see [12, Thm. 3.12].

Lemma 6. Let m, h, q, and b be integers such that

mh �= 0, gcd(m,h) = 1, 2 |mh, gcd(q, b) = 1, and 1 ≤ q ≤ (logY )A,

where A > 0 is a fixed constant. Then, as Y → ∞, the number of primes � ≤ Y

such that � ≡ b (mod q) and m� + h is prime is at most

8
∏
p>2

(
1 − 1

(p − 1)2

) ∏
2<p | qmh

p − 1

p − 2

Y

ϕ(q) log2 Y

(
1 + OA

(
log logY

logY

))

uniformly in the parameters m, h, q, and b.
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3. An Asymptotic Formula

Our principal tool is the following theorem, which is an extension of [17, Lemma1]
and which we believe to be of independent interest. While for the purposes of this
paper we require only an upper bound for the sum considered below, we remark
that Theorem 1 in fact provides an asymptotic formula in certain wide ranges of
the involved parameters.

Theorem 1. Let ε > 0 be fixed. For any real numbers x and y satisfying

exp((log log x)5/3+ε) ≤ y ≤ x,

any integer 1 ≤ q ≤ y1−ε, and any integer a with gcd(a, q) = 1, we have

∑
m≤x,P +(m)≤y
m≡a (mod q)

m

ϕ(m)
= ζq(2)ζq(3)

ζq(6)

ρ(u)

q
x(1 + O(Eq(x, y))),

where

Eq(x, y) = log q

log y
+ log log y log log x

log y
+ y log x log log x log(u + 1)

x log y
,

and ζq(s) is the partial zeta-function defined for �(s) > 1 by

ζq(s) =
∏
p� | q

(1 − p−s )−1.

Proof. For any integer d with gcd(d, q) = 1, denote by d ∗ the unique integer such
that 1 ≤ d ∗ ≤ q and dd ∗ ≡ 1 (mod q). Then

∑
m≤x,P +(m)≤y
m≡a (mod q)

m

ϕ(m)
=

∑
m≤x,P +(m)≤y
m≡a (mod q)

∑
d |m

µ(d )2

ϕ(d )

=
∑

d≤x,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )

∑
m≤x/d,P +(m)≤y

m≡ad∗ (mod q)

1

=
∑

d≤x,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )
�(x/d, y; q, ad ∗).

For the moment, suppose that d ≤ x/y. Since q1+ε ≤ y ≤ x/d, Lemma 2 pro-
vides the uniform estimate

�(x/d, y; q, ad ∗) = �q(x/d, y)

ϕ(q)

(
1 + O

(
log q

uc
d log y

+ 1

log y

))

for some constant c > 0 depending only on ε, where ud = (log(x/d ))/(log y). If
q ≥ 2 then, since ud ≥ 1, we have
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�(x/d, y; q, ad ∗) = �q(x/d, y)

ϕ(q)

(
1 + O

(
log q

log y

))
. (6)

Clearly, this estimate holds also when q = 1.
Next, we want to apply Lemma 3 to estimate �q(x/d, y). To do this, we need

to check that the necessary conditions on x/d and y are met. First, observe that

exp((log log(x/d ))5/3+ε) ≤ exp((log log x)5/3+ε) ≤ y ≤ x/d.

Also, x/d ≥ y ≥ x0(ε) if x is sufficiently large. Finally, if x and y are large
enough, then

ud + 1 = log(x/d )

log y
+ 1 ≤ log x

(log log x)5/3+ε
+ 1 ≤ log x,

log y

log(ud + 1)
≥ log y

log log x
≥ log y

(log y)1/(5/3+ε)
≥ (log y)2/5,

and therefore

log log(q + 2) ≤ log log(y1−ε + 2) ≤ (log y)2(1−ε)/5 ≤
(

log y

log(ud + 1)

)1−ε

.

Applying Lemma 3, we obtain the uniform estimate

�q(x/d, y) = ϕ(q)

q
�(x/d, y)

(
1 + O

(
log log(qy) log log(x/d )

log y

))
.

Since
log log(qy) ≤ log log y2−ε = O(log log y),

it follows that

�q(x/d, y) = ϕ(q)

q
�(x/d, y)

(
1 + O

(
log log y log log x

log y

))
. (7)

Combining the estimates (6) and (7), we now derive that

�(x/d, y; q, ad ∗) = �(x/d, y)

q

(
1 + O

(
log q

log y
+ log log y log log x

log y

))
(8)

provided that d ≤ x/y. For any d > x/y, we also have

�(x/d, y; q, ad ∗) =
∑
n≤x/d

n≡ad∗ (mod q)

1 = x

dq
+ O(1). (9)

Now put z = min{log y, x/y}. Using (8) and (9), it follows that

∑
m≤x,P +(m)≤y
m≡a (mod q)

m

ϕ(m)
=

∑
d≤x,P +(d )≤y

gcd(d,q)=1

µ(d)2

ϕ(d )
�(x/d, y; q, ad ∗)

= ('1 + '2)

(
1 + O

(
log q

log y
+ log log y log log x

log y

))

+ O('3 + '4),
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where

'1 =
∑

d≤z,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )

�(x/d, y)

q
,

'2 =
∑

z<d≤x/y,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )

�(x/d, y)

q
,

'3 =
∑

x/y<d≤x,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )

x

dq
,

'4 =
∑

x/y<d≤x,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )
.

First, let us estimate '1. For all d ≤ z, by Lemma 1 we have

�(x/d, y) = ρ(ud)
x

d

(
1 + O

(
log(ud + 1)

log y

))

= ρ

(
log x − log d

log y

)
x

d

(
1 + O

(
log log x

log y

))
.

Also, by Lemma 4 we have

ρ

(
log x − log d

log y

)
= ρ(u)

(
1 + O

(
log log y log log x

log y

))
,

since if δ = (log d)/(log y) then

0 ≤ δ log(u + 1) ≤ log log y log log x

log y
,

and the last term tends to zero as x → ∞ when x and y lie in the specified range.
Thus, we derive that

'1 = ρ(u)x

q

(
1 + O

(
log log y log log x

log y

)) ∑
d≤z,P +(d )≤y

gcd(d,q)=1

µ(d)2

dϕ(d )
.

Finally, by the well-known inequality for the Euler function

ϕ(d ) � d

log log d
, d ≥ 3 (10)

(see e.g. Theorem 5.1 from [18, Ch. 1]), we have
∑

d≤z,P +(d )≤y
gcd(d,q)=1

µ(d)2

dϕ(d )
=

∑
d≥1

gcd(d,q)=1

µ(d)2

dϕ(d )
+ O

( ∑
d>log y

log log d

d 2

)

= ζq(2)ζq(3)

ζq(6)
+ O

(
log log log y

log y

)
.
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Noting that

1 <
ζq(2)ζq(3)

ζq(6)
< 2 ∀q ≥ 1, (11)

it now follows that

'1 = ζq(2)ζq(3)

ζq(6)

ρ(u)x

q

(
1 + O

(
log log y log log x

log y

))
.

To estimate '2 , we may assume that z = log y < x/y, since '2 = 0 otherwise.
Under this assumption, put

j0 = �log z� = �log log y�,

j1 = �log(x/y)� = �log x − log y�.
Then, using Lemma 1 again, we derive that

'2 = 1

q

∑
log y<d≤x/y,P +(d )≤y

gcd(d,q)=1

µ(d)2

ϕ(d )
�(x/d, y)

 1

q

∑
log y<d≤x/y

µ(d )2

ϕ(d )
ρ

(
log x − log d

log y

)
x

d

≤ x

q

∑
j0≤j≤j1

ρ

(
u − j + 1

log y

) ∑
ej<d≤ej+1

µ(d)2

dϕ(d )
,

and therefore

'2  x

q

∑
j0≤j≤j1

log j

ej
ρ

(
u − j + 1

log y

)
. (12)

Here we have used (10) and the fact that ρ(u) is a decreasing function of u.
Next, we observe that the function

f(t) = log(t − 1)e−(t−1)ρ

(
u − t

log y

)

satisfies the estimate

f(t + 1)

f(t)
= 1

e

(
1 + O

(
log log x

log y

))
(13)

for all t in the range log y ≤ t ≤ log x −1. Indeed, by Lemma 4 we have that, for
all t ≤ log x − 1,

ρ

(
u − t + 1

log y

)
= ρ

(
u − t

log y

)(
1 + O

(
log log x

log y

))
,

since if δ = 1/log y then

0 ≤ δ log

(
u − t

log y
+ 1

)
≤ log log x

log y
→ 0.
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The estimate (13) follows immediately. This shows that f(t) is a function of ex-
ponential decay provided that x is sufficiently large; hence from (12) we now de-
rive that

'2  x

q
j0e

−j0ρ

(
u − j0 + 1

log y

)
.

Since j0 = log log y + O(1), we have

j0e
−j0 = O

(
log log y

log y

)
,

and another application of Lemma 4 then yields

ρ

(
u − j0 + 1

log y

)
= ρ(u)

(
1 + O

(
log log y log log x

log y

))
.

Using (11), it follows that

'2  ρ(u)x

q

log log y

log y

(
1 + O

(
log log y log log x

log y

))
 '1

log log y

log y
.

Finally, we turn to the estimates for '3 and '4. Put j2 = �log x�. Using (10),
we derive that

'3 = x

q

∑
x/y<d≤x,P +(d )≤y

gcd(d,q)=1

µ(d)2

dϕ(d )
 x

q

∑
x/y<d≤x

P +(d )≤y

log log d

d 2

 x

q

∑
j1≤j≤j2

∑
ej<d≤ej+1

P +(d )≤y

log log d

d 2
 x

q

∑
j1≤j≤j2

log j

e2j
�(ej+1, y).

By Lemma 1,

�(ej+1, y) = ej+1ρ

(
j + 1

log y

)(
1 + O

(
log log x

log y

))
,

and therefore

'3  x

q

∑
j1≤j≤j2

log j

ej
ρ

(
j + 1

log y

)
 x

q

log j1

ej1
ρ

(
j1 + 1

log y

)
 y log log x

q
ρ(u − 1).

Since ρ ′(u) = −ρ(u − 1)/u for all u ≥ 1, the estimate (5) implies

ρ(u − 1)  u log(u + 1)ρ(u), u ≥ 1.

Consequently,

'3  y log log x

q
u log(u + 1)ρ(u)  '1

y log x log log x log(u + 1)

x log y
.

For '4, we have the estimate

'4 =
∑

x/y<d≤x,P +(d )≤y
gcd(d,q)=1

µ(d)2

ϕ(d )


∑
x/y<d≤x

P +(d )≤y

log log d

d
 log log x

x
�(x, y).
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By Lemma 1,

'4  log log x

x
ρ(u)x

(
1 + O

(
log(u + 1)

log y

))
 '1

q log log x

x
.

Combining our estimates for 'j (1 ≤ j ≤ 4) and using the fact that q < y, the re-
sult follows.

Corollary 1. Let ε > 0 be fixed. For any real numbers x and y satisfying

exp((log log x)5/3+ε) ≤ y ≤ x,

any integer q with log q = o(log y), and any integer a with gcd(a, q) = 1, we
have ∑

m≤x,P +(m)≤y
m≡a (mod q)

m

ϕ(m)
∼ ζq(2)ζq(3)

ζq(6)

ρ(u)

q
x.

Proof. Examining the structure of the error term in Theorem 1, it follows that
Eq(x, y) = o(1) provided that

exp((log log x)5/3+ε) ≤ y ≤ x

(log log x)1+ε

and log q = o(log y), and so we obtain the required asymptotic formula. For
larger values of y, one can argue directly as follows:∑

m≤x,P +(m)≤y
m≡a (mod q)

m

ϕ(m)
=

∑
m≤x

m≡a (mod q)

m

ϕ(m)
−

∑
m≤x,P +(m)>y
m≡a (mod q)

m

ϕ(m)
.

For the first summation, it is easy to check that

∑
m≤x

m≡a (mod q)

m

ϕ(m)
= ζq(2)ζq(3)

ζq(6)

ρ(u)x

q

(
1 + O

(
log log log x

log x

))
;

for the second summation, we have∑
m≤x,P +(m)>y
m≡a (mod q)

m

ϕ(m)
≤

∑
r≤log log x
gcd(r,q)=1

∑
y<p≤x

p≡ar∗ (mod q)

pr

ϕ(pr)

 x

ϕ(q) log x

∑
r≤log log x

r

ϕ(r)

 x log log(q + 2) log log x log log log log x

q log x

= o

(
ρ(u)x

q

)
.

Here we have used the Brun–Titchmarsh theorem for the second inequality (see
[12, Thm. 2.2]). This completes the proof.
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4. Main Results

As in Section 1, for all n ≥ 1 we define

c(n) =
∏
� | n
��=2

� − 1

� − 2
.

Then we have the following trivial estimate:

c(n) ≤
∏
� | n
��=2

�

� − 1
·
∏
�>2

(� − 1)2

�(� − 2)
= n

C2 gcd(n, 2)ϕ(n)
, (14)

where C2 is the “twin primes constant” given by

C2 =
∏
p>2

(
1 − 1

(p − 1)2

)
= 0.6601618158 . . . .

Theorem 2. Let ε > 0 and A > 0 be fixed. Then, for any real numbers x and
y satisfying

exp
(√

log x (log log x)1+ε
) ≤ y ≤ x

with x ≥ x0(ε,A), the estimate

πh(x, y; q, a) ≤
(

8δh
ζq(2)ζq(3)

ζq(6)
+ o(1)

)
(u + 1 + 1/u)ρ(u)c(qh)

q
π(x)

holds provided that q ≤ (log y)A, gcd(a, q) = 1, and h �= 0, where δh = 1 if h is
even and δh = 1/2 if h is odd.

Proof. In what follows, � always denotes a prime number. Let

πh,�(x; q, a) = #{p ≤ x : P +(p − h) = � and p ≡ a (mod q)}.
Let z = exp((log log x)2), and suppose that z ≤ Y ≤ x. Then, assuming that x is
sufficiently large,

πh(x,Y ; q, a) − πh(x,Y/e; q, a) =
∑

Y/e<�≤Y

πh,�(x; q, a)

=
∑

Y/e<�≤Y

∑
m≤(x−h)/�,P +(m)≤�

m�+h prime
m�+h≡a (mod q)

1

=
∑

1≤b≤q
gcd(b,q)=1

∑
Y/e<�≤Y

�≡b (mod q)

∑
m≤(x−h)/�,P +(m)≤�

m�+h prime
mb+h≡a (mod q)

1

≤
∑

1≤b≤q
gcd(b,q)=1

∑
m≤xe/Y,P +(m)≤Y
mb+h≡a (mod q)

∑
Y/e<�≤Y

�≡b (mod q)
m�+h prime

1.
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By Lemma 6, we have the estimate
∑

Y/e<�≤Y
�≡b (mod q)
m�+h prime

1 ≤ (8C2 + o(1))
c(qmh)Y

ϕ(q) log2 Y
.

Note that the summation on the left-hand side is actually zero (for sufficiently
large x) if gcd(m,h) > 1 or if both m and h are odd. Therefore, using the trivial
inequality c(qmh) ≤ c(qh)c(m) and the estimate (14), it follows that

πh(x,Y ; q, a) − πh(x,Y/e; q, a)

≤ (8δh + o(1))
c(qh)Y

ϕ(q) log2 Y

∑
1≤b≤q

gcd(b,q)=1

∑
m≤xe/Y,P +(m)≤Y
mb+h≡a (mod q)

m

ϕ(m)
.

By Corollary 1, we have

πh(x,Y ; q, a) − πh(x,Y/e; q, a)

≤ (8δhηq + o(1))
c(qh)Y

ϕ(q) log2 Y

∑
1≤b≤q

gcd(b,q)=1

ρ

(
log x − logY + 1

logY

)
x

qY

≤ (8δhηq + o(1))
c(qh)x

q log2 Y
ρ

(
log x

logY
− 1

)
, (15)

where

ηq = ζq(2)ζq(3)

ζq(6)
.

Now let j0 = �log(y/z)�. Using the estimate (15) yields

πh(x, y; q, a) ≤ πh(x, z; q, a) +
j0∑

j=0

(πh(x, y/ej; q, a) − πh(x, y/ej+1; q, a))

≤ (1 + o(1))�(x, z; q, a)

+ (8δhηq + o(1))
c(qh)x

q

j0∑
j=0

1

(log y − j)2
ρ

(
log x

log y − j
− 1

)
.

Arguing as in [17, p. 341], we have the estimate

j0∑
j=0

1

(log y − j)2
ρ

(
log x

log y − j
− 1

)
≤ ρ(u − 1)

log2 y
+ 1

log x

∫ ∞

u−1
ρ(t) dt. (16)

If y lies in the stated range then, as x → ∞,

ρ(u − 1)

log2 y
= o

(
uρ(u)

log x

)
;

the integral on the right-hand side of (16) can be estimated using Lemma 5. Fi-
nally, using (8) with d = 1 together with Lemma 1, we have
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�(x, z; q, a) = �(x, z)

q
(1 + o(1)) = x

q
ρ

(
log x

(log log x)2

)
(1 + o(1)).

The result follows.

We remark that the bound (4) stated in the Introduction follows immediately from
Theorem 2 using the trivial estimate c(qh) ≤ c(q)c(h) together with (14).

5. Concluding Remarks

We note that the range of Theorem 2 is slightly shorter than that of [17] given by
(2). However, one can easily extend Theorem 2 to the same range with o(1) re-
placed by O(1); in this case, we lose the explicit form of the statement.

The integral in Lemma 5 can be calculated precisely for certain values of u. For
example,∫ ∞

u−1
ρ(t) dt =

{
eγ + 1 − u if 1 ≤ u ≤ 2,

eγ + 3 − 2u + (u − 1) log(u − 1) if 2 ≤ u ≤ 3,

where γ is the Euler–Mascheroni constant. Similar expressions can be obtained
whenever u is reasonably small and can be used in place of (u + 1 + 1/u)ρ(u) in
the statement of Theorem 2 to obtain better estimates. In this way, we find that

4ζ(2)ζ(3)

C2ζ(6)

∫ ∞

u−1
ρ(t) dt < 1, u > u0 = 3.3558619258 . . . ,

and hence for any fixed A > 0 we have

lim inf
x→∞ min

1≤q≤(log x)A

gcd(a,q)=1

#{p ≤ x : p ≡ a (mod q), P +(p − 1) ≥ x0.295}
(π(x)/ϕ(q))

>
1

16
,

where P +(n) is the largest prime divisor of n. We also remark that the pair
(0.295,1/16) can be replaced with (0.270,1/2) or (0.257, 2/3), for instance. For
q = 1, the current record with the exponent 0.677 instead of 0.295 has been es-
tablished in [2] (though one loses the positivity in the density of primes), and it
seems likely that—by appropriately modifying the techniques of that paper—this
stronger result might also be obtained for primes in arithmetic progressions. This
has never been worked out explicitly, however, and doing so would necessarily
entail many technical and tedious calculations; thus Theorem 2 provides a rea-
sonably painless shortcut to (albeit weaker) results of the same general type. In
fact, the range of q is quite generous and coincides with the range for which un-
conditional results have been obtained on the asymptotic formula for primes in
arithmetic progressions.

It is easy to see that any improvement of our principal tool, Lemma 6, will
immediately lead to an improvement of Theorem 2 (both with respect to the con-
stant 8 and the range of q). One can also try to prove an analogue of Theorem 1
for the sum
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∑
m≤x,P +(m)≤y
m≡a (mod q)

c(m).

Using (14), one sees that this sum is bounded by

ζq(2)ζq(3)

C2ζq(6)

ρ(u)

q
x(1 + O(Eq(x, y))),

and any improvement in this estimate would lead to a corresponding improvement
of Theorem 2.

In principle, it should be possible to improve the bound in Theorem 2 (by about
a factor of u) using the approach of [8], but (as in the case of q = 1) only in a
narrower range of y; compare (2) and (3). As we have already mentioned, any fur-
ther progress toward closing the gap between (1) and Theorem 2 would be of great
interest.

Finally, we remark that it should be possible via similar techniques to obtain
analogues of our results for primes p ≤ x in an arithmetic progression such that
kp + h is y-smooth.
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