The Pointwise Convergence of Möbius Maps

A. F. BEARDON

1. Introduction

In 1957, Piranian and Thron [6] classified the possible limits of a pointwise convergent sequence of Möbius maps acting in the extended complex plane. Here we consider the problem for Möbius maps acting in higher dimensions.

Let g_n be any sequence of Möbius maps of the extended complex plane \mathbb{C}_{∞} onto itself. Let *C* be the set of points *z* at which the sequence $g_n(z)$ converges and, for *z* in *C*, let $g(z) = \lim_{n \to \infty} g_n(z)$.

THEOREM A [6]. Suppose that $C \neq \emptyset$. Then one of the following possibilities occurs:

- (a) $C = \mathbb{C}_{\infty}$, and g is a Möbius map;
- (b) $C = \mathbb{C}_{\infty}$, and g is constant on the complement of one point but not on \mathbb{C}_{∞} ;
- (c) $C = \{z_1, z_2\}$ and $g(z_1) \neq g(z_2)$; or
- (d) g is constant on C.

It is clear that other possibilities can arise in higher dimensions; for example, the sequence of iterates of a nontrivial rotation in \mathbb{R}^3 converges on, and only on, the axis of the rotation and at ∞ . Here, we establish the corresponding result in higher dimension, and we replace the arguments about the coefficients of the g_n used in [6] by geometric arguments. We shall see that, even in two dimensions, the two cases in which *g* takes precisely two values play very different roles in the discussion; in fact, (c) is closer to (a) than to (b). The following similar result for quasiconformal mappings is known [8, pp. 69–73].

THEOREM B. Let D be a subdomain of \mathbb{R}^{k+1} , and let f_n be a sequence of Kquasiconformal mappings of D into \mathbb{R}^{k+1} that converges pointwise on D to a function f. Then one of the following possibilities occurs:

- (a) f is a K-quasiconformal map of D onto some domain D';
- (b) f takes precisely two values on D, one of which is taken at one point only; or
- (c) f is constant on D.

However, Theorem B does not subsume Theorem A, for C need not be a domain; indeed, the problem of characterizing the possible sets C in Theorem A is not

Received November 8, 1999. Revision received April 13, 2004.

solved in [6] (see [4]). Nonetheless, we identify the largest open set on which *locally uniform convergence* occurs, and often this is more important than pointwise convergence. We shall prove the following result, where \mathbb{R}^k_{∞} is the usual compactification of \mathbb{R}^k .

THEOREM 1.1. Let g_n be a sequence of Möbius maps acting on \mathbb{R}^k_{∞} that converges pointwise on C (and nowhere else) to the function g. If $C \neq \emptyset$, then one of the following occurs:

- (a) g is the restriction of some Möbius map to C and C = h(V ∪ {∞}) for some Möbius map h, where V is either {0} or a nontrivial subspace of ℝ^k not of dimension k − 1;
- (b) $C = \mathbb{R}^k_{\infty}$, and g is constant on the complement of a single point in \mathbb{R}^k_{∞} but not on \mathbb{R}^k_{∞} ; or
- (c) g is constant on C.

To recapture Theorem A, put k = 2. Then V in (a) is $\{0\}$ or \mathbb{C} , so that C is \mathbb{C}_{∞} or a doubleton. Note that (a) in Theorem 1.1 includes both the cases (a) and (c) in Theorem A.

2. Möbius Maps in Higher Dimensions

The Möbius group \mathcal{M}_n consists of those transformations of \mathbb{R}_{∞}^n onto itself that are the composition of an even number of inversions in (n-1)-dimensional Euclidean spheres and hyperplanes. We embed \mathbb{R}_{∞}^k in $\mathbb{R}_{\infty}^{k+1}$ by identifying (x_1, \ldots, x_k) with $(x_1, \ldots, x_k, 0)$. Then \mathbb{R}_{∞}^k is the boundary of the upper half-space \mathbb{H}^{k+1} given by $x_{k+1} > 0$, and this is a model of (k + 1)-dimensional hyperbolic space with the hyperbolic metric ρ_{k+1} derived from the line element $|dx|/x_{k+1}$. The elements of \mathcal{M}_k extend naturally to elements of \mathcal{M}_{k+1} that preserve \mathbb{H}^{k+1} , and these extensions constitute the group of conformal isometries of the hyperbolic space $(\mathbb{H}^{k+1}, \rho_{k+1})$. Because \mathcal{M}_k acts as the group of isometries of the metric space $(\mathbb{H}^{k+1}, \rho_{k+1})$, it is generally more profitable to study \mathcal{M}_k through its action on \mathbb{H}^{k+1} rather than its action on \mathbb{R}_{∞}^k . For more details see [1; 2; 5; 7].

The chordal cross-ratio $[x_1, x_2, x_3, x_4]$ of four distinct points x_j in \mathbb{R}^k_{∞} is defined by

$$[x_1, x_2, x_3, x_4] = \frac{\sigma(x_1, x_3)\sigma(x_2, x_4)}{\sigma(x_1, x_4)\sigma(x_2, x_3)},$$

where σ is the chordal metric defined on \mathbb{R}^n_{∞} by

$$\sigma(x, y) = \frac{2|x - y|}{\sqrt{1 + |x|^2}\sqrt{1 + |y|^2}}$$

It is known (see [2, Thm. 3.2.7]) that a map of \mathbb{R}^k_{∞} into itself is Möbius if and only if it preserves chordal cross-ratios. Providing we make the usual conventions about ∞ , it follows that

$$[x_1, x_2, x_3, x_4] = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.$$

Finally, to minimize the notation when using cross-ratios we shall often write $g_n x$ for $g_n(x)$, and similarly for g_n^{-1} .

3. Some Preliminary Results

We are given Möbius maps g_n acting on \mathbb{R}^k_{∞} such that g(x) exists if and only if $x \in C$. Suppose first that there are x_1 and x_2 such that

$$\lim_{n} g_n(x_1) = \lim_{n} g_n(x_2) = \alpha, \quad x_1 \neq x_2.$$
(3.1)

We may assume that $\alpha \neq \infty$, and we choose a point ζ on the geodesic ℓ in \mathbb{H}^{k+1} with endpoints x_1 and x_2 . Then $g_n(\zeta) \rightarrow \alpha$ in the Euclidean topology of $\mathbb{R}^{k+1}_{\infty}$. Now let x be any point in \mathbb{H}^{k+1} . Then $\rho_{k+1}(g_n(x), g_n(\zeta)) = \rho_{k+1}(x, \zeta)$ and so $g_n(x) \rightarrow \alpha$. The local uniform convergence on \mathbb{H}^{k+1} follows easily from the geometry, and we have proved the next result.

LEMMA 3.1. Suppose that a sequence g_n of Möbius maps converges at two distinct points of \mathbb{R}^k_{∞} to the same value α . Then $g_n \to \alpha$ locally uniformly on \mathbb{H}^{k+1} .

Condition (3.1) is a special case of what is known as the *general convergence* of a sequence of Möbius maps; see [3] for more details. Suppose now that (3.1) holds and that x_1, x_2, x_3, x_4 are distinct points in \mathbb{R}^k_{∞} . Choose a point ζ' on the geodesic with endpoints x_3 and x_4 ; then, by Lemma 3.1, $g_n(\zeta') \rightarrow \alpha$. It is now evident that there must be a subsequence of $g_n(x_3)$ or of $g_n(x_4)$ that converges to α , and we have proved the next result.

LEMMA 3.2. Suppose that (3.1) holds. Then there is at most one x in \mathbb{R}^k_{∞} such that the sequence $g_n(x)$ does not accumulate at α . In particular, g is constant on C or on the complement of one point of C.

The main result in this section is as follows.

THEOREM 3.3. Let g_n be a sequence of maps in \mathcal{M}_k , and suppose that there exist distinct points x_1, x_2, x_3 in \mathbb{R}^k_{∞} such that

$$\lim_{n} g_n(x_1) = \lim_{n} g_n(x_2) = \alpha, \qquad \lim_{n} g_n(x_3) = \beta, \tag{3.2}$$

where $\alpha \neq \beta$. Then $g_n \to \alpha$ locally uniformly on $\mathbb{R}^k_{\infty} \setminus \{x_3\}$.

Proof. Lemma 3.2 implies that, for every x in $\mathbb{R}^k_{\infty} \setminus \{x_3\}$, the sequence $g_n(x)$ accumulates at α . If one such sequence does not converge to α , then we can pass to a subsequence that converges to some point other than α , and this violates Lemma 3.2. Thus $g_n \to \alpha$ pointwise on $\mathbb{R}^k_{\infty} \setminus \{x_3\}$.

We shall now show that $g_n \to \alpha$ uniformly on each compact subset of $\mathbb{R}^k_{\infty} \setminus \{x_3\}$. Since each Möbius map is a Lipschitz map of \mathbb{R}^k_{∞} onto itself, there is no loss of generality in assuming that $x_3 = \infty = \beta$ and $\alpha = 0$; thus (3.2) becomes

$$\lim_{n} g_n(x_1) = \lim_{n} g_n(x_2) = 0, \qquad \lim_{n} g_n(\infty) = \infty,$$

and we have to show that $g_n \to 0$ locally uniformly on \mathbb{R}^k . Let *K* be a compact subset of \mathbb{R}^k , and suppose that $y \in K$. Then

$$\frac{\sigma(x_1,\infty)\sigma(x_2,y)}{\sigma(x_1,x_2)\sigma(y,\infty)} = \frac{\sigma(g_n x_1, g_n \infty)\sigma(g_n x_2, g_n y)}{\sigma(g_n x_1, g_n x_2)\sigma(g_n y, g_n \infty)},$$

so that

$$\sigma(g_n x_2, g_n y) \le \frac{\delta \sigma(g_n x_1, g_n x_2)}{\sigma(x_1, x_2) \sigma(y, \infty) \sigma(g_n x_1, g_n \infty)}$$

The denominator is bounded below independently of y, and this implies uniform convergence on K.

4. Proof of Theorem 1.1

We are given Möbius maps g_n acting on \mathbb{R}^k_{∞} such that g(x) exists if and only if $x \in C$. The case when g is constant (which includes the case when C is a singleton) is case (c), and the case when C is a doubleton and g is not constant is case (a) with $V = \{0\}$. Thus, from now on we may assume that C has at least three points and that g is not constant on C. Suppose first that g is not injective. Then (3.2) holds for some x_i , and Theorem 3.3 implies that (b) in Theorem 1.1 holds.

In the remainder of the proof we may assume that there exist distinct points x_1, x_2, x_3 and distinct points y_1, y_2, y_3 such that

$$g_n(x_1) \to y_1, \quad g_n(x_2) \to y_2, \quad g_n(x_3) \to y_3.$$
 (4.1)

It is known [2, Thm. 3.6.5] that (4.1) implies that a subsequence of the g_n converges uniformly on \mathbb{R}^k_{∞} to some Möbius transformation; and, as $g_n \to g$ on C, we see that g extends from C to a Möbius map (which we continue to call g) on \mathbb{R}^k . This is the first assertion in (a), and to complete the proof of Theorem 1.1 we need to show that $C = h(V \cup \{\infty\})$, where h is Möbius and V is a subspace of \mathbb{R}^k . The idea is to show that the given situation can be reduced to the case in which $g_n(0) = 0$ and $g_n(\infty) = \infty$. Then g_n is a linear map of \mathbb{R}^k onto itself, and the convergence set of a sequence of linear maps is a subspace of \mathbb{R}^k .

It is convenient to write $g_n \hookrightarrow (C, g)$ to mean that *C* is the set of convergence of g_n and that $g_n \to g$ on (and only on) *C*. We need the following two preliminary results, which will be proved after we have completed the proof of Theorem 1.1.

LEMMA 4.1. Suppose that $g_n \hookrightarrow (C, g)$. Then:

- (a) for any Möbius map $f, g_n f \hookrightarrow (f^{-1}(C), gf)$; and
- (b) if h_n are Möbius maps that converge uniformly to the Möbius map h, then $h_n g_n \hookrightarrow (C, hg)$.

LEMMA 4.2. Suppose that $a_n \to 0$ and $b_n \to \infty$. Then there exist Möbius maps F_n that converge uniformly to the identity map I on \mathbb{R}^k_{∞} , with $F_n(a_n) = 0$ and $F_n(b_n) = \infty$.

We continue with the proof of Theorem 1.1. Because (4.1) holds, we can find a Möbius map f such that $f(0) = x_1$, $f(\infty) = x_2$, and $f(1) = x_3$. Then, by Lemma 4.1 and with $G_n = f^{-1}g^{-1}g_n f$,

$$G_n \hookrightarrow (f^{-1}(C), I), \qquad G_n(0) \to 0, \quad G_n(1) \to 1, \quad G_n(\infty) \to \infty.$$
 (4.2)

We now apply Lemma 4.2 with $a_n = G_n(0)$ and $b_n = G_n(\infty)$ to obtain the F_n , and then we apply Lemma 4.1(b) with $h_n = F_n$. This gives

$$F_n G_n \hookrightarrow (f^{-1}(C), I), \qquad F_n G_n(0) = 0, \quad F_n G_n(\infty) = \infty.$$
 (4.3)

Since $F_n G_n$ is Möbius and fixes both 0 and ∞ , we see that $F_n G_n(x) = \lambda_n A_n(x)$, where $\lambda_n > 0$ and A_n is an orthogonal matrix with determinant 1 (see [2, Thm. 3.5.1]). It is obvious that if a sequence of linear maps converges at two points then it also converges at any linear combination of these two points; thus its convergence set is a subspace of \mathbb{R}^k . We conclude that the convergence set of $F_n G_n$ is, say, $V \cup \{\infty\}$ for some subspace V of \mathbb{R}^k . It now follows from (4.3) that $C = f(V \cup \{\infty\})$ as required.

It remains to show that if $k \ge 2$ then $\dim(V) \ne k - 1$. We suppose then that $k \ge 2$ and $\dim(V) \ge k - 1$. Now, for any nonzero x in V (and such x do exist), we have

$$|x| = \lim_{n} |F_n G_n(x)| = \lim_{n} \lambda_n |A_n(x)| = \lim_{n} \lambda_n |x|,$$

so that $\lambda_n \to 1$. This means that the orthogonal maps A_n converge to the identity on *V* and hence on a subspace V_0 of dimension k - 1. Now select an orthonormal basis e_1, \ldots, e_k of \mathbb{R}^k such that e_1, \ldots, e_{k-1} is a basis of V_0 . Then the matrices of the maps A_n with respect to the basis $\{e_i\}$ converge to the diagonal matrix (m_{ij}) with $m_{11} = \cdots = m_{k-1,k-1} = 1$. Since det $(m_{ij}) = 1$, it follows that $m_{k,k} = 1$ so that the maps A_n converge to *I* throughout \mathbb{R}^k . It is for this reason that the convergence set cannot be a subspace of dimension k - 1 (unless k - 1 = 0). The proof of Theorem 1.1 is complete.

We now prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. We omit the (easy) proof of (a). To prove (b) we must show that (i) if $x \in C$ then $h_n g_n(x) \to hg(x)$, and (ii) if $h_n g_n(u)$ converges then $u \in C$. For any Möbius f_0 and g_0 , we write

$$\hat{\sigma}(f_0,g_0) = \sup_x \sigma(f_0(x),g_0(x)).$$

Then $\hat{\sigma}$ is the metric of uniform convergence on \mathbb{R}^k_{∞} , and \mathcal{M}_k is a topological group with respect to this metric. Suppose $x \in C$. Then

$$\sigma(h_n g_n(x), hg(x)) \le \sigma(h_n g_n(x), hg_n(x)) + \sigma(hg_n(x), hg(x))$$
$$\le \hat{\sigma}(h_n, h) + L(h)\sigma(g_n(x), g(x)),$$

where L(h) is the Lipschitz constant for *h*. It follows that $h_n g_n(x) \rightarrow hg(x)$, which proves (i).

Now suppose that $h_n g_n(u) \rightarrow v$ for some *u* and *v*. Then

$$\sigma(g_n(u), h^{-1}(v)) = \sigma(h^{-1}hg_n(u), h^{-1}(v))$$

$$\leq L(h^{-1})\sigma(hg_n(u), v)$$

$$\leq L(h^{-1})[\sigma(hg_n(u), h_ng_n(u)) + \sigma(h_ng_n(u), v)]$$

$$\leq L(h^{-1})[\hat{\sigma}(h, h_n) + \sigma(h_ng_n(u), v)]$$

$$\to 0$$

as $n \to \infty$, so that $u \in C$. This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. Let $\beta(x) = x/|x|^2$ (this in inversion in the unit sphere), and let

 \square

$$f_n(x) = x - \beta(b_n), \quad g_n(x) = x - \beta f_n \beta(a_n), \quad F_n(x) = g_n \beta f_n \beta(x).$$

We note that

$$\beta(b_n) \to 0, \qquad \beta f_n \beta(a_n) = \beta(\beta(a_n) - \beta(b_n)) \to \beta(\infty) = 0;$$

hence f_n , g_n , and F_n are Möbius maps (i.e., their coefficients are finite) for all sufficiently large n. Next, it is clear that if $t(x) = x + \tau_n$ and $\tau_n \to 0$ then $t_n \to I$ uniformly on \mathbb{R}^k_{∞} . Thus $f_n \to I$ and $g_n \to I$, so $F_n = g_n \beta f_n \beta \to I \beta I \beta = I$. Finally, $F_n(a_n) = 0$ and $F_n(b_n) = \infty$ because

$$F_n^{-1}(0) = \beta f_n^{-1} \beta g_n^{-1}(0) = \beta f_n^{-1} \beta (\beta f_n \beta(a_n)) = a_n,$$

$$F_n^{-1}(\infty) = \beta f_n^{-1} \beta g_n^{-1}(\infty) = \beta f_n^{-1} \beta(\infty) = \beta f_n^{-1}(0) = \beta \beta(b_n) = b_n.$$

It is easy to see that any subspace V of \mathbb{R}^k , with ∞ attached, can arise as the set C of convergence of some sequence g_n of Möbius maps, provided that $\dim(V) \neq k - 1$ (unless k = 1). We simply write $\mathbb{R}^k = V \oplus W$ and define a sequence of orthogonal maps (a) that leave V and W invariant and (b) whose restrictions to V and W are the orthogonal maps I (the identity) and A_n , respectively. Provided that $\dim(W) \neq 1$, we can clearly choose the A_n so that the only point of W at which convergence occurs is the origin. Thus the convergence set of the Möbius g_n is $V \cup \{\infty\}$.

5. Locally Uniform Convergence

Given (3.1), namely, $\lim_n g_n(x_1) = \lim_n g_n(x_2) = \alpha$ where $x_1 \neq x_2$, we may ask: where does g_n converge locally uniformly to α ? For each w in \mathbb{R}^k_{∞} , let $\Lambda(w)$ be the set of accumulation points of the sequence $g_n^{-1}(w)$. Then we have the following result [3, Thm. 9.6].

THEOREM 5.1. Suppose that a sequence g_n of Möbius maps acting on \mathbb{R}^k_{∞} satisfies (3.1). If $w \neq \alpha$, then $g_n \to \alpha$ locally uniformly on $\mathbb{R}^k_{\infty} \setminus \Lambda(w)$ and on no larger open subset of \mathbb{R}^k_{∞} . In particular, $\Lambda(w)$ is independent of w in $\mathbb{R}^k_{\infty} \setminus \{\alpha\}$.

References

- L. V. Ahlfors, *Möbius transformations in several dimensions*, Ordway Professorship Lectures in Mathematics, Univ. of Minnesota, Minneapolis, 1981.
- [2] A. F. Beardon, *The geometry of discrete groups*, Grad. Texts in Math., 91, Springer-Verlag, Berlin, 1983.
- [3] ——, Continued fractions, discrete groups and complex dynamics, Comput. Methods Funct. Theory 1 (2001), 535–594.
- [4] P. Erdös and G. Piranian, Sequences of linear fractional transformations, Michigan Math. J. 6 (1959), 205–209.
- [5] P. J. Nicholls, *The ergodic theory of discrete groups*, London Math. Soc. Lecture Note Ser., 143, Cambridge Univ. Press, Cambridge, 1989.
- [6] G. Piranian and W. J. Thron, Convergence properties of sequences of linear fractional transformations, Michigan Math. J. 4 (1957), 129–135.
- [7] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Grad. Texts in Math., 149, Springer-Verlag, New York, 1994.
- [8] J. Väisälä, *Lectures on n-dimensional quasiconformal mappings*, Lecture Notes in Math., 229, Springer-Verlag, New York, 1971.

Centre for Mathematical Studies University of Cambridge Wilberforce Road Cambridge CB3 0WB England

afb@dpmms.cam.ac.uk