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The Pointwise Convergence of Möbius Maps

A. F. Beardon

1. Introduction

In 1957, Piranian and Thron [6] classified the possible limits of a pointwise con-
vergent sequence of Möbius maps acting in the extended complex plane. Here we
consider the problem for Möbius maps acting in higher dimensions.

Let gn be any sequence of Möbius maps of the extended complex plane C∞
onto itself. Let C be the set of points z at which the sequence gn(z) converges and,
for z in C, let g(z) = limn gn(z).

Theorem A [6]. Suppose that C �= ∅. Then one of the following possibilities
occurs:

(a) C = C∞, and g is a Möbius map;
(b) C = C∞, and g is constant on the complement of one point but not on C∞;
(c) C = {z1, z2} and g(z1) �= g(z2); or
(d) g is constant on C.

It is clear that other possibilities can arise in higher dimensions; for example, the
sequence of iterates of a nontrivial rotation in R

3 converges on, and only on, the
axis of the rotation and at ∞. Here, we establish the corresponding result in higher
dimension, and we replace the arguments about the coefficients of the gn used in
[6] by geometric arguments. We shall see that, even in two dimensions, the two
cases in which g takes precisely two values play very different roles in the dis-
cussion; in fact, (c) is closer to (a) than to (b). The following similar result for
quasiconformal mappings is known [8, pp. 69–73].

Theorem B. Let D be a subdomain of R
k+1, and let fn be a sequence of K-

quasiconformal mappings ofD into R
k+1 that converges pointwise onD to a func-

tion f. Then one of the following possibilities occurs:

(a) f is a K-quasiconformal map of D onto some domain D ′;
(b) f takes precisely two values on D, one of which is taken at one point only; or
(c) f is constant on D.

However, Theorem B does not subsume Theorem A, for C need not be a domain;
indeed, the problem of characterizing the possible sets C in Theorem A is not
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solved in [6] (see [4]). Nonetheless, we identify the largest open set on which lo-
cally uniform convergence occurs, and often this is more important than pointwise
convergence. We shall prove the following result, where R

k∞ is the usual com-
pactification of R

k.

Theorem 1.1. Let gn be a sequence of Möbius maps acting on R
k∞ that con-

verges pointwise on C (and nowhere else) to the function g. If C �= ∅, then one of
the following occurs:

(a) g is the restriction of some Möbius map to C and C = h(V ∪ {∞}) for some
Möbius map h, where V is either {0} or a nontrivial subspace of R

k not of
dimension k − 1;

(b) C = R
k∞, and g is constant on the complement of a single point in R

k∞ but
not on R

k∞; or
(c) g is constant on C.

To recapture Theorem A, put k = 2. Then V in (a) is {0} or C, so that C is C∞
or a doubleton. Note that (a) in Theorem 1.1 includes both the cases (a) and (c) in
Theorem A.

2. Möbius Maps in Higher Dimensions

The Möbius group Mn consists of those transformations of R
n∞ onto itself that are

the composition of an even number of inversions in (n−1)-dimensional Euclidean
spheres and hyperplanes. We embed R

k∞ in R
k+1∞ by identifying (x1, . . . , xk) with

(x1, . . . , xk , 0). Then R
k∞ is the boundary of the upper half-space H

k+1 given by
xk+1 > 0, and this is a model of (k + 1)-dimensional hyperbolic space with the
hyperbolic metric ρk+1 derived from the line element |dx|/xk+1. The elements of
Mk extend naturally to elements of Mk+1 that preserve H

k+1, and these extensions
constitute the group of conformal isometries of the hyperbolic space (Hk+1, ρk+1).

Because Mk acts as the group of isometries of the metric space (Hk+1, ρk+1), it is
generally more profitable to study Mk through its action on H

k+1 rather than its
action on R

k∞. For more details see [1; 2; 5; 7].
The chordal cross-ratio [x1, x2, x3, x4] of four distinct points xj in R

k∞ is de-
fined by

[x1, x2, x3, x4] = σ(x1, x3)σ(x2, x4)

σ(x1, x4)σ(x2, x3)
,

where σ is the chordal metric defined on R
n∞ by

σ(x, y) = 2|x − y|
√

1 + |x|2√1 + |y|2 .

It is known (see [2, Thm. 3.2.7]) that a map of R
k∞ into itself is Möbius if and

only if it preserves chordal cross-ratios. Providing we make the usual conventions
about ∞, it follows that

[x1, x2, x3, x4] = |x1 − x3||x2 − x4|
|x1 − x4||x2 − x3| .
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Finally, to minimize the notation when using cross-ratios we shall often write gnx
for gn(x), and similarly for g−1

n .

3. Some Preliminary Results

We are given Möbius maps gn acting on R
k∞ such that g(x) exists if and only if

x ∈C. Suppose first that there are x1 and x2 such that

lim
n
gn(x1) = lim

n
gn(x2) = α, x1 �= x2. (3.1)

We may assume that α �= ∞, and we choose a point ζ on the geodesic � in H
k+1

with endpoints x1 and x2. Then gn(ζ) → α in the Euclidean topology of R
k+1∞ .

Now let x be any point in H
k+1. Then ρk+1(gn(x), gn(ζ)) = ρk+1(x, ζ) and so

gn(x) → α. The local uniform convergence on H
k+1 follows easily from the ge-

ometry, and we have proved the next result.

Lemma 3.1. Suppose that a sequence gn of Möbius maps converges at two dis-
tinct points of R

k∞ to the same value α. Then gn → α locally uniformly on H
k+1.

Condition (3.1) is a special case of what is known as the general convergence of a
sequence of Möbius maps; see [3] for more details. Suppose now that (3.1) holds
and that x1, x2, x3, x4 are distinct points in R

k∞. Choose a point ζ ′ on the geodesic
with endpoints x3 and x4; then, by Lemma 3.1, gn(ζ ′) → α. It is now evident that
there must be a subsequence of gn(x3) or of gn(x4) that converges to α, and we
have proved the next result.

Lemma 3.2. Suppose that (3.1) holds. Then there is at most one x in R
k∞ such

that the sequence gn(x) does not accumulate at α. In particular, g is constant on
C or on the complement of one point of C.

The main result in this section is as follows.

Theorem 3.3. Let gn be a sequence of maps in Mk , and suppose that there exist
distinct points x1, x2, x3 in R

k∞ such that

lim
n
gn(x1) = lim

n
gn(x2) = α, lim

n
gn(x3) = β, (3.2)

where α �= β. Then gn → α locally uniformly on R
k∞\{x3}.

Proof. Lemma 3.2 implies that, for every x in R
k∞\{x3}, the sequence gn(x) ac-

cumulates at α. If one such sequence does not converge to α, then we can pass
to a subsequence that converges to some point other than α, and this violates
Lemma 3.2. Thus gn → α pointwise on R

k∞\{x3}.
We shall now show that gn → α uniformly on each compact subset of R

k∞\{x3}.
Since each Möbius map is a Lipschitz map of R

k∞ onto itself, there is no loss of
generality in assuming that x3 = ∞ = β and α = 0; thus (3.2) becomes
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lim
n
gn(x1) = lim

n
gn(x2) = 0, lim

n
gn(∞) = ∞,

and we have to show that gn → 0 locally uniformly on R
k. Let K be a compact

subset of R
k, and suppose that y ∈K. Then

σ(x1, ∞)σ(x2, y)

σ(x1, x2)σ(y, ∞)
= σ(gnx1, gn∞)σ(gnx2, gny)

σ(gnx1, gnx2)σ(gny, gn∞)
,

so that

σ(gnx2, gny) ≤ 8σ(gnx1, gnx2)

σ(x1, x2)σ(y, ∞)σ(gnx1, gn∞)
.

The denominator is bounded below independently of y, and this implies uniform
convergence on K.

4. Proof of Theorem 1.1

We are given Möbius maps gn acting on R
k∞ such that g(x) exists if and only if

x ∈C. The case when g is constant (which includes the case when C is a single-
ton) is case (c), and the case when C is a doubleton and g is not constant is case (a)
with V = {0}. Thus, from now on we may assume that C has at least three points
and that g is not constant on C. Suppose first that g is not injective. Then (3.2)
holds for some xj , and Theorem 3.3 implies that (b) in Theorem 1.1 holds.

In the remainder of the proof we may assume that there exist distinct points
x1, x2, x3 and distinct points y1, y2, y3 such that

gn(x1) → y1, gn(x2) → y2, gn(x3) → y3. (4.1)

It is known [2, Thm. 3.6.5] that (4.1) implies that a subsequence of the gn con-
verges uniformly on R

k∞ to some Möbius transformation; and, as gn → g on C,
we see that g extends from C to a Möbius map (which we continue to call g) on
R
k. This is the first assertion in (a), and to complete the proof of Theorem 1.1 we

need to show that C = h(V ∪{∞}), where h is Möbius and V is a subspace of R
k.

The idea is to show that the given situation can be reduced to the case in which
gn(0) = 0 and gn(∞) = ∞. Then gn is a linear map of R

k onto itself, and the
convergence set of a sequence of linear maps is a subspace of R

k.

It is convenient to write gn ↪→ (C, g) to mean that C is the set of convergence
of gn and that gn → g on (and only on) C. We need the following two preliminary
results, which will be proved after we have completed the proof of Theorem 1.1.

Lemma 4.1. Suppose that gn ↪→ (C, g). Then:

(a) for any Möbius map f , gnf ↪→ (f −1(C), gf ); and
(b) if hn are Möbius maps that converge uniformly to the Möbius map h, then

hngn ↪→ (C,hg).

Lemma 4.2. Suppose that an → 0 and bn → ∞. Then there exist Möbius maps
Fn that converge uniformly to the identity map I on R

k∞, with Fn(an) = 0 and
Fn(bn) = ∞.
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We continue with the proof of Theorem 1.1. Because (4.1) holds, we can find
a Möbius map f such that f(0) = x1, f(∞) = x2, and f(1) = x3. Then, by
Lemma 4.1 and with Gn = f −1g−1gnf ,

Gn ↪→ (f −1(C), I ), Gn(0) → 0, Gn(1) → 1, Gn(∞) → ∞. (4.2)

We now apply Lemma 4.2 with an = Gn(0) and bn = Gn(∞) to obtain the Fn,
and then we apply Lemma 4.1(b) with hn = Fn. This gives

FnGn ↪→ (f −1(C), I ), FnGn(0) = 0, FnGn(∞) = ∞. (4.3)

Since FnGn is Möbius and fixes both 0 and ∞, we see that FnGn(x) = λnAn(x),
where λn > 0 and An is an orthogonal matrix with determinant 1 (see [2, Thm.
3.5.1]). It is obvious that if a sequence of linear maps converges at two points then
it also converges at any linear combination of these two points; thus its conver-
gence set is a subspace of R

k. We conclude that the convergence set of FnGn is,
say, V ∪ {∞} for some subspace V of R

k. It now follows from (4.3) that C =
f(V ∪ {∞}) as required.

It remains to show that if k ≥ 2 then dim(V ) �= k − 1. We suppose then that
k ≥ 2 and dim(V ) ≥ k − 1. Now, for any nonzero x in V (and such x do exist),
we have

|x| = lim
n

|FnGn(x)| = lim
n
λn|An(x)| = lim

n
λn|x|,

so that λn → 1. This means that the orthogonal maps An converge to the identity
on V and hence on a subspace V0 of dimension k −1. Now select an orthonormal
basis e1, . . . , ek of R

k such that e1, . . . , ek−1 is a basis of V0. Then the matrices of
the maps An with respect to the basis {ei} converge to the diagonal matrix (mij )

with m11 = · · · = mk−1,k−1 = 1. Since det(mij ) = 1, it follows that mk,k = 1 so
that the maps An converge to I throughout R

k. It is for this reason that the conver-
gence set cannot be a subspace of dimension k − 1 (unless k − 1 = 0). The proof
of Theorem 1.1 is complete.

We now prove Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. We omit the (easy) proof of (a). To prove (b) we must show
that (i) if x ∈C then hngn(x) → hg(x), and (ii) if hngn(u) converges then u∈C.

For any Möbius f0 and g0, we write

σ̂(f0, g0) = sup
x

σ(f0(x), g0(x)).

Then σ̂ is the metric of uniform convergence on R
k∞, and Mk is a topological

group with respect to this metric. Suppose x ∈C. Then

σ(hngn(x),hg(x)) ≤ σ(hngn(x),hgn(x)) + σ(hgn(x),hg(x))

≤ σ̂(hn,h) + L(h)σ(gn(x), g(x)),

where L(h) is the Lipschitz constant for h. It follows that hngn(x) → hg(x),
which proves (i).
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Now suppose that hngn(u) → v for some u and v. Then

σ(gn(u),h
−1(v)) = σ(h−1hgn(u),h

−1(v))

≤ L(h−1)σ(hgn(u), v)

≤ L(h−1)[σ(hgn(u),hngn(u)) + σ(hngn(u), v)]

≤ L(h−1)[σ̂(h,hn) + σ(hngn(u), v)]

→ 0

as n → ∞, so that u∈C. This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. Let β(x) = x/|x|2 (this in inversion in the unit sphere),
and let

fn(x) = x − β(bn), gn(x) = x − βfnβ(an), Fn(x) = gnβfnβ(x).

We note that

β(bn) → 0, βfnβ(an) = β(β(an) − β(bn)) → β(∞) = 0;
hence fn, gn, and Fn are Möbius maps (i.e., their coefficients are finite) for all suf-
ficiently large n. Next, it is clear that if t(x) = x + τn and τn → 0 then tn →
I uniformly on R

k∞. Thus fn → I and gn → I, so Fn = gnβfnβ → IβIβ = I.

Finally, Fn(an) = 0 and Fn(bn) = ∞ because

F −1
n (0) = βf −1

n βg−1
n (0) = βf −1

n β(βfnβ(an)) = an,

F −1
n (∞) = βf −1

n βg−1
n (∞) = βf −1

n β(∞) = βf −1
n (0) = ββ(bn) = bn.

It is easy to see that any subspace V of R
k, with ∞ attached, can arise as the set

C of convergence of some sequence gn of Möbius maps, provided that dim(V ) �=
k − 1 (unless k = 1). We simply write R

k = V ⊕W and define a sequence of or-
thogonal maps (a) that leave V and W invariant and (b) whose restrictions to V

andW are the orthogonal maps I (the identity) andAn, respectively. Provided that
dim(W ) �= 1, we can clearly choose the An so that the only point of W at which
convergence occurs is the origin. Thus the convergence set of the Möbius gn is
V ∪ {∞}.

5. Locally Uniform Convergence

Given (3.1), namely, limn gn(x1) = limn gn(x2) = α where x1 �= x2, we may ask:
where does gn converge locally uniformly to α? For eachw in R

k∞, let,(w) be the
set of accumulation points of the sequence g−1

n (w). Then we have the following
result [3, Thm. 9.6].

Theorem 5.1. Suppose that a sequence gn of Möbius maps acting on R
k∞ satis-

fies (3.1). If w �= α, then gn → α locally uniformly on R
k∞\,(w) and on no larger

open subset of R
k∞. In particular, ,(w) is independent of w in R

k∞\{α}.
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