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1. Introduction

In the study of dynamics of a continuous map f : X �→ X on a compact metric
spaceX, one is often interested in f-invariant sets or measures. When f : CP

k �→
CP

k is a holomorphic endomorphism of degree d ≥ 2, such invariant objects can
be constructed by means of the function

G(z) = lim
n→∞

1

d n
log‖F n(z)‖, z∈ C

k+1

(cf. [HP; Ue]), where F is a lift of f to C
k+1, that is, π 	 F = f 	 π with π :

C
k+1 \ {0} �→ CP

k the standard projection map. Each coordinate of F is a ho-
mogeneous polynomial of degree d and F −1(0) = 0. It is easy to see that G is a
plurisubharmonic (PSH) function on C

k+1 that is not identically equal to −∞, is
continuous on C

k+1\{0}, and satisfiesG(F(z)) = d ·G(z) for z∈ C
k+1. UsingG,

one defines a positive closed (1,1)-current T by π∗T = ddcG, and subsequently
T l = T ∧ · · · ∧ T (l = 2, . . . , k). Note that µ = T k is a Borel finite measure on
CP

k. These currents and their supports satisfy the invariance conditions f ∗(T l) =
d l · T l and f −1(supp T l) = supp T l = f(supp T l) for l = 1, . . . , k.

The functionG has other properties of interest from the dynamical systems point
of view. Note that 0 is an attracting fixed point for F. It was proven in [Ue] and
[HP] that the basin of attraction A of 0, defined as A = {z∈ C

k+1 : F n(0) → 0 as
z → 0}, equals {z ∈ C

k+1 : G(z) < 0}. Also, A is a bounded domain. The equa-
tion G 	 F = d ·G implies that in A, −G increases along the orbits of F (i.e., it
is a Lyapunov function for F ). Although G is commonly referred to as the “dy-
namical Green function”, it seems that no proof has been given that it is indeed a
Green function in any sense used in complex analysis. In fact, G is the pluricom-
plex Green function of A with logarithmic pole at the point 0 (see Proposition 3).

If the restriction of the holomorphic map f : CP
k �→ CP

k to C
k ∼= [z1 :

z2 : · · · : 1] is a regular polynomial endomorphism of C
k (i.e., if f |Ck =

(f1, . . . , fk) : C
k �→ C

k is a polynomial map with deg fj = d, j = 1, . . . , k,
such that the homogeneous parts of fj of degree d have a common zero only at
the origin), then one obtains a continuous plurisubharmonic function by taking

g(z) = lim
n→∞

1

d n
log+‖f n(z)‖, z = (z1, . . . , zk)∈ C

k.
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The function g measures the rate of escape of a point in C
k to infinity under the

iteration of f. We have g(z) = G(z,1) and g(f(z)) = d · g(z) for z ∈ C
k. This

implies that g is a Lyapunov function for f. By [K2], g equals the pluricomplex
Green function with logarithmic pole at infinity for the compact setK = {z∈ C

k :
{f n(z) : n = 1, 2, . . . } is bounded}. Namely, one has

g(z) = sup{u(z) : u∈ PSH(Ck), u|K ≤ 0, u(z)− log‖z‖ = O(1) as z → ∞}.
The preceding examples have two features in common. First, the holomorphic

map in question has an invariant set (resp., a point or a hyperplane) that is attract-
ing. Second, the Green function with logarithmic pole at this attracting set gives
a Lyapunov function for the map. (Lyapunov functions play an important role in
dynamics, e.g., in the study of chain recurrent sets and attractor–repeller decom-
position of a manifold; for this purpose they were introduced by Conley [Co].) The
question then arises: Are there other examples like those just discussed? More
specifically, suppose a holomorphic endomorphism f of CP

k has an invariant at-
tracting hypersurface A. One can define the pluricomplex Green function with
logarithmic pole along A for the dual repeller K of A (for details, see Sections 2
and 3 and the references). Can one obtain a Lyapunov function for f out of this
Green function?

In this paper we give an answer to this question when k = 2. We assume that a
holomorphic map f : CP

2 �→ CP
2 has an invariant nonsingular quadratic curve

A contained in the critical set of f (A must then be attracting). Then we proceed
as follows: in Section 2 we collect some known facts about attracting sets, in par-
ticular those for holomorphic endomorphisms of CP

2. In Section 3 we review the
theory of pluricomplex Green functions with logarithmic poles in a Stein mani-
fold according to Zeriahi [Ze] and also introduce a parabolic potential on CP

2 \A
and examine how it behaves on f(CP

2 \A)\A. In Section 4 we first prove an es-
timate for dist(f(x), A) and then use this estimate to prove that the pluricomplex
Green function GK for the repeller K dual to A, with logarithmic pole along A,
is a PSH Lyapunov function for f in CP

2 \ (A ∪ f −1(A)). Our main result is the
following (cf. Theorem 5).

Main Theorem. GK is a continuous plurisubharmonic function satisfyingGK ≤
GK 	 f in CP

2 \ (A ∪ f −1(A)).

Finally, we show that construction of a Lyapunov function for f by applying to
GK a standard procedure (due to Conley and Franks; see [FM]) also yields GK.

Acknowledgments. I thank Laszlo Lempert and Shmuel Friedland for encour-
agement and many enlightening discussions on the subject, John Franks for sharing
his notes on the fundamental theorem of dynamical systems before they appeared
as part of [FM], and Mitsuhiro Shishikura for pointing out an error in a previ-
ous version of the paper. Many thanks are also due to the Mittag-Leffler Institute
(where the first draft of this paper was written) for their hospitality and support.
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2. Attracting and Repelling Sets in
Holomorphic Dynamics

First let us recall some general background in topological dynamics. Let (X, dist)
be a metric space and let f be a closed relation on X (i.e., a closed subset of
X ×X).

Definition 1 [Ak, discussion before Prop. 2.9]. A Lyapunov function for f is
a continuous function L : X �→ R such that f ⊂ {(x, y) : L(x) ≤ L(y)}. In par-
ticular, if f : X �→ X is a continuous map then a Lyapunov function for f is a
continuous real-valued function on X that is nondecreasing along the orbits of f.

Definition 2 [Ak, discussion before Prop. 1.8]. Let ε ≥ 0 and let x, y ∈X. An
ε-chain for f from x to y is a sequence {x1, . . . , xN} such that dist(xn+1, f(xn)) <

ε for n = 1, . . . , N − 1 (assuming f(xn) �= ∅).
We can associate the following definition with a closed relation f on X.

Definition 3 [Ak, formula (1.11)]. A pair (x, y) is in Cf ⊂ X ×X if and only
if, for every ε > 0, there is an ε-chain for f from x to y.

Definition 4 [Ak, formula (1.15)]. A point x ∈X is chain recurrent if (x, x)∈
Cf . The set of all such points will be denoted by C.

By [Ak, Prop. 1.8], Cf is a closed relation whenever f is. This implies that C is a
closed subset of X. Note also that Cf is transitive.

Let us now recall the notions of invariance.

Definition 5. LetX and f be as before. A subsetB ⊂ X is called f-invariant if
f(B) = B, and B is totally f-invariant if it is both f-invariant and f −1-invariant.

Let now A be a closed subset of X.

Definition 6 [FM, remarks after Def. 2.4]. A is an attracting set for f if there
is a closed neighborhoodW ofA such that f(W ) ⊂ intW and

⋂
n≥0 f

n(W ) = A.

Note that an attracting set for f is f-invariant.

Definition 7. A closed setK is a repeller for f if it is an attracting set for f −1.

The following proposition shows how one can associate attracting sets with
repellers.

Proposition 1 ([Ak, Prop. 3.9]; cf. [FM, Lemma 2.8]). For each attracting set
A+ for a closed relation f, there is a unique repellerA−, called the dual repeller,
such that A+ ∩ A− = ∅ and the chain recurrent set C ⊂ A+ ∪ A−. The repeller
A− is given by A− = (Cf )−1(C \ A+).
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Now we will give some examples of attracting sets for holomorphic maps
f : CP

2 �→ CP
2 of degree d ≥ 2. An attracting periodic orbit is an attracting

set for f. If f restricts to a regular polynomial endomorphism on C
2, then the

hyperplane at infinity is an attracting set. More generally, the following theorem
holds.

Theorem 1 [FS1, Lemma 7.9]. Suppose that a holomorphic map f : CP
2 �→

CP
2 of degree d maps a compact complex hypersurface A to itself and that A is

contained in the critical set of f. Then dist(f(x), A) = o(dist(x,A)).

In particular, the quadratic curve A = {[z : w : t] ∈ CP
2 : zw − t 2 = 0}

is an attracting set for a family of maps f : CP
2 �→ CP

2, f([z : w : t]) =
[λ(z+ 4w − 4t)3 : (1/λ)z3 : (z− 2t)3 + 6(z− 2t)(zw − t 2)], where λ ∈ C is
such that the map z �→ λ(1 − 2/z)3 is critically finite on CP

1. The curve A is
also an attracting set for a family hδ([z : w : t]) = [(z + 4w − 4t)2 : z2 :
z(z + 4w − 4t) + δ(t 2 − zw)] with small δ �= 0. (These examples come from
[FW, Sec. 5].) For other examples of holomorphic maps with invariant algebraic
varieties (not necessarily attracting ones), see [BD].

Note that, for a regular polynomial map, the hyperplane at infinity is a totally in-
variant set. (It is an attracting set whose dual repeller is the filled-in Julia set.) Note
also that a holomorphic endomorphism on CP

k (k ≥ 2) of degree d ≥ 2 cannot
have a totally invariant nonsingular hypersurface of degree ≥ 2 (by Théorème 1
and 2 in [CL]).

In Section 3 we will give an estimate for the growth of f near its attracting curve
A that is sharper than Theorem 1.

The following proposition concerns the f-invariant sets mentioned at the begin-
ning of Section 1.

Proposition 2 [FS2, Prop. 2.16]. Let f : CP
k �→ CP

k be a holomorphic map
of degree d ≥ 2 and let µ be the measure defined in Section 1. If A �= CP

k is an
attracting set for f, then A ∩ suppµ = ∅.
Corollary 1. Let f and A be as in Proposition 2. Then suppµ ⊂ K, where K
is the repeller dual to A.

Proof. The Borel measure µ is f-invariant, so suppµ ⊂ C (see e.g. [Ak, re-
mark preceding Prop. 8.8]). By Proposition 1, C ⊂ A ∪ K. By Proposition 2,
suppµ ∩ A = ∅ and hence suppµ ⊂ K.

3. Pluricomplex Green Function with Logarithmic Singularity

When introducing Lyapunov functions occuring in holomorphic dynamics, we
pointed out their relation with Green functions. For example, for a homogeneous
polynomial map F : C

k+1 �→ C
k+1 with F −1(0) = 0, the function −G (see Sec-

tion 1) is a plurisubharmonic Lyapunov function on the basin of attraction A for
0. Thus we have our next proposition.
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Proposition 3. G is the pluricomplex Green function of A with (logarithmic)
pole at 0.

Proof. The statement means that

G(z) = sup{u(z) : u∈ PSH(A), u ≤ 0, u(z)− log‖z‖ ≤ O(1) as z → 0}
(see [K1, remarks before Prop. 6.1.1]). Note that A is hyperconvex. Indeed, G is
a negative PSH exhaustion function on A, that is, {z ∈ A : G(z) < c} ⊂⊂ A
for all c < 0 (this follows easily from continuity of G and the characterization of
A). Théorème 4.3 in [De] (see also [K1, Thm. 6.3.6]) states that the pluricomplex
Green function of a hyperconvex bounded domain A ⊂ C

k+1 with pole at a point
a ∈ A (we take a = 0 here) is the unique solution of the following problem:

h∈ C(A \ {a}) ∩ PSH(A), (1)

h(z) → 0 as z → ∂A, (2)

h(z)− log‖z− a‖ = O(1) as z → a, (3)

(ddch)k+1 = (2π)k+1δa. (4)

We already mentioned that G satisfies (1). Continuity of G and A = {G <

0} imply (2). Part (3) was proven as Theorem 2.1(c) in [HP]. To prove (4), note
that each iterate F j has its only (isolated) zero at 0, and deg0 F

j = (dj )k+1,

so (ddc log‖F j‖)k+1 = (2πdj )k+1δ0 (cf. [BT1, beginning of Sec. 4). The con-
vergence (1/dj ) log‖F j‖ → G as j → ∞ is uniform on C

k+1 \ {0}, so by
[BT1, Prop. 2.3] we have ((1/dj )ddc log‖F j‖)k+1 → (ddcG)k+1 as j → ∞ on
C
k+1 \ {0}. Finally, there exists an r > 0 such that ‖F(z)‖ < (1/2)‖z‖ for ‖z‖ <

r. Hence also (1/dj+1) log‖F j+1(z)‖ < (1/dj ) log‖F j(z)‖ for ‖z‖ < r and j =
0,1, 2, . . . . By [BT2, Thm. 2.1] we have ((1/dj )ddc log‖F j‖)k+1 → (ddcG)k+1

in the ball {‖z‖ < r} as j → ∞. (See [K1] for a good overview of convergence
theorems for the Monge–Ampère operator.) Hence (ddcG)k+1 = (2π)k+1δ0.

Looking for new examples of plurisubharmonic Lyapunov functions, we will con-
sider Green functions with logarithmic pole along a hypersurface rather than at
an isolated point. Our arguments will resemble (and, in fact, will generalize) the
analysis in [K2] of the function g associated with a regular polynomial endomor-
phism of C

k. We will study holomorphic endomorphisms of CP
2 with an invariant

nonsingular quadratic curve A, so we let A = {[z : w : t] ∈ CP
2 : zw − t 2 = 0}.

In order to define the pluricomplex Green function with logarithmic pole along A
for a relatively compact set E ⊂ CP

2 \A, we will introduce a parabolic potential
on CP

2 \ A—that is, a continuous plurisubharmonic exhaustion function satis-
fying the homogeneous Monge–Ampère equation outside the set where it equals
−∞. We begin by stating the following proposition.

Proposition 4. CP
2 \ A is an affine algebraic variety.

Proof. CP
2 \A is a Zariski open subset of CP

2, so we need to show it is isomor-
phic to an algebraic subset of some C

N. Consider the mapping
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- : CP
2 � [z : w : t] �→ [φ1 : · · · : φ6] = [z2 : w2 : zw− t 2 : t 2 : zt : wt] ∈ CP

5

(this is the standard Veronese map, after a linear change of coordinates). By [Sh,
Ex. 4.4.2], -(CP

2) is an algebraic set in CP
5. It is straightforward to check that

-|(CP2\A) is 1-to-1. The quadricA is mapped onto the intersection of-(CP
2)with

the hyperplane φ3 = 0, so -(CP
2 \ A) can be regarded as a subset of C

5.

Proposition 4 can be obtained as a special case of Proposition 6.3.5 in [Fu]. In-
stead, we have given a proof that does not make extensive use of algebra and also
introduces a map that will be important throughout the remaining part of the paper.
Specifically, let - be as in Proposition 4 and let φ = [φ1 : φ2 : φ3] : CP

2 �→
CP

2. Observe that φ|(CP2\A) is a proper holomorphic map onto C
2. Therefore,

g = log‖φ‖ can be taken to be a parabolic potential in CP
2 \A (see [Ze, opening

discussion in Sec. 5]).
In a Stein manifoldX endowed with a parabolic potential g,we define the class

L of plurisubharmonic functions with minimal growth with respect to g as

L = {v ∈ PSH(X) : v ≤ cv + g+},
where cv is a constant dependent only on v and g+ = max{g, 0}.

We will say that a set E ⊂ X is L-polar if there is a function u∈ L such that u
is identically −∞ on E.

For a relatively compact set E ⊂ X, define the pluricomplex Green function
with logarithmic singularity as

GE(x) = sup{v(x) : v ∈ L, v|E ≤ 0}, x ∈X
(cf. [Ze, (3.1) and (3.2)]). (When we take X = CP

2 \ A with g as before, GE
will be referred to as the pluricomplex Green function forE with logarithmic pole
along A.)

For a locally bounded function u with values in [−∞,∞), we define its upper
semicontinuous regularization as

u∗(x) = lim
y→x

u(y)

(cf. [K1]).
We will use the following facts.

Theorem 2 [Ze, Lemma 3.10; K1, Prop. 5.2.1]. Let U ⊂ L be a nonempty fam-
ily and let v = sup{u : u ∈ U }. If the set {x : v(x) < +∞} is not L-polar, then
the family U is locally uniformly bounded above and v ∈ L.

Corollary 2. If E is not L-polar, then G∗
E ∈ L.

We now consider the following special class of L-regular subsets of X.

Definition 8 [Ze, Def. 3.13]. Let E be a compact subset of a Stein manifoldX
with a parabolic potential g, and let x0 ∈ E. We say that E is L-regular at x0 if
G∗
E(x0) = 0. We call E L-regular if it is L-regular at every point x0 ∈E.
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An important example of an L-regular set is given by the following theorem.

Theorem 3 [Ze, Thm. 3.6]. Consider the set BR = {x ∈X : g(x) ≤ R}. Then

GBR(x) = (g − R)+(x), x ∈X.
We also have the following.

Proposition 5. Let f : CP
2 �→ CP

2 be a holomorphic map with f(A) = A.

Then f −1(BR) is L-regular.

Proof. By [Ze, Prop. 3.14], L-regularity of a compact set E at x ∈ E is equiva-
lent to h∗

E,1(x) = 0, where1 ⊃ E is an open set in CP
2 \A and hE,1 = sup{u∈

PSH(1) : u ≤ 1, u|E ≤ 0}. Let R ′ > R and 1 = {g < R ′ }. By the second part
of Theorem 3.6 in [Ze], hBR,1 = (g − R)+/(R ′ − R) in 1. In analogy to [K1,
Prop. 4.5.14] it can be proven that hBR,1 	 f = hf −1(BR),f

−1(1). For x ∈ f −1(BR)

this gives 0 = hf −1(BR),f
−1(1)(x) = G∗

f −1(BR)
.

4. A Plurisubharmonic Lyapunov Function

From now on we assume that the variety A = {zw − t 2 = 0} is invariant under a
holomorphic map f : CP

2 �→ CP
2 and that A is contained in the critical set for

f. (It would be enough to assume that A is a nonsingular hypersurface in CP
2,

invariant under a holomorphic endomorphism f and contained in the critical set
of f, but no examples are available with A of degree at least 3.) We will need
the following estimate for dist(f(x), A), which is sharper than that provided by
Theorem 1.

Theorem 4. If f andA satisfy the previous assumptions, then for some constant
M > 0 it follows that dist(f(x), A) ≤ M(dist(x,A))2.

Proof. We will use the Fermi coordinates (x1, x2) around q ∈A defined in a neigh-
borhood V ⊂ A of q, relative to a local coordinate Y in V and a section u of the
restriction of the normal bundleN ofA to V. These are defined as follows (cf. [Gr,
(2.2) and (2.3)]):

x1(expN(su(q ′)) = Y(q ′) and x2(expN(su(q ′)) = s

for q ′ ∈ V, where expN : N �→ CP
2 maps a neighborhood of the zero section of

N diffeomorphically onto a (tubular) neighborhood U of A ⊂ CP
2 and where the

complex number s is small enough so that su(q ′)∈ exp−1
N (U ).

Now take p ′ ∈ U . Then p ′ = exp−1
N (p, tv) for some p ∈A, t ∈ C, and v ⊥ A at

p. The Taylor formula for f (in the normal coordinate t around p and the Fermi
coordinates around q = f(p) ∈ A) yields f(t) = f(0) + Df(0) · t + O(|t |2).
Note that Df(0) has rank 1, so the gradient of P(X, Y ) is orthogonal to tDf(0) at
q (where P(X, Y ) = 0 defines A near q). Using the Taylor formula for the local
coordinate Y centered at q, we can replace f(0)+Df(0) · t by q ′ − O(|t |2) with
q ′ = Y(t) = x1(f(p)), from which the estimate follows.
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By Theorem 1 (or Theorem 4), there is a neighborhoodW of A such that f(W ) ⊂
W. In fact, we can take W equal to the complement of some BR, as follows.

Proposition 6. There is an R > 0 such that W = {x : g(x) ≥ R} satisfies
f(W ) ⊂ intW.

Proof. Instead of the standard Fubini–Study distance in CP
2, we can work with

the pullback to CP
2 of the Fubini–Study distance in CP

5 by the Veronese em-
bedding -. In the chart φ6 = 1 we have dist(p, L∞) = O(|φ3|) for points p =
(φ1, . . . , φ5) near the hyperplane L∞ = {φ3 = 0} ([KoM, Thm. 3.10.2]; the ar-
gument for other coordinate charts is the same). Consider an R > 0 such that
the level set {g = R} ⊂ CP

2 is contained in some open neighborhood W ′ of A
with f(W ′) ⊂ W ′ (this is possible since g is a plurisubharmonic exhaustion). For
large values of R we have |φ3| = O(e−R) for points x ∈ {g = R}. Hence for
such x, dist(x,A) ≤ Me−R and dist(f(x), A) ≤ M ′e−2R (cf. Theorem 4). Also,
|φ3(f(x))| ≤ M ′′e−2R, which gives g(f(x)) > R.

Recall that, by [Ta], −log dist(·, A) is a plurisubharmonic exhaustion on CP
2 \A.

Hence the class L defined by means of the parabolic potential g can be also char-
acterized as {u ∈ PSH(CP

2 \ A) : u(x) ≤ c − log dist(x,A)} (this is how L is
defined in [BT3]). This characterization allows us to prove the following.

Proposition 7. If u∈ PSH(CP
2 \ A), then the formula

ũ(x) = 2 max{u(y) : y ∈ f −1(x)}
defines a plurisubharmonic function in CP

2 \ A. Moreover, if u is in L, so is ũ.

Proof. The first part is essentially the same as [K1, Prop. 2.9.29]. The invariance
f(A) = A ensures that the domain of ũ is indeed CP

2 \ A. For the second part,
recall that dist(f(x), A) ≤ M · dist(x,A)2 by Theorem 4 and so the growth con-
dition u(y) ≤ c − log dist(y,A) gives ũ∈ L, as in Theorem 5.3.1 of [K1].

Proposition 8. For E ⊂⊂ CP
2 \ A we have

2Gf −1(E) ≤ GE 	 f in CP
2 \ f −1(A).

Proof. Take a u∈ L such that u ≤ 0 on f −1(E). Then ũ∈ L satisfies ũ ≤ 0 onE.
Hence for any x /∈ f −1(A) we have 2u(x) ≤ ũ(f(x)) ≤ GE(f(x)), which proves
the proposition.

Let K be the repeller dual to the attracting curve A. By Corollary 1, K is not
pluripolar, since µ does not charge pluripolar sets.

Proposition 9. GK is continuous.

Proof. Since K is not pluripolar, by Theorem 2 we have G∗
K ≤ c + log+|φ|. Let

ε > 0 and Fε = {x : GK(x) ≤ ε}. Note that GK − ε ≤ GFε . Let R > 1 and k0 ∈
N be such that f −1(BR) ⊂ BR = {log|φ| ≤ R} and 2−k0(c + logR) ≤ ε. Then
for k ≥ k0 and x ∈ f −1(BR) we have
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GK(x) ≤ 2−k(G∗
K(f

k(x)) ≤ 2−k(c + log+|φ(f k(x))|) ≤ 2−k0(c + logR) ≤ ε.

Hence f −k(BR) ⊂ Fε for k ≥ k0. Take now a sequence εj ↘ 0 (j = 1, 2, . . . ).
Then for every j there is a kj such that f k(BR) ⊂ Fεj (k ≥ kj ). Moreover,
since K = ⋂

k≥0 f
−k(BR), its Green function GK satisfies GK − εj ≤ GFεj

≤
Gf −k(BR) ≤ GK; that is, the functions Gf −k(BR) tend uniformly to GK in CP

2 \ A.
Because the sets f −k(BR) are L-regular, their pluricomplex Green functions are
continuous [Ze, Thm. 4.2.3] and so is GK.

Combining Propositions 8 and 9 yields our main result, as follows.

Theorem 5. GK is a Lyapunov function for f in CP
2 \ (A ∪ f −1(A)).

In topological dynamics, a standard procedure is used to construct a Lyapunov
function for a continuous map on a compact metric space (it is a crucial step in the
proof of the so-called fundamental theorem of dynamical systems; see [FM]). We
will now show that GK is obtained as a result of a similar procedure in CP

2 \ A.
Proposition 10. Let v0 = GK, let vn(x) = maxy∈f −n(x) v0(x) for x ∈ CP

2 \ A
and n ≥ 1, and let v = supn≥0 vn. Then v = GK.

Proof. We only need to show that v ≤ GK. By Theorem 2,GK ∈ L and so, by the
same argument as in Proposition 7 (with Theorem 1 instead of Theorem 4 used
to prove the distance estimates), all functions vn are in the class L. Since K is
f −1-invariant and GK = 0 on K, we have vn = 0 on K for every n ≥ 0. This
gives v ≤ GK.

Remark. It is unknown at the moment whether GK is also a Lyapunov function
for the relation Cf or whether it is a maximal function among plurisubharmonic
Lyapunov functions for f.
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