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A Uniqueness Property for H∞ on
Coverings of Projective Manifolds

Alexander Brudnyi

1. Formulation of the Result

1.1

Let M be a complex projective manifold of dimension n ≥ 2 with a Kähler form
ω, and let L be a positive line bundle on M with canonical connection ∇ and
curvature � in a hermitian metric h. Let C be the common zero locus of holo-
morphic sections s1, . . . , sk, k < n, of L over M, which (in a trivialization) can
be completed to a set of local coordinates at each point C. Then C is a (possibly
disconnected) k-dimensional submanifold of M, which will be referred to as an
L-submanifold of M. Let π : YG → M be a regular covering of M with a trans-
formation group G, and let XG = π−1(C). We denote the pullbacks to YG of ω
and � by the same letters.

Example 1.1. If L is very ample, then it is the pullback of the hyperplane bun-
dle by an embedding of M into some projective space CP

N. Further, zero loci of
holomorphic sections ofL are hyperplane sections ofM. By Bertini’s theorem, the
generic linear subspace of codimension n−k (k < n) intersects M transversely in
a smooth manifold C of dimension k, and by the Lefschetz hyperplane theorem,
C is connected and the induced homomorphism π1(C) → π1(M) of fundamental
groups is surjective. Hence, in this case XG ⊂ YG is a connected submanifold.

Let dist(·, ·) be the distance on YG induced by ω and let δ(x) := dist(x, o) for
some fixed o ∈ YG. By a result of Napier [N], there is a smooth function τ on YG
such that:

(A) c1δ ≤ τ ≤ c2δ + c3 for some c1, c2, c3 > 0;
(B) dτ is bounded; and
(C) i∂∂̄τ is bounded.

Furthermore, by (A) and since the curvature of YG is bounded below, there is c > 0
such that e−cτ is integrable on YG. Then e−cτ is also integrable on XG. We set

A := cc2

c1
. (1.1)
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Let L be a positive line bundle on M with curvature � satisfying (in the sense of
Nakano)

� > i∂∂̄(Aτ). (1.2)

Consider the covering XG := π−1(C) ⊂ YG of an L-submanifold C ⊂ M. Let
H∞(YG) and H∞(XG) be the Banach spaces of bounded holomorphic functions
on YG and XG in the corresponding supremum norms.

Theorem 1.2. The map ρ : H∞(YG) → H∞(XG), f �→ f |XG
, is an isometry.

This result answers a question posed in the introduction to [L].

1.2

The main application of Theorem 1.2 is in the area of the corona problem. Let X
be a complex manifold and let H∞(X) be the Banach algebra (in the supremum
norm) of bounded holomorphic functions on X. Then the maximal ideal space
M = M(H∞(X)) is the set of all nontrivial linear multiplicative functionals on
H∞(X). The norm of any φ ∈ M is ≤ 1 and so M is embedded into the unit ball
of the dual space (H∞(X))∗. Thus M is a compact Hausdorff space in the weak-∗
topology induced by (H∞(X))∗ (i.e., the Gelfand topology). Furthermore, there
is a continuous map i : X → M taking x ∈X to the evaluation homomorphism
f �→ f(x). This map is an embedding ifH∞(X) separates points ofX. The com-
plement to the closure of i(X) in M is called the corona. The corona problem is to
determine those X for which the corona is empty. For example, according to Car-
leson’s celebrated corona theorem [C], this is true if X is the open unit disk D ⊂
C. Also there are nonplanar Riemann surfaces for which the corona is nontrivial
(see e.g. [BD; G; JM] and references therein). The general problem for planar do-
mains is still open, as is the problem in several variables for the ball and polydisk.
In [L, Thm. 2.1] Lárusson discovered simplest examples of Riemann surfaces with
big corona. Namely, he proved that if YG ⊂ C

n is a bounded domain and if XG ⊂
YG is a Riemann surface satisfying the assumptions of Theorem 1.2, then the natu-
ral map i : XG ↪→ M(H∞(XG)) extends to an embedding YG ↪→ M(H∞(XG)).

The next statement extends his result and produces many examples of nonplanar
Riemann surfaces with big corona.

Corollary 1.3. Under the assumptions of Theorem 1.2, the transpose map
ρ∗ : M(H∞(XG)) → M(H∞(YG)), φ �→ φ � ρ, is a homeomorphism.

This follows from the fact that ρ : H∞(YG) → H∞(XG) is an isometry of Banach
algebras.

Example 1.4. (1) (The references for this example are in [L, Sec. 4].) Let M be
a projective manifold covered by the unit ball B ⊂ C

n with a positive line bundle
L of curvature �, and let X ⊂ B be the preimage of an L-submanifold C ⊂ M.

Let δ be the distance from the origin in the Bergman metric of B. By ω we denote
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the Kähler form of the Bergman metric. It was shown in [L, Sec. 4] that there is
a nonnegative function τ on B such that i∂∂̄τ = ω, dτ is bounded, and√

n + 1δ ≤ τ ≤ √
n + 1δ + (n + 1) log 2.

Moreover, ∫
B

e−cτωn < ∞ if and only if c >
2n

n + 1
.

Applying Theorem 1.2
(
with c2 = c1 = √

n + 1
)
, we obtain that ρ : H∞(B) →

H∞(X) is an isometry if � > 2n
n+1ω. This holds for instance if L = K⊗m with

m ≥ 2, where K is the canonical bundle of M.

(2) Let S be a compact complex curve of genus g ≥ 2 and let CT be a one-
dimensional complex torus. Consider an L-curve C in M := S × CT with a very
ample L satisfying the assumptions of Theorem 1.2. Let π : D × C → M be
the universal covering. Then Theorem 1.2 is valid for the connected curve X :=
π−1(C) ⊂ D × C. This implies that any f ∈ H∞(X) is constant on each Sy :=
({y} × C)∩X, y ∈ D. Note that Sy is the union of the orbits of some ziy ∈X, i =
1, . . . , k, under the natural action of the group π1(CT) (∼= Z ⊕ Z) on D × C.

2. Proof of Theorem 1.2

2.1

As in Section 1, let XG ⊂ YG be the covering of an L-submanifold C ⊂ M.

Consider a function φ : YG → R such that dφ is bounded; that is,

|φ(x) − φ(y)| ≤ a · dist(x, y) for some a > 0.

By Oφ(XG) we denote the vector space of holomorphic functions on XG such that
|f |2e−φ is integrable onXG with respect to the volume form of the induced Kähler
metric on XG. This is a Hilbert space with respect to the inner product

(f, g) �→
∫
XG

fḡe−φωk.

We define Oφ(YG) similarly, and by | · |φ,XG
and | · |φ,YG we denote the correspond-

ing norms. It was shown in [L] that the restriction determines a continuous linear
map

ρ : Oφ(YG) → Oφ(XG), f �→ f |XG
.

The following remarkable result was proved by Lárusson [L, Thm. 1.2].

Theorem 2.1. Suppose
� ≥ i∂∂̄φ + εω

for some ε > 0. Then ρ is an isomorphism.

Now assume that the curvature � of an L-submanifold C ⊂ M satisfies (1.2).
Then Lárusson’s theorem holds for coverings XG := π−1(C) ⊂ YG of C with
φ := Aτ and with φ := cτ (because A ≥ c).
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2.2

We fix a fundamental compact K of the action of G on YG, that is, YG =⋃
g∈G g(K). Consider finite covers U = (Ui) and V = (Vj ) of K by compact

coordinate polydisks such that each Vj belongs to the interior of some Uij .

Lemma 2.2. Let f be a holomorphic function defined in an open neighborhood
O of

⋃
i Ui. Assume that ∫

O

|f |2ωn = B < ∞.

Then there is a constant b > 0 (depending on U and V only) such that

max
K

|f | ≤ b
√
B. (2.1)

The proof of the lemma is a consequence of the following facts:

(a) after the identification of Uij with the closed unit polydisk D and of Vj with a
compact subset Dj ⊂ D, the volume form ωn restricted to each Uij is equiv-
alent to the Euclidean volume form do := dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n;

(b) the Bergman inequality (see [GR, Chap. 6, Thm. 1.3])

max
Dj

|f | ≤
(√

n
)n

(√
πd

)n ·
(∫

D

|f |2 do
)1/2

,

where d is the Euclidean distance from Dj to the boundary of D.

We leave the details to the reader.

Now recall that dist(·, ·) is the distance on YG in the metric induced by ω and that
δ(x) := dist(x, o). Since ω is invariant with respect to the action of G, we also
have dist(g(x), g(y)) = dist(x, y) for any g ∈G. From inequalities (A) for τ and
the triangle inequality for the distance, we obtain

τ(g(x)) ≥ c1 dist(g(x), o) ≥ c1[dist(g(x), g(o)) − dist(g(o), o)]

= c1[dist(x, o) − dist(g(o), o)]

≥ (c1/c2)τ (x) − (c1c3/c2) − c1δ(g(o)). (2.2)
Further, if x ∈K then

a1 ≤ τ(x) ≤ a2 for some a1, a2 > 0. (2.3)

By | · |∞,XG
and | · |∞,YG we shall denote the corresponding H∞-norms. Let f ∈

H∞(XG). Then f ∈ OAτ(XG) ∩ Ocτ(XG), and there exists an a3 > 0 such that

max{|f |Aτ,XG
, |f |cτ,XG

} ≤ a3 sup
XG

|f | := a3|f |∞,XG
.

(Note that any expression of the form max{|f |Aτ, • , |f |cτ, •} is in fact equal to
|f |cτ, • .) By Theorem 2.1, there is a unique f̃ ∈ OAτ(YG) ∩ Ocτ(YG) such that
f̃ |XG

= f and

max{|f̃ |Aτ,YG, |f̃ |cτ,YG} ≤ a4 max{|f |Aτ,XG
, |f |cτ,XG

} for some a4 > 0.
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Combining these inequalities with (2.3) and (2.1) yields

max
K

|f̃ | ≤ a5|f |∞,XG
,

with some a5 > 0 depending on XG, YG only. Now, for a fixed g ∈ G consider
(g∗f )(z) := f(g(z)). As before, there exists a unique function f̃g ∈ OAτ(YG) ∩
Ocτ(YG), f̃g|XG

= g∗f, such that

max
K

|f̃g| ≤ a5|f |∞,XG
.

However, according to (2.2) and (1.1), the function (g∗f̃ )(z) := f̃ (g(z)) belongs
to OAτ(YG) and (g∗f̃ − f̃g)|XG

≡ 0. Thus by Theorem 2.1 we have f̃g = g∗f̃ .
SinceK is the fundamental compact, the inequality just displayed implies for each
f̃g that

|f̃ |∞,YG ≤ a5|f |∞,XG
. (2.4)

We will now prove that a5 = 1, which gives the required statement. Indeed, the
same arguments as before show that, for any integer n ≥ 1, the function (f̃ )n is
the unique extension of f n satisfying (2.4):

|(f̃ )n|∞,YG ≤ a5|f n|∞,XG
.

Thus
|f̃ |∞,YG ≤ lim

n→∞(a5)
1/n|f |∞,XG

= |f |∞,XG
.

The proof of the theorem is complete.
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