Michigan Math. J. 51 (2003)

A Uniqueness Property for H> on
Coverings of Projective Manifolds

ALEXANDER BRUDNYI

1. Formulation of the Result

11

Let M be a complex projective manifold of dimension n > 2 with a Kéhler form
w, and let L be a positive line bundle on M with canonical connection V and
curvature ® in a hermitian metric 4. Let C be the common zero locus of holo-
morphic sections sy, ..., Sk, k < n, of L over M, which (in a trivialization) can
be completed to a set of local coordinates at each point C. Then C is a (possibly
disconnected) k-dimensional submanifold of M, which will be referred to as an
L-submanifold of M. Let m: Yo — M be a regular covering of M with a trans-
formation group G, and let X = 7 ~'(C). We denote the pullbacks to Y; of w
and ® by the same letters.

ExampLE 1.1. If L is very ample, then it is the pullback of the hyperplane bun-
dle by an embedding of M into some projective space CP". Further, zero loci of
holomorphic sections of L are hyperplane sections of M. By Bertini’s theorem, the
generic linear subspace of codimension n — k (k < n) intersects M transversely in
a smooth manifold C of dimension k, and by the Lefschetz hyperplane theorem,
C is connected and the induced homomorphism 71(C) — m1(M) of fundamental
groups is surjective. Hence, in this case X C Y is a connected submanifold.

Let dist(-, -) be the distance on Y induced by w and let 6(x) := dist(x, o) for
some fixed o € Y. By a result of Napier [N], there is a smooth function 7 on Yg
such that:

(A) ¢18 <t < 28 + c; for some ¢y, ¢, ¢3 > 0;
(B) dt_is bounded; and
(C) i0dt is bounded.

Furthermore, by (A) and since the curvature of Y;; is bounded below, there is ¢ > 0
such that e™“7 is integrable on Y. Then e™“" is also integrable on X ;. We set

A= (1.1)
c1
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Let L be a positive line bundle on M with curvature ® satisfying (in the sense of
Nakano) .
® > i00(Ar). 1.2)

Consider the covering X := m~'(C) C Y of an L-submanifold C C M. Let
H*(Ys) and H*°(X¢) be the Banach spaces of bounded holomorphic functions
on Y; and X in the corresponding supremum norms.

THEOREM 1.2.  The map p: H*(Yg) — H®(X¢), f — flx¢, is an isometry.

This result answers a question posed in the introduction to [L].

12

The main application of Theorem 1.2 is in the area of the corona problem. Let X
be a complex manifold and let H*°(X) be the Banach algebra (in the supremum
norm) of bounded holomorphic functions on X. Then the maximal ideal space
M = M(H®*(X)) is the set of all nontrivial linear multiplicative functionals on
H®°(X). The norm of any ¢ € M is < 1 and so M is embedded into the unit ball
of the dual space (H*°(X))*. Thus M is a compact Hausdorff space in the weak-x*
topology induced by (H*°(X))* (i.e., the Gelfand topology). Furthermore, there
is a continuous map i : X — M taking x € X to the evaluation homomorphism
f — f(x). This map is an embedding if H*°(X) separates points of X. The com-
plement to the closure of i( X ) in M is called the corona. The corona problem is to
determine those X for which the corona is empty. For example, according to Car-
leson’s celebrated corona theorem [C], this is true if X is the open unit disk D C
C. Also there are nonplanar Riemann surfaces for which the corona is nontrivial
(see e.g. [BD; G; JM] and references therein). The general problem for planar do-
mains is still open, as is the problem in several variables for the ball and polydisk.
In [L, Thm. 2.1] Larusson discovered simplest examples of Riemann surfaces with
big corona. Namely, he proved that if Y¢ C C”" is a bounded domain and if X C
Y is a Riemann surface satisfying the assumptions of Theorem 1.2, then the natu-
ralmapi: Xg — M(H* (X)) extends to an embedding Yo — M(H*(Xg)).
The next statement extends his result and produces many examples of nonplanar
Riemann surfaces with big corona.

COROLLARY 1.3.  Under the assumptions of Theorem 1.2, the transpose map
ot M(H®(Xg)) > M(H*®(Ys)), ¢ — ¢ o p, is a homeomorphism.

This follows from the fact that p: H*°(Yg) — H*(X¢) is an isometry of Banach
algebras.

ExaMmpLE 1.4. (1) (The references for this example are in [L, Sec. 4].) Let M be
a projective manifold covered by the unit ball B C C” with a positive line bundle
L of curvature ®, and let X C B be the preimage of an L-submanifold C C M.
Let § be the distance from the origin in the Bergman metric of B. By w we denote
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the Kihler form of the Bergman metric. It_was shown in [L, Sec. 4] that there is
a nonnegative function t on B such that idd7 = w, dr is bounded, and

vi+ls<t<vn+15+ (n+1)log?2.

Moreover,
- . . 2n
/e “w" <oo ifandonlyif ¢ > ——.

B n + l
Applying Theorem 1.2 (with cr=c=+n+ 1), we obtain that p: H*(B) —
H®(X) is an isometry if © > nz—fla) This holds for instance if L = K®" with
m > 2, where K is the canonical bundle of M.

(2) Let S be a compact complex curve of genus g > 2 and let CT be a one-
dimensional complex torus. Consider an L-curve C in M := § x CT with a very
ample L satisfying the assumptions of Theorem 1.2. Let 7: D x C — M be
the universal covering. Then Theorem 1.2 is valid for the connected curve X :=
77(C) C D x C. This implies that any f € H>(X) is constant on each S, =
({y} xC)N X, y €. Note that S, is the union of the orbits of some z;, € X, i =
1, ..., k, under the natural action of the group 7(CT) (EZ & Z) on D x C.

2. Proof of Theorem 1.2

2.1

As in Section 1, let Xg C Y be the covering of an L-submanifold C C M.
Consider a function ¢: Y5 — R such that d¢ is bounded; that is,

|¢(x) —@d(y)| < a-dist(x,y) forsome a > 0.

By O4(X ) we denote the vector space of holomorphic functions on X such that
| f1?e? is integrable on X with respect to the volume form of the induced Kihler
metric on X¢. This is a Hilbert space with respect to the inner product

(L) | fee ot
Xg
We define Oy (Y ) similarly, and by |- |4 x, and |- |4, y; we denote the correspond-
ing norms. It was shown in [L] that the restriction determines a continuous linear
map
p: Op(Yg) > Op(Xg), [+ flxg-

The following remarkable result was proved by Larusson [L, Thm. 1.2].

THEOREM 2.1.  Suppose _
® > iddp + cw

for some ¢ > 0. Then p is an isomorphism.
Now assume that the curvature ® of an L-submanifold C C M satisfies (1.2).

Then Larusson’s theorem holds for coverings X := n~'(C) C Y5 of C with
¢ := At and with ¢ := ct (because A > ¢).
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2.2

We fix a fundamental compact K of the action of G on Y, that is, Y5 =
UgeGg(K). Consider finite covers i = (U;) and V = (V;) of K by compact
coordinate polydisks such that each V; belongs to the interior of some U, .

LEMMA 2.2.  Let f be a holomorphic function defined in an open neighborhood
O of |, U;. Assume that

/|f|2w”=B<oo.
o
Then there is a constant b > 0 (depending on U and V only) such that
max|f] < b/B. 2.1

The proof of the lemma is a consequence of the following facts:

(a) after the identification of U;; with the closed unit polydisk D and of V; with a
compact subset D; C D, the volume form " restricted to each Uj; is equiv-
alent to the Euclidean volume form do :=dzy Adzy A --- ANdz, ANdzZ,;

(b) the Bergman inequality (see [GR, Chap. 6, Thm. 1.3])

max| f| < ((f_jd)) : ( /D |f|2d0>1/2,

where d is the Euclidean distance from D; to the boundary of D.

We leave the details to the reader.

Now recall that dist(-, -) is the distance on Y in the metric induced by w and that
8(x) := dist(x, 0). Since w is invariant with respect to the action of G, we also
have dist(g(x), g(y)) = dist(x, y) for any g € G. From inequalities (A) for T and
the triangle inequality for the distance, we obtain

T(g(x)) = c1dist(g(x), 0) > ci[dist(g(x), g(0)) — dist(g(0), 0)]
= cy[dist(x, o) — dist(g(0), 0)]
(c1/c2)T(x) — (c1c3/c2) — €18(g(0)). (2.2)

v

Further, if x € K then
a; < 1(x) <a, forsome ai,a, > 0. 2.3)
By | |00, x; and ||y, We shall denote the corresponding H *°-norms. Let f €

H*(Xg). Then f € Os:(Xg) N O (Xg), and there exists an a3 > 0 such that

max{'f'AI,XG’ |f|C'L’,X(;} S as Sup|f| = a3|f|OO,XG'
X6
(Note that any expression of the form max{|f|4c,., |flc,.} is in fact equal to
| fler,..) By Theorem 2.1, there is a unique f € Os(Yg) N O (Ys) such that
flxg = f and

max{| flac,vs, | fler, v} < aamax{| flac, x5, | fler,xg} forsome ay > 0.
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Combining these inequalities with (2.3) and (2.1) yields
max| f| < as| floo.x6+

with some as > 0 depending on X¢, Y5 only. Now, for a fixed g € G consider
(8*f)(2) := f(g(2)). As before, there exists a unique function f, € O (Y5) N
Oc:(Y6), felxs = &*f, such that

max| /| < as| 1o, xo-

However, according to (2.2) and (1.1), the function (g*f)(z) := f(g(z)) belongs
to O (Y) and (g*f — .fg)|X(; = 0. Thus by Theorem 2.1 we have fg = g*f.
Since K is the fundamental compact, the inequality just displayed implies for each
f; that )

| floo,vg = aslfloo, xg- 2.4
We will now prove that as = 1, which gives the required statement. Indeed, the

same arguments as before show that, for any integer n > 1, the function ( f )" is
the unique extension of f”" satisfying (2.4):

1) ooy < aslf"loo.xq-
Thus _ |
| Floove < 1Hm (as)""| floo,xe = | floo, xg-
n—0o0

The proof of the theorem is complete.
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