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1. Introduction

Let n be a positive integer, and let C be a curve in Gn
m that we suppose (for con-

venience) is absolutely irreducible. When H is a fixed algebraic subgroup of Gn
m,

the intersection of C with H by itself is relatively easy to determine. In [BMZ]
we began to study in this context the union of all algebraic subgroups restricted
only by dimension. In particular: if n ≥ 2, and if C is defined over the field Q̄
of all algebraic numbers and satisfies a fairly natural extra hypothesis, then it was
shown (Thm. 2, p. 1121) that the intersection of C with the union Hn−2 of all H

of dimension at most n − 2 is a finite (possibly empty) set.
The main purpose of the present paper is to generalize this result with regard to

the field of definition. More precisely, we shall prove the following.

Theorem. Let K be a field of characteristic zero, and for n ≥ 2 let C be an
irreducible curve in Gn

m that is defined over the algebraic closure K̄ and is not
contained in any translate of an algebraic subgroup of dimension at most n − 1.

Then the intersection of C with the union Hn−2 of all algebraic subgroups of di-
mension at most n − 2 is a finite ( possibly empty) set.

The restriction to characteristic zero is necessary here. For example, if C is any
curve defined over the finite field K = Fp, then the set C(K̄) is infinite; on the
other hand, any nonzero element of K̄ = F̄p is a root of unity and so C(K̄) lies in
the union H0 of all algebraic subgroups of dimension 0.

We recover Theorem 2 of [BMZ] by taking K as the field Q of all rational num-
bers in our Theorem. Our generalization enables us to deduce consequences, how-
ever, over the complex field C; thus, if z1, . . . , zn are any distinct complex numbers
then we see that there are only finitely many complex numbers z �= z1, . . . , zn for
which there are two relations,

(z − z1)
a1 · · · (z − zn)

an = (z − z1)
b1 · · · (z − zn)

bn = 1,

where (a1, . . . , an) and (b1, . . . , bn) in Zn are linearly independent over Q. This
follows immediately from our Theorem by considering the line C parameterized
by z − z1, . . . , z − zn as z varies.
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We also prove two further results—both of some independent interest—that play
a key role in the proof of our Theorem. They concern the union Hn−1 of all al-
gebraic subgroups of dimension at most n − 1. Now C ∩ Hn−1 is always infinite;
this fact was not explicitly proved in [BMZ], but a verification is quite easy. We
can recover finiteness in two ways, firstly by considering heights and secondly by
considering degrees.

The first situation was treated in [BMZ] over Q̄, but again we need to general-
ize the field of definition. Because the results involve heights, we shall work (as
Lang [L] does) in the context of “fields with a proper set of absolute values satisfy-
ing a product formula”. Namely, we take (as in [L, pp. 18, 19]) a field F equipped
with a set of proper inequivalent valuations | · |v such that, for each ξ �= 0 in F,

only finitely many of these satisfy |ξ|v �= 1 and then
∏|ξ|v = 1. In this situa-

tion, heights can be defined on the algebraic closure F̄ or F̄ n or on the projective
space Pn(F̄ ); see [L, p. 52]. Examples include Q and a rational function field k(t)

in one variable over any field k. However, if F has characteristic zero, then by
definition a proper valuation restricted to Q must be either trivial or the standard
infinite valuation | · |∞ or a standard p-adic valuation | · |p. Since we have ruled out
multiplicities in the product formula, a number field �= Q does not satisfy these
conditions.

Our first result on C ∩ Hn−1 can now be stated as follows.

Proposition 1. Let F be a field with a proper set of valuations satisfying the
product formula. For n ≥ 1, let C be an irreducible curve in Gn

m defined over F̄

that is not contained in any translate of an algebraic subgroup of dimension at
most n − 1. Then C ∩ Hn−1 is a set of bounded height in C(F̄ ) ⊂ F̄ n.

We recover Theorem1of [BMZ, p.1120] by taking F = Q. In fact, this result refers
to different heights defined for P = (ξ1, . . . , ξn) by h(P ) = h(ξ1) + · · · + h(ξn),

but it is well known that the particular choice of height is irrelevant in such matters.
The second finiteness result on C ∩ Hn−1 is a bit easier to state. For P as before,

we write K(P ) = K(ξ1, . . . , ξn).

Proposition 2. Let K be a field of characteristic zero that is finitely generated
over Q. For n ≥ 1, let C be an irreducible curve in Gn

m defined over K̄ that is not
contained in any translate of an algebraic subgroup of dimension at most n − 1.

Then, for each D ≥ 1, there are at most finitely many points P in C ∩ Hn−1 with
degree [K(P ) : K] ≤ D.

This result becomes false without the hypothesis of finite generation; for exam-
ple, if K is algebraically closed then [K(P ) : K] = 1 for all P in the infinite set
C ∩ Hn−1.

Each of the three results just stated raises problems from the quantitative stand-
point. In the Theorem it would be interesting to estimate the cardinality of the
finite set in an efficient way; for example, the finite set corresponding to the line
parameterized by z − z1, . . . , z − zn should presumably have cardinality bounded
by a function depending only on n. If n = 2 then this is trivial (two different unit



Finiteness Results for Multiplicatively Dependent Points 453

circles can intersect in at most two points), but for n ≥ 3 the problem appears to
be very difficult owing to the use of arithmetic tools in the present proof.

In Proposition 1 we can ask for explicit bounds on the height of the set C∩Hn−1.

It is easy to see that these bounds must involve some sort of height h(C) of C and,
furthermore, in a dependence that is at least linear if we work logarithmically. It is
probably not hard to deduce upper bounds of such a shape, but we do not investi-
gate the problem here. A first result in this direction is contained in the calculations
in [BMZ, pp. 1123–1127].

In Proposition 2, we can ask for explicit bounds on the cardinality of the finite
set in terms of D; in fact, some lower and upper bounds can be obtained that are
nearly asymptotically equal as D → ∞. We will develop this counting aspect in
another place.

Finally, let us say a few words about the proofs. Our Theorem for K = Q was
established in [BMZ] by using (among other things) the Amoroso–David theorem
[AD] on lower bounds for the product of the heights of r multiplicatively indepen-
dent elements of Q̄. But we cannot use an analogous method for a field like K =
Q(t), even though this is a field with a product formula and the heights extend to
Q(t). The reason is that the Amoroso–David theorem fails if r ≥ 2. For exam-
ple, the elements t1/N and t1/N − 1 are multiplicatively independent yet both have
equally small height as N → ∞, in view of the nonexistence of Archimedean
valuations.

Instead, we use a specialization argument to reduce to the case K = Q. To
control the possible collapsing under specialization we appeal to Mason’s abc the-
orem. Eventually we see that points in C ∩ Hn−2 must have bounded degree over
K, and we conclude using Proposition 2.

This Proposition 2 for K = Q is an immediate consequence of Proposition 1
together with Northcott’s theorem on finiteness. But again for K = Q(t) this clas-
sical result breaks down. For example, the elements t +N (N = 1, 2, . . . ) all have
bounded height and degree; so extra arguments are again required. We argue by
induction on the transcendence degree of K, using at each step a lower bound for
heights analogous to Dobrowolski’s theorem, which is essentially the case r = 1
of the Amoroso–David theorem.

Finally, Proposition 1 can be proved with comparative ease by using either of
the two methods of [BMZ] (subject to our remarks about Schlickewei’s lemma
in Section 2). Both of these methods seem to appeal to fairly delicate results on
heights due to Siegel and to Néron. But we give another method that avoids such
results; this third method is probably the easiest to adapt for explicit upper bounds.

2. Fields with a Proper Set of Valuations
Satisfying a Product Formula

We formally state the announced definitions related to fields with a product for-
mula and then prove certain properties of them.

Here we develop some properties of such fields F. Write MF for the set of
valuations.
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We define the zero height group Z = ZF := {x ∈ F ∗ : |x|v = 1 ∀v ∈ MF }
to be the subgroup of F ∗ made up of elements with trivial valuation everywhere.
(When all the valuations in F are ultrametric, the set Z ∪ {0} is a subfield of F ∗.)

We also define a Weil (logarithmic) height on F ∗ by setting

h(ξ) =
∑

v∈MF

max(0, log|ξ|v).

Plainly, h(ζξ) = h(ξ) for ζ ∈ Z and ξ ∈ F ∗. Also, we have the usual properties
of the height expressed by h(ξη) ≤ h(ξ) + h(η) and h(ξm) = |m|h(ξ) (which
follows from the product formula for m < 0).

We may also define the projective height of a point P = (a0 : a1 : · · · : an) ∈
P n(F ) by setting, as usual,

h(P ) =
∑

v∈MF

max
0≤i≤n

(log|ai |v).

The product formula shows that this is independent of the projective coordinates
for P.

The height also may be canonically extended to the algebraic closure F̄ of F

as in [L]. Namely, if ξ ∈ F̄ ∗ lies in an extension K of F of degree d, then every
valuation v extends to a finite number of valuations w|v on K, and

h(ξ) = d−1
∑

v∈MK

∑
w|v

max(0, ew log|ξ|w)

for appropriate multiplicities ew (then a product formula with these multiplicities
holds in K).

We now have a first lemma on the behavior of the heights in finitely generated
subgroups. In the sequel we let F be any field with a proper set of absolute values
satisfying a product formula.

Lemma 2.1. Given r ≥ 1 there is c(r) > 0 with the following property. Let
ξ1, . . . , ξn be n ≥ r elements in F̄ ∗ generating a subgroup % such that %/(Z ∩ %)

has rank r. Then there exist g1, . . . , gr ∈ %, ζ1, . . . , ζn ∈ Z, and aij ∈ Z with

ξi = ζig
ai1
1 · · · gair

r , i = 1, . . . , n,

and √√√√ n∑
i=1

h(ξi)2 ≥ c(r)

r∑
j=1

(
max

1≤i≤n
|aij |

)
h(gj ).

Proof. We first recall from [C] a few useful results from the geometry of numbers.
Let ( ⊂ Rr be a lattice (i.e., for us, a discrete subgroup of rank r). We denote by
d(() the absolute value of the determinant whose row vectors are any basis for (

(this being well-defined). From [C, Thm. V, p. 218], there are linearly independent
vectors b1, . . . , br ∈ ( such that
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r∏
i=1

|bi | ≤ c1(r)d((), (2.1)

where | · | denotes the Euclidean length and c1(r) is a positive number depending
only on the dimension r.

By [C, Lemma 8, p. 135] we may find a basis a1, . . . , ar of ( such that |aj | ≤
j |bj | for j = 1, . . . , r. Using (2.1), it thus follows that

|det(aj )| = d(() ≥ c−1
1 (r)

r∏
j=1

|bj | ≥ c2(r)

r∏
j=1

|aj |, (2.2)

where c2(r) := (r! c1(r))
−1 is positive and depends only on r.

Fix now s ∈ {1, . . . , r} and write as = a∗
s +cs , where cs lies in the space spanned

over R by the aj (j �= s) and where a∗
s is orthogonal to that space. Clearly, det(aj )

equals the determinant obtained upon replacing as with a∗
s and leaving the other

vectors unchanged. In particular, by the Hadamard inequality we obtain

|det(aj )| ≤ |a∗
s|

∏
j �=s

|aj |,

which, together with (2.2), implies that

|a∗
s| ≥ c2(r)|as |, s = 1, . . . , r. (2.3)

With this in mind, we proceed to prove our lemma. We choose any r elements
γ1, . . . , γr coming from a basis of %/(Z ∩ %) and write

ξi = ηiγ
mi1
1 · · · γ mir

r , i = 1, . . . , n, (2.4)

with integers mij and elements ηi ∈ Z. For j = 1, . . . , r we let

vj = (m1j, . . . , mnj ) ∈ Zn.

The vectors vj are linearly independent, since %/(Z ∩ %) has rank r. Hence they
span over R a vector space V of dimension r, which we identify with Rr through
some Euclidean isometry. We consider the lattice ( ⊂ V spanned over Z by
v1, . . . , vr and find a basis a1, . . . , ar of ( as before.

Both the vj and the aj form a basis of (, so we may write vj = ∑r
i=1 tij ai,

with integers tij forming an invertible matrix over Z and similarly with the aj in-
terchanged with the vj . In particular, we find that

aj = (a1j, . . . , anj )

for certain integers aij .

Using these equations, we may substitute in (2.4) to find

ξi = ζig
ai1
1 · · · gair

r , i = 1, . . . , n, (2.5)

for suitable elements ζi ∈ Z, where gj = ∏r
s=1 γ

tjs
s ∈ %.

We contend that the inequality of the lemma holds with this choice of the gj . In
fact, pick s ∈ {1, . . . , r} and write



456 E. Bombieri , D. W. Masser , & U. Zannier

a∗
s = (c1, . . . , cn)

for suitable rational numbers c1, . . . , cn. Letting A be a common denominator for
them, and taking into account (2.5) and the fact that a∗

s is orthogonal to the space
spanned by the ai (i �= s), we have

n∏
i=1

ξAci
i = ζg

∑n
i=1 Aciais

s ,

whence, taking heights, we find
∣∣∣∣

n∑
i=1

Aciais

∣∣∣∣h(gs) ≤ |A|
( n∑

i=1

|ci |h(ξi)

)
.

The integer
∑n

i=1 Aciais is just A times the scalar product a∗
s · as , which equals

|a∗
s|2. In turn, by (2.3) this is bounded below by c3(r)|as |2, where c3(r) is positive

and depends on r only.
Thus the last displayed estimate implies, by Cauchy’s inequality,

|A|c3(r)|as |2h(gs) ≤ |A|
n∑

i=1

|ci |h(ξi) ≤ |A|
√√√√ n∑

i=1

|ci |2
√√√√ n∑

i=1

h(ξi)2

= |A||a∗
s|
√√√√ n∑

i=1

h(ξi)2 ≤ |A||as |
√√√√ n∑

i=1

h(ξi)2.

Dividing by the positive number |A||as | yields
√∑n

i=1 h(ξi)
2 ≥ c3(r)|as |h(gs).

The right side is bounded below by c3(r)(max1≤i≤n|ais |)h(gs), and now the lemma
immediately follows upon taking c(r) = c3(r)/r.

Remark. Over number fields a result by Schlickewei [Schl] states that we may
find generators g1, . . . , gr for %/(Z ∩ %) and a positive number c ′(r) dependent
only on r such that, for any integers a1, . . . , ar , the inequality

h(g
a1
1 · · · gar

r ) ≥ c ′(r)
r∑

j=1

|aj |h(gj )

holds. Such an inequality plainly implies a sharper form of Lemma 2.1 in which
the quantities h(ξi) are bounded below individually.

However, we note that if r ≥ 2 then such a sharper result does not hold for
any field with a product formula. To produce a counterexample, let F = C(x, y)

be the rational field in two variables over C. We define a set of inequivalent val-
uations on F as follows. First, for a nonzero polynomial f(x, y) ∈ C[x, y] de-
fine δ(f ) = max

(
a + b

√
2
)
, where the maximum is taken over all monomials

xayb appearing in f with a nonzero coefficient. Plainly, δ(fg) = δ(f ) + δ(g).

Now, define a valuation | · |∞ by putting |f |∞ = 2δ(f ). Also, writing f(x, y) =
xaybg(x, y), where g ∈ C[x, y] is not divisible by x or y, define another valuation
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| · |0 by putting |f |0 = 2−a−b
√

2. Finally, for a principal ideal I = (p(x, y)) gen-
erated in C[x, y] by an irreducible polynomial p(x, y) not in Cx or Cy, define an
associated (discrete) valuation by setting |f |I = 2−mδ(p) if pm||f. It is then easy
to see that the product formula holds in F for this set of valuations ( just check
it on the irreducible polynomials) and that Z = C∗. Now the elements x, y are
independent modulo Z, but nevertheless h(xayb) = ∣∣a + b

√
2
∣∣ log 2 is bounded

above if a, b are integers such that
∣∣a + b

√
2
∣∣ remains bounded. This easily im-

plies that Schlickewei’s result does not hold for the group % generated by x and y.

Following the lines of Schlickewei’s proof, it may nonetheless be seen that his
result holds with the supplementary assumption that all but at most one ultramet-
ric valuations in MF have rank 1 (i.e., their value group has rank 1). Note that all
valuations in our example are discrete and thus have rank 1, except | · |∞ and | · |0,

which have rank 2.

We shall now use Lemma 2.1to prove another result—crucial to the proof of Propo-
sition 1—about heights in finitely generated groups.

Lemma 2.2. Given n, there is a number c ′(n) with the following property. Let
ξ1, . . . , ξn ∈ F̄ ∗ generate a subgroup % such that %/(Z ∩ %) has rank ≤ r, where
r ≥ 1. Let T be any positive integer. Then there exist integers b1, . . . , bn, not all
zero, such that

|bi | ≤ T and h(ξ b1
1 · · · ξ bn

n ) ≤ c ′(n)T −(n−r)/r max
1≤i≤n

h(ξi).

Proof. We may assume that %/(Z ∩ %) has rank exactly r ≥ 1. Let g1, . . . , gr be
as in Lemma 2.1, so that ξi = ζi

∏r
j=1 g

aij

j . For any integers b1, . . . , bn, we then
obtain

ξ b1
1 · · · ξ bn

n = ζg
L1
1 · · · gLr

r , (2.6)

where ζ ∈ Z and Lj = a1j b1 + · · · + anjbn. By a familiar argument involving the
pigeonhole principle (see [BMZ, p. 1131] for details), given a positive integer T

we may choose b1, . . . , bn ∈ Z not all zero and such that

|bi | ≤ T and |Lj | ≤ nAh(gj )
−1T −(n−r)/r

for all i = 1, . . . , n and all j = 1, . . . , r, where we have put A = maxi,j |aij |h(gj ).

Taking heights in (2.6) and using the inequality for |Lj |, we find that

h(ξ b1
1 · · · ξ bn

n ) ≤
r∑

j=1

h(gj )|Lj | ≤ rnAT −(n−r)/r .

On the other hand, by Lemma 2.1 we obtain

max
1≤i≤n

h(ξi) ≥ c(r)√
n

r∑
j=1

(
max

1≤i≤n
|aij |

)
h(gj ) ≥ c(r)√

n
A,

which concludes the proof (here we may choose c ′(n) = max1≤r≤n rn
√

n/c(r)).
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This lemma is reminiscent of well-known results whose purpose is to find a non-
trivial multiplicative relation

ξ b1
1 · · · ξ bn

n = 1. (∗)

Indeed, if F = Q and ξ1, . . . , ξn lie in a fixed number field K, we can use the
lemma to make h(ξ b1

1 · · · ξ bn
n ) smaller than the minimal positive height of any ele-

ment of K. Then (∗) follows, at least up to roots of unity.
We conclude this section with another lemma, proving known estimates for the

height of the root of a polynomial and for the values of rational functions, that is
valid in a field F as described previously. As usual, by the height h(f ) of a poly-
nomial f ∈ F [X] we mean the projective height of the vector of its coefficients.

Lemma 2.3. (i) Let f(X) = Xd + a1X
d−1 + · · · + ad ∈ F̄ [X] be a polynomial

with a root η ∈ F̄. Then h(η) ≤ h(f ) + log 2, where the term log 2 can be omitted
if there are no Archimedean valuations.

(ii) Let r0(X), . . . , rn(X) ∈ F̄ [X] be polynomials of maximum degree d. Then
there exists a number c, depending only on the ri, such that h(r0(ξ) : · · · : rn(ξ)) ≤
dh(ξ) + c for all ξ ∈ F̄ such that the ri(ξ) are not all zero.

We recall a short argument for the reader’s convenience, for simplicity when F is
not a number field (in which case all the valuations are ultrametric).

We may assume that all the relevant elements lie in a finite extension K of F.

We let w run through the valuations of K, extending those on F ; as explained in
Section 2, the height may be expressed in terms of these valuations by using ap-
propriate multiplicities.

To prove (i) we use the equality ηd = −a1η
d−1 − · · · − ad to deduce that, for

any valuation w, either |η|w ≤ 1 or

|η|w = |−a1 − a2η−1 − · · · − adη−d+1|w ≤ max
1≤i≤d

|ai |w,

since w is ultrametric. Putting a0 = 1 thus yields

max(1, |η|w) ≤ max
0≤i≤d

|ai |w,

and the desired result now follows once we raise to the appropriate power and take
the product. (We note that a straightforward adaptation of this argument in the
number-field case yields the less precise inequality h(η) ≤ h(f ) + log d, which
in any case would be sufficient for our purposes; however, one can improve on
this by observing that, when | · |w extends the usual absolute value on Q, we have
|η|w ≤ α max(1, |a1|w, . . . , |ad |w), where α < 2 is the unique real root > 1 of the
equation xd = 1 + x + · · · + xd−1.)

For (ii), let 5 ⊂ K be the set of coefficients of all the ri(X). Then, for every
valuation w, we clearly have |ri(ξ)|w ≤ maxσ∈5|σ|w max(1, |ξ|w)d, whence

max(log|r0(ξ)|w, . . . , log|rn(ξ)|w) ≤ d log max(1, |ξ|w) + max
σ∈5

log|σ|w.

Multiplying by ew/[K : F ] and summing over w ∈ MK yields the result, where
we may take c to be the projective height of the point whose coordinates are the
elements of 5.
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3. Proof of Proposition 1

We shall follow the argument given in [BMZ, Sec. 3] except that, as mentioned
in the Introduction, we shall avoid any use of the somewhat delicate results on
heights due to Siegel or Néron. Also, the lemma of Schlickewei mentioned in the
Remark in Section 2 (i.e., [BMZ, Lemma 2]) will be replaced by our Lemma 2.2.
In fact the results of Siegel and Néron do remain valid in our more general con-
text; see for example [L, Prop. 5.4, p. 115]. So the argument of [BMZ, Sec. 2]
via [BMZ, Prop. B, p. 1127] could also be used. However, it may be a problem to
make these asymptotic results explicit in their dependence on the curve C.

To begin with the proof, let x1, . . . , xn be coordinates on Gn
m that are viewed as

rational functions on C. Let P ∈ C(F̄ ) be such that (ξ1, . . . , ξn) ∈ H, where H is a
proper algebraic subgroup of Gn

m and hence is of dimension ≤ n − 1. Then the ξi

are multiplicatively dependent, so the group % ⊂ F̄ ∗ they generate has rank r ≤
n − 1.

Let i0 be an index for which h(ξi0 ) is maximum, and define the rational func-
tion x by x = xi0 . We may now apply Lemma 2.2 to %. We fix an integer T and
obtain the existence of integers b1, . . . , bn, not all zero, such that

|bi | ≤ T,

h(ξ b1
1 · · · ξ bn

n ) ≤ c ′(n)T −(n−r)/r max
1≤i≤n

h(ξi) = c ′(n)T −(n−r)/rh(x(P )).
(3.1)

Define the rational function y on C by y = x
b1
1 · · · xbn

n . Now y lies in the func-
tion field F̄(x1, . . . , xn), whose degree over F̄(x) depends only on the curve C.

Hence there is an equation

s0(x)ye + · · · + se(x) = 0

with sj(x) ∈ F̄ [x] not all zero and e ≤ c1. These sj(x) are not all in F̄ else y would
be constant on C, contrary to our hypothesis. Now the equation can be rewritten as

r0(y)xd + · · · + rd(y) = 0,

with ri(Y ) ∈ F̄ [Y ] not all zero and of degree at most e. Dividing out by a com-
mon factor if necessary, we can suppose that the ri(Y ) have no common zero in
F̄ ; they depend only on the curve C and the exponents b1, . . . , bn defining y.

Now Lemma 2.3(ii) implies that

h(r0(ξ) : · · · : rd(ξ)) ≤ c1h(ξ) + C1(T ),

where C1(T ) is independent of ξ = y(P ) = ξ b1
1 · · · ξ bn

n .

Then, for η = x(P ) = ξi0 , Lemma 2.3(i) yields

h(η) ≤ c1h(ξ) + C2(T ),

again with C2(T ) independent of P. It follows that choosing T in (3.1) minimal
with c1c

′(n)T −(n−r)/r ≤ 1/2 implies h(η) ≤ 2C2(T ), and this bound depends
only on C. The proposition is proved.
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Remark. The same proof yields the sharper result obtained by replacing the set
Hn−1 with the union

⋃
z∈Z zHn−1 of the set of its translates by elements of Z. In

the number-field case Z is just the set of roots of unity, so this gives nothing new.

4. Proof of Proposition 2

We will establish Proposition 2 by using Proposition 1 and induction on n. The
starting case n = 1 is easy, because then C = Gm and C ∩ Hn−1 is the set of
roots of unity µ ∈ K̄. If we bound the degree [K(µ) : K] by D, then µ is the zero
of a monic polynomial over K, irreducible of degree at most D; this polynomial
divides some zN − 1 and so all its zeros must be roots of unity. Therefore, its co-
efficients live in Q̄ ∩ K. Since every subfield of a finitely generated field is itself
finitely generated (see [Schi, proof of Thm. 1, p. 12, and the following Remark]),
this intersection is a finitely generated subfield of Q̄ and thus a number field K0.

Hence µ has degree at most D over K0 and so there are only finitely many possi-
bilities for µ.

We can therefore assume that Proposition 2 holds for curves in Gn−1
m (n ≥ 2),

and we proceed to deduce it for curves C in Gn
m. By replacing K with a finite ex-

tension if necessary, we may assume that C is defined over K.

Since K/Q is finitely generated, its transcendence degree m is finite, and we
will use a further induction on m.

If m = 0 then K is a number field. Thus Proposition 1 implies that C ∩ Hn−1 is
a set of bounded height. Now, if we also bound the degree of the point P in this
set (by D[K : Q]) then Northcott’s theorem (see [L, p. 59]) yields the finiteness
required in Proposition 2.

So assume that m ≥ 1 and that Proposition 2 has been established for fields of
transcendence degree strictly less than m. Fix a transcendence basis {t1, . . . , tm}
for K over Q; then K is a finite extension of Q(t1, . . . , tm). Thus K̄ naturally em-
beds into the algebraic closure of Q(t1, . . . , tm), which is k(t) for t = tm and k the
algebraic closure of K0 := Q(t1, . . . , tm−1).

Observe now that F = k(t) is a field with a proper set of absolute values sat-
isfying a product formula, by virtue of the valuations corresponding to the ele-
ments of P1(k), with zero-height group Z = k∗. Proposition 1 therefore implies
that C ∩ Hn−1 is a set of bounded height in C(F̄ ) ⊂ F̄ n. We have to prove
that there exist only finitely many points P = (ξ1, . . . , ξn) in C ∩ Hn−1 with
[K(P ) : K] ≤ D.

Let % = %(P ) be the subgroup of F̄ ∗ generated by ξ1, . . . , ξn, and let %̃ :=
%/(k∗ ∩ %) be the quotient by its zero-height group. Then %̃ has rank r satisfying
0 ≤ r ≤ n − 1.

If r = 0 then the argument can be finished as follows. Namely, % ⊂ k∗, so the
coordinates of P are in k. We may assume that there are infinitely many such P

and it follows that C is defined over k. So C is also defined over K ′ = k ∩ K.

This intersection is finitely generated over Q, with transcendence degree at most
m − 1, and certainly P ∈ C(K ′) ∩ Hn−1. We claim that
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[K ′(P ) : K ′ ] ≤ Dn. (4.1)

This will enable us to apply the induction hypothesis on the transcendence degree.
Consider the monic minimal polynomial Qi over K of each coordinate ξi

certainly of degree at most D. Since ξi is in the algebraic closure k of K0 =
Q(t1, . . . , tm−1), it is a zero of some monic polynomial over K0. This polynomial
splits completely in k = K̄0 and is divisible by Qi. It follows that all the zeros of
Qi lie in k. Thus the coefficients of Qi lie in k and so also in K ′ = k ∩ K. Hence
ξi has degree at most D over K ′ and now (4.1) follows. If required, the exponent
n could easily be removed by applying our argument to linear combinations of
ξ1, . . . , ξn. In any case, the finiteness of the set of points P with r = 0 is now clear
by induction on m.

What if r ≥ 1? We use Lemma 2.1 to find g1, . . . , gr ∈ %, which are multiplica-
tively independent modulo elements of zero height in %, such that

ξi = ζig
ai1
1 · · · gair

r , i = 1, . . . , n, (4.2)

and √√√√ n∑
i=1

h(ξi)
2 ≥ c(r)

r∑
j=1

Ajh(gj ),

where Aj = max1≤i≤n|aij |. If B is the upper bound for the maximum height
max1≤i≤n h(ξi) of the coordinates of P provided by Proposition 1, it follows that

Ajh(gj ) ≤ nB/c(r), j = 1, . . . , r. (4.3)

Thus the heights h(gj ) are “small”.
At a similar point, in [BMZ, p. 1134] we used a result of Dobrowolski type or

(if necessary) Amoroso–David type. As already remarked, the latter does not gen-
eralize; however, the former does and in an especially simple way. Namely, for
any nonconstant γ ∈ F̄ = k(t) we have the identity

h(γ ) = [k(γ, t) : k(γ )]

[k(γ, t) : k(t)]
(4.4)

in terms of field degrees (see [Ma, p. 8]). Our gj are in % ⊂ K(P ) and k(t) ⊃
Q(t1, . . . , tm), so

[k(gj, t) : k(t)] ≤ [Q(gj, t1, . . . , tm) : Q(t1, . . . , tm)]

≤ [K(gj ) : K][K : Q(t1, . . . , tm)] ≤ σD

for the constant σ := [K : Q(t1, . . . , tm)].
Now, combining this with (4.4), ignoring the numerator, and comparing with

(4.3), we see that
Aj ≤ (nB/c(r))σD, j = 1, . . . , r.

Therefore, by Proposition 1, the aij in (4.2) are bounded independently of P =
(ξ1, . . . , ξn). Since P lies in Hn−1, there is a multiplicative relation ξ b1

1 · · · ξ bn
n = 1

with nonzero (b1, . . . , bn) in Zn. This now forces additive relations
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n∑
i=1

biaij = 0, j = 1, . . . , r,

among the b1, . . . , bn. Since r ≥ 1 and since the matrix of the aij has rank r, we
have at least one nontrivial relation, say

∑n
i=1 biai = 0, and this will suffice.

Recall that the aij are actually bounded, so we get only finitely many possible
relations and thus (for our purposes) may suppose that a fixed such relation occurs.
We may assume that the ai are not all zero and coprime. Then, by means of an
automorphism of Gn

m, we may assume that our relation is bn = 0. This means that
P satisfies ξ b1

1 · · · ξ
bn−1
n−1 = 1. Consider then the projection π(C) of C to the first

n−1 coordinates (a space that we identify with Gn−1
m ). Because C is not contained

in any translate of a proper subgroup, this projection does not reduce to a point,
whence its Zariski closure in Gn−1

m is a curve C ′, also defined over K. It is not con-
tained in any translate of a proper subgroup H ′ of Gn−1

m , for otherwise C would
be contained in a translate of the proper subgroup π−1(H ′) of Gn

m. Since π(P ) ∈
C ′ ∩ Hn−2 still has degree at most D, we may apply the inductive assumption
to see that there are only finitely many possibilities for π(P ) = (ξ1, . . . , ξn−1).

Finally, each equation x1 = ξ1 has at most finitely many solutions P in C (for
otherwise C would be contained in a translate of the subgroup defined by x1 = 1).
This completes the proof.

5. Specializations

Let C and K be as in the Theorem. Our proof strategy is as follows. Suppose for
simplicity that K is finitely generated over Q and that C is defined over K. Now
K can be considered as a subfield of Q̄(G), where G is a Q̄-generic point of some
irreducible variety B defined over Q̄. By specializing G to a suitable point Q in
B(Q̄), we obtain a curve CQ over Q̄. It will turn out that a point P in C ∩ Hn−2 of
degree D = [K(P ) : K] specializes to almost D different points in CQ ∩ Hn−2.

If D is sufficiently large then this contradicts the Theorem over Q̄ (Theorem 2 of
[BMZ]). Hence D is bounded, and we conclude the proof using Proposition 2 for
the curve C.

In fact, we will use the language of intersections as well as that of specializa-
tions, and in this section we recall some relevant basic facts, taking some care
over small Zariski-closed sets (e.g., the singularities of both C and B cause minor
problems in the counting).

As in Section 4, we prefer to work over algebraically closed fields k for the mo-
ment. Let K be a field finitely generated over k and let C in Gn

m be an absolutely
irreducible curve defined over K. In order to describe the totality of all valuations
on function fields we need projective nonsingular models, and it suffices to take
such a model C̃ of C. We will suppose that both C̃ and a regular map from C̃ to
the completion Ĉ of C in P n are defined over K. The coordinates x1, . . . , xn on
C in Gn

m induce rational functions on C̃, for which we can use the same symbols,
and we further assume that the zeros and poles of x1, . . . , xn in C̃ are defined over
K. Let S be this set of zeros and poles.
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We can find an irreducible affine variety B in Am, defined over k, such that K =
k(G) for some k-generic point G = (g1, . . . , gm) of B. By clearing denominators
in a finite set of defining equations for C, we can assume that their coefficients
lie in the ring k[g1, . . . , gm]. When we replace g1, . . . , gm by the affine coordi-
nates y1, . . . , ym and then adjoin a finite set of defining equations for B, we obtain
a variety CB in Gn

m × Am that is defined over k. The projection π to Am satisfies
π(CB) = B, and the projection γ to Gn

m satisfies γ (CB ∩ π−1(G)) = C.

For any Q in B we can consider the object CQ = γ (CB ∩ π−1(Q)); this will
not always be a curve unless we restrict Q to some nonempty Zariski-open sub-
set B0 of B. For example, CG = C itself, and we obtain CQ by specializing the
equations for C.

Likewise, by decreasing B0 if necessary we can suppose that, for all Q in B0,

the specialized varieties ĈQ and C̃Q are also curves with a regular map fQ from C̃Q

to ĈQ. We can even suppose that the curves CQ, ĈQ, and C̃Q are absolutely ir-
reducible (see e.g. [Schi, Thm. 32, p. 201]) and that C̃Q is nonsingular (use e.g.
the Jacobian criterion). It follows that C̃Q is a projective nonsingular model of CQ.

By further decreasing B0 we may assume that the genus g(CQ) = g(CG) =
g(C). Similarly, we may assume that the “singular excess”

εQ =
∑

P∈ĈQ

(#f −1
Q (P ) − 1)

satisfies εQ = εG = ε(C), say, and that the “number of nonmultiplicative points”

δQ = #(ĈQ \ CQ)

satisfies δQ = δG = δ(C), say.
Finally, we can suppose that different elements of the set S in C̃ specialize to

different elements of C̃Q, and these make up a set SQ, which is the set of all zeros
and poles of the coordinate functions on CQ and C̃Q. We can even suppose that
the corresponding orders of zeros and poles remain the same under specialization.

The singularities of B can be dealt with rather more simply: just remove them
from B0.

6. Proof of Theorem

Let C and K be as in the Theorem. We can assume without loss of generality that
K is finitely generated over Q and that C, C̃ and the elements of the set S of zeros
and poles of x1, . . . , xn are defined over K. We take K as the compositum of k and
K, with k = Q̄, and we construct B and B0 as in Section 5. We retain the notation
CQ, C̃Q, SQ there.

We start by noting that C is not contained in an algebraic subgroup of Hn−1 and
so neither is CQ for every Q in B0. For if some x

b1
1 · · · xbn

n (integers b1, . . . , bn not
all zero) is constant on CQ then it is constant on C̃Q, and this leads to linear rela-
tions between the orders of zeros and poles in SQ. These coincide with the orders
in S and thus x

b1
1 · · · xbn

n would be constant on C, contrary to hypothesis.
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Let H be an algebraic subgroup of Gn
m with dimension exactly n − 1. Then H

is defined by a single relation x
b1
1 · · · xbn

n = 1 with exponents unique up to a com-
mon sign. We write D(H ) for the degree of x

b1
1 · · · xbn

n considered as a function
on C or C̃; this is then independent of the choice of sign.

We can interpret the equation of H just as well on Gn
m × Am and thus we can

speak of the intersection CB ∩ H. We claim now that CB ∩ H ∩ π−1(G) is finite
with cardinality

#(CB ∩ H ∩ π−1(G)) ≤ D(H ). (6.1)

For γ injects the set of (6.1) into C ∩ H and, since x
b1
1 · · · xbn

n − 1 also has degree
D(H ), these sets certainly contain at most D(H ) points.

Lemma 6.1. For any H as before and any Q in B0(k), the set CB ∩ H ∩ π−1(Q)

is finite with cardinality

#(CB ∩ H ∩ π−1(Q)) ≥ D(H ) − c,

where c = 2g(C) − 2 + ε(C) + δ(C).

Proof. We will use Mason’s abc theorem [Ma, Lemma 2, p. 14] on the function
field ( = k(CQ). Of course, this is a finite extension of some F = k(t) as in Sec-
tion 2 and so there is a theory of heights on F̄. The nontrivial valuations on k(CQ)

correspond to the points of C̃Q(k); however, in [Ma] they are normalized to have
value group Z on k(CQ), not F. This means that h(λ) is just the degree [( : k(λ)]
without the denominator in (4.4). Mason’s theorem states that if λ1, λ2, λ3 are
nonzero in ( with zero sum and if λ1/λ2 is not constant, then

h(λ1/λ2) ≤ N + 2g(CQ) − 2,

where N is the number of valuations v with |λ1|v, |λ2|v, |λ3|v not all equal.
We apply this with λ1 = x

b1
1 · · · xbn

n , λ2 = −1, and λ3 = 1 − λ1, so that
h(λ1/λ2) = D(H ). We deduce that there are at least D(H ) − 2g(CQ) + 2 val-
uations v satisfying at least one of |λ1|v < 1, |λ1|v > 1, |λ3|v > 1, or |λ3|v < 1.
Throwing away at most εQ = ε(C) of these, we can restrict attention to points of
ĈQ. Throwing away a further δQ = δ(C) means we are left with points of CQ.

These cannot be zeros or poles of x1, . . . , xn, so the first three inequalities above
are now eliminated; there remains only |λ3|v < 1, so that we have the zeros of
x

b1
1 · · · xbn

n −1 in CQ. As before, the map γ injects CB ∩H ∩π−1(Q) into this set,
and the lemma follows (the finiteness is again clear).

Lemma 6.2. For any H as before, let W be a finite union of irreducible compo-
nents of CB ∩ H. Then, for any Q in B0(k),

#(W ∩ π−1(Q)) ≥ #(W ∩ π−1(G)) − c.

Proof. In general, if π : W → B is a finite map then the two cardinalities of the
lemma are actually equal for all Q in some nonempty Zariski-open subset BW of
B; this follows from a standard discriminant argument. However, BW will usually
depend on W and thus on H. The effect of the lemma is to make BW independent
of H at the expense of introducing the constant c.
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In fact, some c > 0 may be needed. For example, let C be defined over k(A) =
k(y) by

x2 = x1 + 1, x3 = x1 − y,

let H be defined by x
p+q

1 = x
p

2 x
q

3 , and let W = CB ∩H. Then #(W ∩π−1(G)) =
p + q − 1, but

#(W ∩ π−1(Q)) ≤ p + q − 2

for Q = p/q. Thus
⋂

BW ⊂ A \ Q, which is far from Zariski-open!
Now to the proof. Let W ′ be the union of all irreducible components of

CB ∩ H not appearing in W, so that W ∪ W ′ = CB ∩ H. By Lemma 6.1, the
sets W ∩ π−1(Q) and W ′ ∩ π−1(Q) are finite; call their cardinalities s(Q) and
s ′(Q), respectively. The projections π from W and W ′ to B have degrees s(G)

and s ′(G) respectively, and since Q is nonsingular on B we can appeal to [Mu,
Thm. 3.25, p. 53] to deduce

s(Q) ≤ s(G), s ′(Q) ≤ s ′(G).

Also,
s(Q) + s ′(Q) ≥ #(CB ∩ H ∩ π−1(Q))

and
s(G) + s ′(G) = #(CB ∩ H ∩ π−1(G)),

since the sets W ∩π−1(G) and W ′ ∩π−1(G) are disjoint. This is because W ∩W ′
has dimension strictly less than the dimension of B, so no point can project to G.

All these inequalities together with (6.1) and Lemma 6.1 lead to s(Q) ≥ s(G)− c,

which is the desired conclusion.

We can now finish the proof of the Theorem. Since K ⊂ K = k(G) is finitely
generated over Q, we can find a number field k0 with K ⊂ k0(G). Both of these
latter fields are finitely generated over Q with the same transcendence degree and
so the index [k0(G) : K] = e is finite.

Fix once and for all a point Q on B0(k), and let q be the cardinality of
CQ ∩ Hn−2; this is finite by [BMZ, Thm. 2, p. 1121].

Let P be any point of C∩Hn−2 and consider the k0-Zariski-closure W of (P, G)

on CB in Gn
m × Am. Now P lies in C ∩ H ∩ H ′ for two subgroups H, H ′ of di-

mension n −1 such that dim(H ∩ H ′) = n − 2; hence (P, G) is in CB ∩ H ∩ H ′.
The dimension of W is at least the dimension of B, which is also the dimension
of CB ∩ H. It follows that W (which is irreducible over k0) is a finite union of
Q̄-irreducible components of CB ∩ H. Therefore, by Lemma 6.2 we have

#(W ∩ π−1(Q)) ≥ #(W ∩ π−1(G)) − c.

But #(W ∩ π−1(G)) is just the degree

[k0(P, G) : k0(G)] = [k0(P, G) : K(P )][K(P ) : K]/[k0(G) : K],

which is at least [K(P ) : K]/e = D(P )/e, say. Thus W ∩ π−1(Q) contains at
least D(P )/e − c different points. But these project under γ to different points of
CQ ∩ H ∩ H ′, whose cardinality is at most q.

Thus D(P ) ≤ e(c + q) is bounded independently of P, and we can use Propo-
sition 2 to conclude the finiteness of C ∩ Hn−2.
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