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Sharp Estimate of the Ahlfors–Beurling Operator
via Averaging Martingale Transforms

Oliver Dragi čevi ć & Alexander Volberg

1. Introduction

Our most important object will be the so-called two-dimensional martingale trans-
form. In order to define it properly, we should start with the notion of a Haar basis.

We call the familyL := {[m2n, (m+1)2n] | m, n∈Z} the standarddyadic lat-
tice. Observe that 0 is the only real number that is not contained in the interior of
anydyadic interval,that is, any member ofL. Each intervalI ⊂ R gives rise to
its Haar functionhI , defined by

hI := |I |−1/2(χI+ − χI−),
whereI− andI+ denote (respectively) the left and the right half of the intervalI and
χE stands for the characteristic function of the setE, as usual. It is a well-known
fact that the set{hI | I ∈L} forms an orthonormal basis of the spaceL2(R).

At this point we should emphasize that our attention will be concentrated on
the planar case. Toward that end we shall introduce a similar basis for the space
L2(R2). This will be described in detail in the continuation of this preface.

We may now define the operatorTσ onL2(R) by

Tσf :=
∑
I∈L

σ(I )〈f, hI 〉hI ,

whereσ : L → {−1,1} is arbitrary. Such operators are calledmartingale trans-
forms.Observe thatTσ is an isometry satisfyingT 2

σ = I.
The symbol〈f 〉I shall stand for|I |−1

∫
I
f dm, the average of the functionf

over the intervalI. We say that a measurable functionw : R → R+ satisfies the
dyadicA2 conditionif

Qw,2 := sup
I∈L
〈w〉I 〈w−1〉I <∞.

It is well known that, for any such weightw, the martingale transforms are uni-
formly bounded onL2(w), that is, on the Hilbert space of measurable complex
functions onR endowed with the scalar product

〈f, g〉w :=
∫
R
f(x)g(x)w(x) dx.
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More precisely, in [9] it was shown that there is a constantC > 0 such that, for
arbitrary choice of functionsw ∈A2, σ : L→ {−1,1}, andf ∈ L2(w), we have
the condition

‖Tσf ‖L2(w) ≤ CQw,2‖f ‖L2(w). (1)

The estimate (1) is sharp in the sense that one cannot replaceCQw,2 in it by
φ(Qw,2), whereφ grows slower than a linear function.

Our interest will focus on studying the case ofR2 instead ofR, and a certain
important singular integral operator onR2 will play the role ofTσ . In the planar
case, all the definitions simply proceed from the one-dimensional case in a natural
way. Thus the termdyadic latticewill now stand for the collection of all squares
of the formI × J ⊂ R2, whereI andJ are dyadic intervals of the same length.
To each such squareQ = I × J we will assign three Haar functions:

hIQ(s, t) := hI (s)χJ(t)|J |−1/2,

hJQ(s, t) := |I |−1/2χI (s)hJ(t),

hQ(s, t) := hI (s)hJ(t).
As previously, one can verify that the set{hIQ, hJQ, hQ | Q∈L} builds an orthonor-
mal basis inL2(R2). Now thetwo-dimensional martingale transformbecomes the
operator

Tσf :=
∑
Q∈L

σI (Q)〈f, hIQ〉hIQ +
∑
Q∈L

σJ(Q)〈f, hJQ〉hJQ +
∑
Q∈L

σ(Q)〈f, hQ〉hQ,

where, as before,σI , σJ , σ : L→ {−1,1} andf ∈L2(R2) are arbitrary functions.
The term (two-dimensional)A2 weight now stands for a positive measurable

functionw onR2 such that

Qw,2 := sup
Q⊂R2
〈w〉Q〈w−1〉Q <∞.

Here, unlike previously, the supremum runs over all squares inR2, not merely
the dyadic ones; in the latter case we would be referring to thedyadicA2 weight.
Certainly,〈 · 〉Q denotes the average over the squareQ with respect to the planar
Lebesgue measure. One can immediately obtain a two-dimensional version of
Wittwer’s result (1).

Let us also introduce

Qw,p := sup
Q⊂R2
〈w〉Q〈w−1/(p−1)〉p−1

Q , 1< p <∞.

We shall be studying the operatorT : L2(w)→ L2(w) of convolution with the
kernelz−2, that is,

Tf(x, y) =
∫∫

R×R
f(x − u, y − v)

(u+ iv)2 du dv.

Herew is a planarA2 weight, of course. The operatorT, sometimes multiplied
by 1/π, is called theAhlfors–Beurling operator.
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Our main result is the following theorem.

Theorem. T is in the weakly closed linear span of operators of the typeTσ .

This yields an immediate corollary as follows.

Corollary. ‖T ‖Lp(w)→Lp(w) ≤ C(p)Qw,p.

It is enough to prove the Corollary forp = 2 (see [7]). This corollary was the
main goal of [7], where it was proved by different methods. It seems to us that our
proof is much more streamlined and perhaps more conceptual.

The theorem looks slightly unexpected because the same result would not be
true forT replaced by the first-order Riesz transforms on the plane. In fact, all
our operatorsTσ have symmetric kernelskσ , meaning thatkσ(x, y) = kσ(y, x),
but the first-order Riesz transforms have antisymmetric kernels. This is why a
completely different set of dyadic singular operators was used in [6] to represent
Riesz transforms. The operators from [6] are slightly complicated. We already ex-
plained that, in representing first-order Riesz transforms, one cannot average our
simpler operatorsTσ . But we do not know whether one can average something
that is as simple asTσ and also antisymmetric in order to obtain the first-order
Riesz transforms.

Acknowledgment. We are grateful to the referee for several useful suggestions.

2. Motivation

Consider the standard differential operators

∂ = 1

2

(
∂

∂x
− i ∂

∂y

)
,

∂̄ = 1

2

(
∂

∂x
+ i ∂

∂y

)
.

The regularity of solutions of the Beltrami equation

∂̄f = µ · ∂f (2)

has received a lot of attention from mathematicians since the 1940s. Functionµ,

called theBeltrami coefficient,belongs to the spaceL∞(C). Its normk is strictly
smaller than 1. The result of Bojarski, Ahlfors, Bers, and Lavrentiev states that
there is aW 2

1 solution to (2) that is a global homeomorphism of the extended
complex planêC. Forz∈C, it maps the infinitely small ellipse, centered atz and
with ratio of the axes1+|µ(z)|1−|µ(z)| , into some infinitely small circle centered atf(z).
For this reason it is important to consider the constant

K = 1+ k
1− k .
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Every homeomorphismf : Ĉ → Ĉ belonging to the Sobolev classW 2
1 for

which (2) is fulfilled is called aK-quasiconformalmapping. Any local solution
of (2) fromW 2

1,loc is called aquasiregularmapping.
Denotingg = ∂̄f,we are able to writef (such thatf(z) ∼ z+C, |z| → ∞), as

f(z) = 1

π

∫
g(ζ)

ζ − z dA(ζ)+ z+ C.
This is where our operatorT begins to play its role, for∂f = Tg + 1 and sog =
µTg + µ, or

(I − µT )g = µ.
Since

‖µT ‖L2→L2 ≤ ‖µ‖∞‖T ‖L2→L2 ≤ k < 1,

the operator(I − µT )−1 exists and

g = (I − µT )−1µ.

It has been shown that the norm ofµT as an operator onLp is still less than 1 if
p is slightly greater than 2. On the other hand, the word “slightly” is rather impor-
tant. More precisely, it is known [4] thatp should not exceed 1+ k−1. This fact,
combined with our awareness that‖T ‖L2→L2 = 1, gives rise to the assumption
that

‖T ‖Lp→Lp = p −1.

For in that case,

‖µT ‖Lp→Lp ≤ ‖µ‖∞‖T ‖Lp→Lp < k(1+ k−1−1) = 1.

This is still an open question. The best known estimate has been obtained by
Nazarov and Volberg in [5]. They proved that‖T ‖Lp→Lp ≤ 2(p − 1). This im-
proves the previous estimate in [3] (namely, with 4(p−1)). Recently, the estimate
2(p −1) was obtained in [2] by using methods that differ from those in [5].

It is relevant that we also study weightedLp spaces. For it was shown in [1] that

‖(I − µT )−1‖Lp→Lp ≤ C(k)‖T ‖Lp(w)→Lp(w),
wherew = |fz B f −1|p−2 for p ∈ (1+ k,1+ k−1) andf is a quasiconformal
homeomorphism satisfying (2) together with the normalizationf(z) = z + o(1)
as|z| → ∞.

This estimate, together with the Corollary stated in Section 1, gives the linear
growth of‖(I −µT )−1‖Lp→Lp wherep→ 1+ k. We know (see [1]) this implies
that weakly quasiregular maps on the plane are quasiregular. Hence this geomet-
ric fact becomes the corollary of our main theorem about representation of the
Ahlfors–Beurling transform as a closure of the linear span of martingale trans-
formsTσ and the correct weighted estimates ofTσ obtained by Wittwer [9].

3. The Main Idea

As we have announced, we will represent ourT as the result of averaging of oper-
ators similar toTσ . After that, the desired estimate of‖T ‖L2(w)→L2(w) will follow
from the two-dimensional version of (1) for‖Tσ‖L2(w)→L2(w).
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4. The Averaging

Instead of a dyadic lattice, let us consider for a moment agrid G of squares. This
is a family of squares of the formI ×J,whereI andJ are dyadic intervals of unit
length. Furthermore, fort ∈R2 defineGt := G+ t, that is, the grid of unit squares
such that one (in fact, four) of them contain pointt as one of its vertices.

Now we are ready to introduce our “core” operatorsPt : L2(w)→ L2(w) by

Ptf :=
∑
Q∈Gt

[〈f, hIQ〉hIQ − 〈f, hJQ〉hJQ].

Since〈f, hIQ〉hIQ can be written as

1
2[〈f, hIQ〉hIQ + 〈f, hJQ〉hJQ + 〈f, hQ〉hQ]

+ 1
2[〈f, hIQ〉hIQ − 〈f, hJQ〉hJQ − 〈f, hQ〉hQ]

and similarly for〈f, hJQ〉hJQ, we see thatPtf is a linear combination (with coef-
ficients 1 and−1) of two convex combinations of two martingale transforms (one
of which is the identity). This means that the analogue of condition (1) also holds
(with some other constant) for all operatorsPt . That we have translated our stan-
dard grid does not cause any problems, as we shall see later.

Notice that the family� := {Gt | t ∈ R2} of all unit grids naturally corre-
sponds to the torusR2/Z2, which is of course in one-to-one correspondence with
the square [0,1)2. Thus we are able to regard� as a probability space where the
probability measure equals to the Lebesgue measure on [0,1)2.

This now leads to the “mathematical expectation” of the “random variable”P.
This will again be an operator onL2(w), defined pointwise (forf ∈L2(w)) as

(EPf )(x) :=
∫
�

Ptf (x) dm(t).

SinceEP is a result of integrating over a certain probability space (more gener-
ally, a set of finite measure), it makes sense to call this process theaveraging.The
significance of this operator is revealed in the following proposition.

Proposition 1. With notation as before, the operatorEP is a convolution oper-
ator with kernel

F(x1, x2) = α(x1)β(x2)− β(x1)α(x2) =
∣∣∣∣ α(x1) α(x2)

β(x1) β(x2)

∣∣∣∣,
where

α = h0 ∗ h0 and β = χ0 ∗ χ0.

Hereχ0 andh0 stand(respectively) for the characteristic and Haar function of
the interval[−1/2,1/2].

Proof. Chooset = (t1, t2)∈R2 andQ = I × J ∈ Gt . Then

〈f, hIQ〉 =
∫
R

∫
R
f(s1, s2)h

I
Q(s1, s2) ds1 ds2

=
∫
J

∫
I

f(s1, s2)hI (s1)χJ(s2) ds1 ds2
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and similarly for〈f, hJQ〉. Thus for (fixed)f ∈L2(R2) andx = (x1, x2) ∈R2 we
have

(Ptf )(x)

=
∑
Q∈Gt

[〈f, hIQ〉hIQ − 〈f, hJQ〉hJQ](x)

=
∑
Q∈Gt

[ ∫
R

∫
R
f(s1, s2)hI (s1)χJ(s2) ds1 ds2 · hIQ(x)

−
∫
R

∫
R
f(s1, s2)χI (s1)hJ(s2) ds1 ds2 · hJQ(x)

]

=
∫
R

∫
R
f(s1, s2)

(∑
Q∈Gt

[hI (s1)χJ(s2)h
I
Q(x)− χI (s1)hJ(s2)h

J
Q(x)]

)
ds1 ds2.

The expression under the summation in the last row is nonzero for exactly oneQ∈
Gt ; namely, one such thathIQ(x) 6= 0 6= hJQ(x). This means thatx = (x1, x2) ∈
Q and hencex1 ∈ I andx2 ∈ J. ThushIQ(x) = hI (x1) andhJQ(x) = hJ(x2). We
thus obtain

(Ptf )(x)

=
∫
R

∫
R
f(s1, s2)[hI (s1)χJ(s2)hI (x1)− iχI (s1)hJ(s2)hJ(x2)] ds1 ds2. (3)

BecauseGt does not change if we increase or decrease any component oft by
1, we may assume thatI = (t1 − 1, t1) andJ = (t2 − 1, t2). DenotingI0 =
[−1/2,1/2], this assumption implies

I = t1− 1

2
+ I0 and J = t2 − 1

2
+ I0.

Now letχ0 andh0 be as in the formulation of the proposition and letk0 := −h0.

The fact thatI0 is symmetric with respect to 0 yields the equalities

χI (z) = χ0(t1−1/2− z)
and

hI (z) = k0(t1−1/2− z)
for all z∈R. The analogue pair is valid also forJ, of course.

The point here is that our goal was to modify the expressions on the left to look
more like a part of a convolution integral witht1 and t2 as integration variables
andz as a center of convolving.

Together with (3), the last two equalities imply

(Ptf )(x)

=
∫
R

∫
R
f(s1, s2)

[
k0
(
t1− 1

2 − s1
)
χ0
(
t2 − 1

2 − s2
)
k0
(
t1− 1

2 − x1
)

− χ0
(
t1− 1

2 − s1
)
k0
(
t2 − 1

2 − s2
)
k0
(
t2 − 1

2 − x2
)]
ds1 ds2.
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Recall thatx1 ∈ I = (t1 − 1, t1) andx2 ∈ J = (t2 − 1, t2). Hencexi < ti <

xi +1 for i = 1,2. Averaging in our case means integrating over all admissibleti .

Therefore,

(EPf )(x) =
∫ x2+1

x2

∫ x1+1

x1

(P(t1,t2)f )(x) dt1 dt2.

By using the most recent expression for(Ptf )(x) and changing variables (to
ti −1/2) we obtain

(EPf )(x) =
∫ x2+1/2

x2−1/2

∫ x1+1/2

x1−1/2

∫
R

∫
R
f(s1, s2)[A] ds1 ds2 dt1 dt2,

where

A = k0(t1− x1)k0(t1− s1)χ0(t2 − s2)− k0(t2 − x2)k0(t2 − s2)χ0(t1− s1).
Applying Fubini’s theorem yields

(EPf )(x1, x2) =
∫
R

∫
R
f(s1, s2)

∫ x2+1/2

x2−1/2

∫ x1+1/2

x1−1/2
[A] dt1 dt2 ds1 ds2. (4)

This is how we obtained the candidate for the convolution kernelF of the operator
EP. Namely, equation (4) gives us the relation

F(x1− s1, x2 − s2) =
∫ x2+1/2

x2−1/2

∫ x1+1/2

x1−1/2
[A] dt1 dt2.

Takings1= s2 = 0 gives

F(x1, x2)

=
∫ x2+1/2

x2−1/2

∫ x1+1/2

x1−1/2
[k0(t1− x1)k0(t1)χ0(t2)− k0(t2 − x2)k0(t2)χ0(t1)] dt1 dt2.

We are able to separate variablest1 andt2, so

F(x1, x2) =
∫ x1+1/2

x1−1/2
k0(t1− x1)k0(t1) dt1 ·

∫ x2+1/2

x2−1/2
χ0(t2) dt2

−
∫ x1+1/2

x1−1/2
χ0(t1) dt1 ·

∫ x2+1/2

x2−1/2
k0(t2 − x2)k0(t2) dt2.

Observing that∫ xi+1/2

xi−1/2
χ0(ti) dti =

∫ xi+1/2

xi−1/2
χ0(ti)χ0(xi − ti) dti

for i = 1,2 and thatk0 ∗ k0 = h0 ∗ h0, we finally obtain

F(x1, x2) = (h0 ∗ h0)(x1)(χ0 ∗ χ0)(x2)− (χ0 ∗ χ0)(x1)(h0 ∗ h0)(x2),

as desired.
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Figure 1 Graph ofα

Figure 2 Graph ofβ

Graphs of functionsα andβ are shown as Figures 1 and 2, respectively.
Notice, as a corollary, that (1) also holds for the operatorEP in place ofTσ ,

since it held for allPt .
Instead of the unit grid we may consider a grid of squares with sides of an ar-

bitrary lengthρ > 0. Denote such a grid byGρt if t ∈ R2 is a vertex of one of its
members. Henceforth we will callρ thesizeof the grid andt its reference point.
We obtain another family of operators, defined by

Pρt f :=
∑
Q∈Gρt

[〈f, hIQ〉hIQ − 〈f, hJQ〉hJQ].

Remark1. In order to clarify some basic properties of these operators, we present
the following observations (and omit the easy proofs).
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For t ∈R2, ρ > 0, and any functionf onR2, defineSf(x) = f(ρx + t). If w
is any weight, thenS mapsL2(w)→ L2(Sw). We also have the identity

Pρt = S−1P0S.

More precisely,Pρt |L2(w) is the composition of operators

L2(w)
S−→ L2(Sw)

P0−→ L2(Sw)
S−1−−→ L2(w).

Since‖Sf ‖L2(Sw) = (1/√ρ )‖f ‖L2(w), it follows that‖S‖L2(w)→L2(Sw) = 1/
√
ρ;

similarly ‖S−1‖L2(Sw)→L2(w) = √ρ.
If w ∈ A2 then alsoSw ∈ A2 andQSw,2 = Qw,2. Therefore,P0 : L2(Sw) →

L2(Sw) is a bounded operator that inherits the estimate for its norm fromTσ . That
is, it satisfies the same inequality asTσ does in (1), according to [9].

These facts combined tell us that everyPρt is a bounded operator onL2(w)with
‖Pρt ‖L2(w)→L2(w) ≤ CQw,2, whereC is an absolute constant, as usual.

Let us use the same procedure of averaging as that used earlier forPt , but now for
Pρt ; this yieldsEPρ. Applying a similar proof as for Proposition 1, we can show
the following.

Proposition 2. Chooseρ > 0. Then averaging operatorsPρt over the set�ρ :=
R2/(ρZ2) returns a convolution operator with the kernel

Fρ(x1, x2) := 1

ρ2
F

(
x1

ρ
,
x2

ρ

)
.

Here the set�ρ is endowed with the normalized Lebesgue measure,(1/ρ2) dm2.

Thus we have found the kernel of the operator as a result of averaging overall
grids of afixedsize. Our next step will be to average over allsizes.Let us explain
what we mean by that.

Taker > 0. A lattice of caliberr is said to be a family of intervals (squares)
obtained from the standard dyadic latticeL by dilating it by a factorr and translat-
ing by an arbitrary vectort. In other words, such a lattice (call itLrt ) is the union
of grids of sizesr · 2n, n ∈ Z, having t as their reference point. It is clear that
the set of all possible calibers naturally corresponds to the interval [1,2). For our
purpose, the most appropriate measure on this interval turns out to bedr/r. This
makes all other possible choices of intervals (e.g., [2n,2n+1)) have the same mea-
sure (i.e., log 2).

We introduce kernels

k r :=
∞∑

n=−∞
F r·2n .

This sum is well-defined because, as a function, it is equal (by our previous asser-
tion) to

∞∑
n=−∞

1

r 2 · 22n
F

( ·
r · 2n

)
= 1

r 2

∞∑
n=−∞

1

4n
F

( ·
r · 2n

)
.
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Since the functionF is bounded and of compact support, the series converges ab-
solutely onR2 and uniformly outside any neighbourhood of the origin. It is easy
to see that the series converges in the sense of distributions tok r when understood
as a distribution in the following sense. Letφ be a test function from the Schwartz
classS and letx = (x1, x2); then

(φ, k r) = lim
ε→0

∫
|x|>ε

φ(x)k r(x) dx.

We would like to show thatk r defines a bounded convolution operator—more
precisely, that it is a strong limit of its partial sums.

Thatk r∗ is a sum of operators obtained by averaging over grids of sizer · 2n
hints atk r∗ itself being an average, this time overunionsof these grids (i.e., lat-
tices of caliberr). Here we present what exactly we have in mind by that.

ForM ∈Z, let theMth partial sum of the seriesk r be

k rM :=
M∑

n=−∞
F r·2n .

Lemma 1. Functionk rM defines a bounded convolution operator onL2(w). The
limit k r∗ := limM→∞ k rM∗ exists in the strong sense and also gives rise to a
bounded operator onL2(w).

Proof. For the sake of simplicity we will assume thatr = 1; the proof does not
change at all for generalr. We start with a formal definition:

k1
M ∗ f =

( M∑
n=−∞

F 2n
)
∗ f =

M∑
n=−∞

1

4n

∫
[0,2n]2

P2n
t f dt (5)

by Proposition 2. At this point we will need the following observation:For any
n,M ∈Z with n ≤ M, we have

1

4n

∫
[0,2n]2

P2n
t f dt =

1

4M

∫
[0,2M ]2

P2n
t f dt.

This time we simplify the proof by takingM = 0. Then the square [0,1]2 con-
sists of exactly 4−n dyadic squares of size 2n. The integral

∫
P2n
t f dt over each of

them equals the integral over [0,2n]2 owing to the invariance of the measure on
�2n with respect to the map on�2n ≡ R2/2nZ2 that is induced by the shift onR2.

Since the sum of integrals over these squares equals the integral over their union,
which is [0,1]2, we have proved this part of the statement.

This enables us to rewrite (5) as
M∑

n=−∞

1

4M

∫
[0,2M ]2

P2n
t f dt,

which is equal to
1

4M

∫
[0,2M ]2

M∑
n=−∞

P2n
t f dt.
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Let us explain why we were able to exchange the order of integration and sum-
mation in the last step. Again we do this forM = 0 only.

We need to show that theL2(w) norm of the difference∫
[0,1]2

0∑
n=−∞

P2n
t f dt −

0∑
n=−N

∫
[0,1]2

P2n
t f dt =

∫
[0,1]2

∑
n<−N

P2n
t f dt

is small ifN ∈N is large.

Lemma 2. For every functionf ∈L2(w) withw ∈A2 and for everyt ∈R2,

lim
N→∞

∥∥∥∥ ∑
|n|≥N

P2n
t f

∥∥∥∥
L2(w)

= 0.

Proof. A collection{en | n∈Z} of vectors in a Hilbert spaceH is said to give rise
to aRiesz basisof H if there areM,m > 0 such that, for any sequence(λn)n∈Z of
scalars, we have the double-sided inequality

m
∑
n∈Z
‖λnen‖2 ≤

∥∥∥∥∑
n∈Z

λnen

∥∥∥∥2

≤ M
∑
n∈Z
‖λnen‖2.

It is a known fact that

w ∈A2 ⇐⇒ Haar functions form a Riesz basis inL2(w). (∗)
For everyN ∈N, define a measurable functiongN : R2→ C by

gN(t) =
∥∥∥∥ ∑
|n|≥N

P2n
t f

∥∥∥∥
L2(w)

.

We claim that, for anyt ∈R2,

lim
N→∞ gN(t) = 0. (6)

In order to prove this statement, chooset ∈R2 and consider the translation oper-
atorSt . Then ∑

|n|≥N
P2n
t = S−t

∑
|n|≥N

P2n
0 St ,

as we saw in Remark 1. Thus

gN(t) =
∥∥∥∥ ∑
|n|≥N

P2n
0 (Stf )

∥∥∥∥
L2(Stw)

≤
∥∥∥∥ ∑
|n|≥N

P2n
0

∥∥∥∥
B(L2(Stw))

‖Stf ‖L2(Stw).

We can estimate the first term on the right by using (1) to obtain that it is less than
or equal toCQStw,2. Referring once more to Remark 1, we getQStw,2 = Qw,2 and
so conclude that

gN(t) ≤ CQw,2‖f ‖L2(w) (7)

for all t ∈R2 and allN ∈N. TakingN = 0, the statement(∗) implies that
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n∈Z

∑
Q∈G2n

t

(‖〈f, hIQ〉hIQ‖2L2(w)
+ ‖〈f, hJQ〉hJQ‖2L2(w)

) <∞,

so
lim
N→∞

∑
|n|≥N

∑
Q∈G2n

t

(‖〈f, hIQ〉hIQ‖2L2(w)
+ ‖〈f, hJQ〉hJQ‖2L2(w)

) = 0.

Again by(∗) it follows that

lim
N→∞

∥∥∥∥ ∑
|n|≥N

P2n
t f

∥∥∥∥
L2(w)

= 0,

which is exactly the statement in (6). This proves Lemma 2.

By (7), the functionsgN are all bounded; hence the dominated convergence theo-
rem implies that

lim
N→∞

∫
[0,1]2

gN(t) dt =
∫

[0,1]2
lim
N→∞ gN(t) dt.

But now equation (6) yields that

lim
N→∞

∫
[0,1]2

∥∥∥∥ ∑
|n|≥N

P2n
t f

∥∥∥∥
L2(w)

dt = 0.

We can do the same for
∑

n<−N instead of
∑
|n|≥N, which is how we justify re-

versing the order of integration and summation (see p. 425). So we were indeed
right to claim that

k1
M ∗ f =

1

4M

∫
[0,2M ]2

M∑
n=−∞

P2n
t f dt.

The integrands all satisfy (a two-dimensional version of ) the inequality (1), so we
may conclude thatk1

M∗ does, too. This proves the first part of Lemma 1.
Now takef ∈ L2(w). Let us verify that{k1

M ∗ f | M ∈ N} form a Cauchy se-
quence inL2(w). ChooseM,N ∈N with N ≤ M and compute the difference

(k1
M − k1

N) ∗ f =
1

4M

∫
[0,2M ]2

M∑
n=−∞

P2n
t f dt −

1

4N

∫
[0,2N ]2

N∑
n=−∞

P2n
t f dt

= 1

4M

∫
[0,2M ]2

M∑
n=−∞

P2n
t f dt −

1

4M

∫
[0,2M ]2

N∑
n=−∞

P2n
t f dt

= 1

4M

∫
[0,2M ]2

M∑
n=N+1

P2n
t f dt.

This difference is small ifM andN are sufficiently large, which basically follows
from Lemma 2 as well. On the other hand, by choosingf from the Schwartz class
S we can use the fact thatk1

M converges tok1 in the sense of distributions, and
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hence we may conclude thatk1
M ∗ f → k1 ∗ f pointwise. Herek1 ∗ f is under-

stood as the convolution of a distribution and a test function. In particular, for
f ∈S we have

k1 ∗ f = lim
M→∞

1

4M

∫
[0,2M ]2

M∑
n=−∞

P2n
t f dt (8)

and similarly for all otherr ∈ [1,2). Reasoning in the same way as before, we see
that (1) is fulfilled withk1 in place ofTσ .

This finishes the proof of Lemma 1.

Remark 2. To understand distributionk1 better, one can notice that its Fourier
transform is a bounded function. In fact, using the previous reasoning withw = 1,
we conclude thatf 7→ k1 ∗ f is a bounded operator onL2(R2).

Note that the integrand in (8) is the sum∑
Q

[〈f, hIQ〉hIQ − 〈f, hJQ〉hJQ],

whereQ runs over a “truncated lattice”—that is, the union of grids of sizes 2n

(−∞ < n ≤ M) and with reference points int. Since the square [0,2M ]2 repre-
sents all possible reference points for such unions, the expression under the limit
sign in (8) means exactly averaging over these unions. But whenM → ∞, the
“truncated” lattice becomes “complete”. Thus we may understand the limit (8)—
and, more generally, the convolution withk r—as the result of averaging over all
lattices of caliberr. Since our operators over lattices are bounded in the sense of
(1), the same is true ofk r∗.

Averaging operatorsk r∗—that is, integratingk r with respect todr/r (again in
the strong sense, i.e., on any fixed test functionf )—gives us a convolution oper-
ator once again. Call its kernelk. Then

k(x) =
∫ 2

1
k r(x)

dr

r
=
∫ 2

1

∞∑
n=−∞

F r·2n(x)
dr

r
=

∞∑
n=−∞

∫ 2

1
F r·2n(x)

dr

r

=
∞∑

n=−∞

∫ 2n+1

2n
F s(x)

ds

s
=
∫ ∞

0
F s(x)

ds

s
. (9)

Since the integral
∫ 2

1 dr/r is finite and the estimate (1) holds for allk r∗, it also
holds fork∗. Thus we have been able to represent the operatork∗ as a result of
averaging our “brick” operatorsPρt over lattices of all calibers.

Observe that there is a mapm : S1→ C such that

k(x) = m(x/|x|)
|x|2 (10)

for all x ∈R2. Taking unimodular vectors yieldsm = k|S1. For existence of such
m it suffices to show that the function|x|2k(x) depends only on the direction of
x. So takex = (x1, x2)∈R2 andλ > 0. We use Proposition 2 to compute
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k(λx) =
∫ ∞

0
Fρ(λx)

dρ

ρ
=
∫ ∞

0
F

(
λx

ρ

)
dρ

ρ3

=
∫ ∞

0

[
α

(
λx1

ρ

)
β

(
λx2

ρ

)
− β

(
λx1

ρ

)
α

(
λx2

ρ

)]
dρ

ρ3
.

Clearly, we must now introduce the variableµ := ρ/λ. We obtain

k(λx) = 1

λ2

∫ ∞
0

[
α

(
x1

µ

)
β

(
x2

µ

)
− β

(
x1

µ

)
α

(
x2

µ

)]
dµ

µ3
= 1

λ2
k(x),

which is what we wanted.

Remark 3. Observe thatk is an even function, because so areα andβ. Therefore,
m is even onS1 as well.

We are able to compute functionm. Namely, the equality just displayed im-
plies thatm(eiϕ) = M(cosϕ, sinϕ)−M(sinϕ, cosϕ) = M(eiϕ)−M(ei(π/2−ϕ)).
Computation shows that

M(cosϕ, sinϕ) = 1

cos2 ϕ
8(cotϕ),

where

8(a) =


a2/6− a3/4 if 0 < a ≤ 1/2,

a3/12− a2/6−1/(48a)+1/12 if 1/2 ≤ a ≤ 1,

1/(16a)−1/12 if a ≥ 1.

For a < 0, the function8 is defined by the requirement that it be even. Finally,
let9(a) = (1+ a−2)8(a). We have thus acquired the formula

m(eiϕ) = 9(cotϕ)−9(tanϕ).

Clearly, functionm is continuous on the sphereS1 and sok is continuous onR2\{0}.
Recall that we are aiming at the operatorT, which is the convolution with 1/z2.

Its kernel can be written in polar coordinates ase−2iϕ/r 2. Comparing this to equa-
tion (10), wherek(re iϕ) = m(eiϕ)/r 2, we suspect that it would be useful to find a
suitable way of transformingm(eiϕ) into the functione−2iϕ.

Denotingh(ζ) = ζ−2 for ζ ∈ S1, we have

(m ∗ h)(e iϕ) =
∫ π

−π
m(eiψ)e−2i(ϕ−ψ) dψ

= e−2iϕ
∫ π

−π
m(eiψ)e2iψ dψ

= h(eiϕ)
∫ π

−π
m(eiψ)[cos 2ψ + i sin 2ψ ] dψ.

Becausem is an even function on [−π, π] (sinceα andβ are even onR), the in-
tegral

∫ π
−π m(e

iψ) sin 2ψ dψ is equal to zero. Our expression thus simplifies to

h(eiϕ)

∫ π

−π
m(eiψ) cos 2ψ dψ.
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Hence

h = m ∗ h
c

, (11)

where

c =
∫ π

−π
m(eiψ) cos 2ψ dψ.

Notice that (11) gives essentially the representation of the kernelt(re iφ) of the
Ahlfors–Beurling operator as a linear combination of kernelsr−2[9(cot(θ−ϕ))−
9(tan(θ − ϕ))] with coefficientse−2iϕ/c, where9 is defined (see Remark 3) by a
slightly awkward piecewise expression.

5. The Main Calculation

We come to the main point of our work. It needs to be verified thatc 6= 0. If this
is so (and we will see that it is), then (11) represents our singular operatorT as
the “average” of martingale transformsTσ (actually their analogues, built with the
help of thePρt ).

Recall from (9) and (10) that

m(eiψ) =
∫ ∞

0
Fρ(eiψ)

dρ

ρ
=
∫ ∞

0
F

(
eiψ

ρ

)
dρ

ρ3
.

Hence

c =
∫ ∞

0

∫ 2π

0
F

(
eiψ

ρ

)
cos 2ψ

ρ3
dψ dρ.

Takingr = 1/ρ yields

c =
∫ ∞

0

∫ 2π

0
F(reiψ)r cos 2ψ dψ dr.

In Cartesian coordinates, this integral reads

c =
∫
R

∫
R
F(x, y)

x 2 − y2

x 2 + y2
dx dy.

In Proposition 1 we saw that

F(x, y) = α(x)β(y)− β(x)α(y),
which leads to expressing our integral as

c = 2
∫
R

∫
R
α(x)β(y)

x 2 − y2

x 2 + y2
dx dy.

Sinceα andβ are even functions supported on the interval [−1,1], we obtain

c = 8
∫ 1

0

∫ 1

0
α(x)β(y)

x 2 − y2

x 2 + y2
dx dy.

We shall evaluatec by computing the inner integral first.
Figure 2 (see p. 422) shows thatβ(y) = 1− y on interval [0,1]. We may com-

bine this with the identity
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x 2 − y2

x 2 + y2
= 1− 2y2

x 2 + y2

and the observation (which follows from Figure 1) that
∫ 1

0 α(x) dx = 0 to arrive at

c = 16
∫ 1

0
y2(y −1)

∫ 1

0

α(x)

x 2 + y2
dx dy.

Fory > 0, computation returns

C(y) :=
∫ 1

0

α(x)

x 2 + y2
dx

= 1

y

(
2 arctan

1

2y
− arctan

1

y

)
+
(

1

2
log(y2 +1)+ 3 logy + 4 log 2− 2 log(4y2 +1)

)
.

We now need only evaluate the integral∫ 1

0
y2(y −1)C(y) dy.

We can directly calculate this integral to find that it equals

1

12

(
arctan 2− 4 arctan 0.5+ 15

8
log 5− 4 log 2

)
,

which is approximately−0.042.
This fact enables us to state our main result as follows.

Theorem 1. For anyA2 weightw, the operatorT of convolution with kernelz−2

satisfies the boundedness condition

‖T ‖L2(w)→L2(w) ≤ CQw,2,

where the constantC does not depend on the weight.

Proof. Forψ ∈ [−π, π], letUψ : C→ C be defined byUψ(ζ) := ζe−iψ and de-
notekψ := k B Uψ. If we denote bySψ the mappingSψf = f B U−ψ and ifKψ
stands for the convolution operator with kernelkψ, then we can easily verify the
similarity relation

Kψ = S−1
ψ K0Sψ.

Since the operatorK0 of convolution withk is bounded inL2(Sψw), as we saw
on page 427, and since eachSψ is an isometryL2(w) → L2(Sψw), it follows
that the operatorsKψ again belong toB(L2(w)), whose norms can be uniformly
estimated by the norm ofK0.

Choosen ∈ N and let−π/2 = ψ0 < ψ1 < · · · < ψn = π/2 be a subdivi-
sion of the interval [−π/2, π/2] such that1ψj := ψj − ψj−1 < 2π/n for j =
1, . . . , n. Put
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T ′n := 1

c

n∑
j=1

e−2iψj1ψjKψj .

This definition, applied to alln∈N, determines aboundedfamily of operators in
B(L2(w)). Hence there is a subsequence that converges weakly to some operator,
call it T ′.

Letf, g be two smooth functions whose supports aredisjoint compact sets. We
would like to show that〈Tf, g〉w = 〈T ′f, g〉w.

First we make the following computation:

1

c

∫
R2
f(x − s)

∫ π

−π
e−2iψkψ(s) dψ dm2(s)

= 1

c

∫
R2
f(x − s) 1

|s|2
∫ π

−π
e−2iψm

(
s

|s|e
−iψ
)
dψ dm2(s).

From (11) we see that this is equal to

1

c

∫
R2
f(x − s) 1

|s|2 · c · h
(
s

|s|
)
ds,

so in fact we have∫
R2
f(x − s) 1

z(s)2
ds =

(
f ∗ 1

z2

)
(x) = (Tf )(x).

After the change of variable we get that

(Tf )(x) = 1

c

∫
R2
f(s)

∫ π

−π
e−2iψkψ(x − s) dψ dm2(s).

Denoting byF andG the supports off andg, respectively, this equality yields

〈Tf, g〉w =
∫
G

1

c

∫
F
f(s)

∫ π

−π
e−2iψkψ(x − s) dψ ds g(x)w(x) dx.

On the other hand,

〈T ′nf, g〉w =
∫
G

1

c

∫
F
f(s)

n∑
j=1

e−2iψj1ψjkψj (x − s) ds g(x)w(x) dx.

Thus

〈Tf, g〉w − 〈T ′nf, g〉w
=
∫
G

1

c

∫
F
f(s)

[ ∫ π

−π
e−2iψkψ(x − s) dψ

−
n∑
j=1

e−2iψj1ψjkψj (x − s)
]
ds g(x)w(x) dx

and hence, for everyε > 0, we have

|〈Tf, g〉w − 〈T ′nf, g〉w| ≤ ε
1

|c|
∫
F
|f(s)| ds

∫
G
|g(x)|w(x) dx
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if n∈N is sufficiently large. It follows that

|〈Tf, g〉w − 〈T ′nf, g〉w|

≤ ε

|c| ‖f ‖L2(w)‖g‖L2(w)

(∫
F
w(s)−1ds

)1/2(∫
G
w(x) dx

)1/2

.

SinceF andG are compact sets, there is a squareE such thatF ∪ G ⊂ E. This
enables us to estimate(∫

F
w(s)−1ds

)1/2(∫
G
w(x) dx

)1/2

≤
(∫

E

w(s)−1ds ·
∫
E

w(x) dx

)1/2

= (|E|〈w−1〉E|E|〈w〉E)1/2 ≤ |E|Q1/2
w,2.

We have proved that, for everyε > 0, there is ann0 ∈N such thatn ≥ n0 implies

|〈Tf, g〉w − 〈T ′nf, g〉w| ≤ ε
|E|
|c| ‖f ‖L2(w)‖g‖L2(w)Q

1/2
w,2,

which of course means that〈Tf, g〉w = 〈T ′f, g〉w for anyf, g ∈C∞ with disjoint
compact supports.

From here it is easy to see thatT − T ′ = Mω, the multiplication operator by
someω ∈L∞(R2). Note that ourω does not depend onw. Finally,

‖T ‖L2(w)→L2(w) ≤ ‖T ′‖L2(w)→L2(w) + ‖Mω‖L2(w)→L2(w).

OperatorT ′ is a weak limit of operators whose norms are uniformly bounded by
C ·Qw,2. Also,

‖Mω‖L2(w)→L2(w) ≤ ‖ω‖∞ ≤ ‖ω‖∞Qw,2

because, by Hölder’s inequality,Qw,2 ≥ 1 for all weightsw. We conclude that
there is a constantC ′ > 0 such that

‖T ‖L2(w)→L2(w) ≤ C ′ ·Qw,2

for all w ∈A2.

We have thus proved our main estimate. To finish the proof of Theorem 1, it
is enough to show thatω = 0. Fix a compact setK and letR be a large num-
ber. ConsiderψR smooth with compact support, which is 1 on the disc of radiusR

centered at the origin, 0 outside of the disc of radiusR+1, and has a bounded gra-
dient (independent ofR). It is easy to see thatTψR(x)→ 0 asR tends to infinity,
and it is easy to see thatT ′nψR(x) → 0 uniformly in n andx ∈ K. In particular,
‖T ′nψR‖L∞ ≤ ε(R) and‖TψR‖L∞ ≤ ε(R). Fixing a measurable subsetE of K
and using the fact that(T − T ′)ψR = ωψR = ω onK, we can write∣∣∣∣∫ ωχE dx

∣∣∣∣ = |〈(T − T ′)ψR, χE〉| ≤ 2ε(R)|E|,

which tends to zero whenR grows to infinity. Hence
∫
E
ω dx = 0 for any mea-

surable subsetE of K. We conclude thatMω = 0. SoT = T ′, and Theorem 1 is
completely proved.
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6. Sharpness

We still need to show that this estimate is sharp in the same sense that the esti-
mate (1) was. For this purpose we shall need the following auxiliary result, which
can be proved by direct simple calculation.

Lemma 3. Let |α| < 2 and definew : R2→ [0,∞) byw(x) = |x|α. Then there
exist constantsM,m > 0, not depending onα, such that

m

4− α2
≤ Qw,2 ≤ M

4− α2
.

Now we are ready to prove the sharpness. Calculations of this kind have already
been made for other singular integral operators but not forT, so we include this
calculation for the sake of completeness.

Proposition 3. Let φ : R → (0,∞) grow more slowly than a linear function.
Then there is a weightw ∈A2 and a functionf ∈L2(w) such that

‖Tf ‖L2(w) > φ(Qw,2)‖f ‖L2(w). (12)

Proof. For |α| < 2, definew(z) = |z|α. (The restriction onα is needed ifw is
to satisfy theA2 condition.) Furthermore, letE = {(r, ϕ) | 0 < r < 1, 0 < ϕ <

π/2}, letX = −E, and letf(z) = |z|−αχE.
We shall estimate the left and right sides (actually, their squares) of inequal-

ity (12). Thus we begin by

‖Tf ‖2
L2(w)
=
∫∫

R2
|(f ∗ z−2)(x, y)|2w(x, y) dx dy

≥
∫∫

X

|(f ∗ z−2)(x, y)|2w(x, y) dx dy

=
∫∫

X

∣∣∣∣∫∫
E

(s2 + t 2)−α/2

[(x − s)+ i(y − t)]2
ds dt

∣∣∣∣2(x 2 + y2)α/2 dx dy. (13)

We use the identity

1

[(x − s)+ i(y − t)]2
= (x − s)2 − (y − t)2

[(x − s)2 + (y − t)2]2
− i 2(x − s)(y − t)

[(x − s)2 + (y − t)2]2

to estimate the square of the modulus of the inner integral (i.e., the one overE)

from above by the square of its imaginary part, that is, by(∫∫
E

2(x − s)(y − t)
[(x − s)2 + (y − t)2]2

(s2 + t 2)−α/2 ds dt

)2

.

Since(x, y)∈X and(s, t)∈E, we have

(x − s)(y − t) ≥ xy.
The bound for the denominator comes from the triangle inequality:
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[(x − s)2 + (y − t)2]2 = |(x, y)− (s, t)|4 ≤ (|(x, y)| + |(s, t)|)4.
Therefore,∣∣∣∣∫∫

E

(s2 + t 2)−α/2

[(x − s)+ i(y − t)]2
ds dt

∣∣∣∣2 ≥ 4x 2y2

(∫∫
E

(s2 + t 2)−α/2

(|(x, y)| + |(s, t)|)4 ds dt
)2

= π2x 2y2

(∫ 1

0

r−α

(|(x, y)| + r)4 r dr
)2

.

By takingu = r/|(x, y)|, we can continue with

π2x 2y2

(
|(x, y)|−α−2

∫ 1/|(x,y)|

0

u1−α

(1+ u)4 du
)2

≥ π2x 2y2

(x 2 + y2)α+2

(∫ 1

0

u1−α

(1+1)4
du

)2

= π2

256(2− α)2 ·
x 2y2

(x 2 + y2)α+2
.

Now the integral (13) can be estimated as

≥ π2

256(2− α)2
∫∫

X

x 2y2(x 2 + y2)α/2−α−2 dx dy = Cl

(2− α)3 , (14)

where

Cl = π2

256

∫ π/2

0
cos2 ϕ sin2 ϕ dϕ.

The (square of the) right-hand side of (12) reads

φ(Qw,2)
2‖f ‖2

L2(w)
= φ(Qw,2)

2
∫∫

R2
|f(x, y)|2w(x, y) dx dy

= φ(Qw,2)
2
∫∫

E

(x 2 + y2)−α(x 2 + y2)α/2 dx dy

= φ(Qw,2)
2
∫ π/2

0

∫ 1

0
r−2α+α r dr dϕ

= φ(Qw,2)
2 · π

2
· 1

2− α .
Our goal is to arrange suchα that the expression on the right will be exceeded

by that in (14). That is, we aim to solve the inequality

Cl

(2− α)3 >
π

2
φ(Qw,2)

2 · 1

2− α
or

1

2− α > C ′φ(Qw,2)

for a given constantC ′. It suffices to show that

lim
α→2−

(2− α)φ(Qw,2) = 0

or, equivalently, that
lim
α→2−

(4− α2)φ(Qw,2) = 0.
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By Lemma 3,

Qw,2 � 1

4− α2
.

Combining this with the assumption on the growth ofφ completes the proof.

References

[1] K. Astala, T. Iwaniec, and E. Saksman,Beltrami operators in the plane,Duke Math. J.
107 (2001), 27–56.

[2] R. Bañuelos and P. J. Méndez-Hernández,Space-time Brownian motion and the
Beurling–Ahlfors transform,Indiana Univ. Math. J. (to appear).

[3] R. Bañuelos and G. Wang,Sharp inequalities for martingales with applications to the
Beurling–Ahlfors and Riesz transforms,Duke Math. J. 80 (1995), 575–600.

[4] T. Iwaniec,Extremal inequalities in Sobolev spaces and quasiconformal mappings,
Z. Anal. Anwendungen 1 (1982),1–16.

[5] F. Nazarov and A. Volberg,Heating of the Ahlfors–Beurling operator and the estimates
of its norms,St. Petersburg Math. J. (to appear).

[6] S. Petermichl, S. Treil, and A. Volberg,Why the Riesz transforms are averages of the
dyadic shifts,Proceedings of the 6th harmonic analysis conference (El Escorial), Publ.
Mat. (to appear).

[7] S. Petermichl and A. Volberg,Heating of the Ahlfors–Beurling operator: Weakly
quasiregular maps on the plane are quasiregular,Duke Math. J. 112 (2002), 281–305.

[8] W. Rudin,Functional analysis,McGraw-Hill, New York, 1991.
[9] J. Wittwer,A sharp estimate on the norm of the martingale transform,Math. Res.

Lett. 7 (2000),1–12.

O. Dragičević
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