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Möbius Transformations, the Carathéodory Metric,
and the Objects of Complex Analysis and

Potential Theory in Multiply Connected Domains

Steven R. Bell

1. Introduction

Let fb denote the Riemann mapping function associated to a pointb in a simply
connected planar domain� 6= C. Everyone knows thatfb is the solution to an ex-
tremal problem; it is the holomorphic maph of� into the unit disc such thath′(b)
is real and as large as possible. Everyone knows also that all the mapsfb can be
expressed in terms of a single Riemann mapfa associated to a pointa ∈� via

fb(z) = λ fa(z)− fa(b)
1− fa(z)fa(b)

, (1.1)

where the unimodular constantλ is given by

λ = f ′a(b)
|f ′a(b)|

.

In this paper, I shall prove that solutions to the analogous extremal problems on
a finitely multiply connected domain in the plane, the Ahlfors mappings, can be
expressed in terms of justtwofixed Ahlfors mappings. Many similarities with for-
mula(1.1) in thesimply connected case will become apparent, and I will explore
some of the algebraic objects that present themselves. A by-product of these con-
siderations will be that the infinitesimal Carathéodory metric on a multiply con-
nected domain is simply a rational combination of two Ahlfors maps times one of
their derivatives. I will explain an outlook that reveals a natural way to view the
extremal functions involved in the definition of the Carathéodory metric “off the
diagonal” in such a way that they extend to�̂× �̂, where�̂ is the double of�.

I will also investigate the complexity of the classical Green’s function and
Bergman kernel associated to a multiply connected domain. In particular, it is
proved in Section 6 that if� is a finitely connected domain in the plane such that
no boundary component is a point, then there exist two Ahlfors mapsfa andfb
associated to� such that the Bergman kernel for� is given by

K(w, z) = f ′a(w)f ′a(z)
(1− fa(w)fa(z))2

( N∑
j,k=1

λjkHj(w)Hk(z)

)
,
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where the functionsHj are rational combinations of the two Ahlfors mapsfa and
fb. Future avenues of research include the problem of extending these results to
finite Riemann surfaces and the problem of determining the way in which the ra-
tional functions that arise in these formulas depend on the domain.

2. The Smooth Case

To get started, we shall assume that� is a boundedn-connected domain in the
plane withC∞-smooth boundary consisting ofn nonintersecting curves. (Later,
we shall consider generaln-connected domains such that no boundary component
is a point.) LetS(z,w) denote the Szeg˝o kernel associated to� (see [3] or [8] for
definitions and standard terminology in what follows).

Fix a pointa in� so that then−1zeroesa1, . . . , an−1 of S(z, a) in thez-variable
are distinct simple zeroes. (That such pointsa form an open dense subset of�was
proved in [2].) Leta0 be equal toa. It was proved in [4, Thm. 3.1] that the Szeg˝o
kernel can be expressed in terms of then + 1 functions of one variable,S(z, a),
fa(z), andS(z, ai), i = 1, . . . , n−1, via the formula

S(z,w) = 1

1− fa(z)fa(w)
n−1∑
i,j=0

cijS(z, ai)S(w, aj ), (2.1)

wherefa(z) denotes the Ahlfors map associated to(�, a) and where the coeffi-
cientscij are given as the coefficients of the inverse matrix to then × n matrix
[S(aj, ak)]. A similar formula for the Garabedian kernel was proved in [5],

L(z,w) = fa(w)

fa(z)− fa(w)
n−1∑
i,j=0

cijS(z, ai)L(w, aj ), (2.2)

where the constantscij are the same as the constants in (2.1).
Given a pointw ∈ �, the Ahlfors mapfw associated to the pair(�,w) is a

proper holomorphic mapping of� onto the unit disc. It is ann-to-one mapping
(counting multiplicities), it extends to be inC∞(�̄), and it maps each boundary
curve of� one-to-one onto the unit circle. Furthermore,fw(w) = 0, andfw is
the unique function mapping� into the unit disc maximizing the quantity|f ′w(w)|
with f ′w(w) > 0. The Ahlfors map is related to the Szeg˝o kernel and Garabedian
kernel via

fw(z) = S(z,w)

L(z,w)
(2.3)

(see [3, p. 49]).
When equations (2.1) and (2.2) are substituted into (2.3), we obtain the mon-

strosity

fw(z) = fa(z)− fa(w)
fa(w)(1− fa(z)fa(w))

∑n−1
i,j=0 cijS(z, ai)S(w, aj )∑n−1
i,j=0 cijS(z, ai)L(w, aj )

.
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Next, divide the numerator and the denominator of the second quotient in this ex-
pression byS(z, a)S(w, a) and multiply the whole thing by one in the form of
S(w, a)/S(w, a) to obtain

fw(z) = fa(z)− fa(w)
fa(w)(1− fa(z)fa(w))

(∑n−1
i,j=0 cij

S(z,ai )

S(z,a)
S(w, aj )/S(w, a)∑n−1

i,j=0 cij
S(z,ai )

S(z,a)
L(w, aj )/S(w, a)

)
S(w, a)

S(w, a)
.

It is not hard to show thatfa(z) and quotients of the formS(z, ai)/S(z, a) and
L(z, ai)/S(z, a) extend to the doublê� of � as meromorphic functions (see [7,
p. 6]). Since the argument is quick and simple, we give it here. LetR(z) denote
the antiholomorphic reflection function on̂� that maps� into the reflected copy
of �. Note thatfa(z) is equal to 1/fa(z) on b�, which is equal to 1/fa(R(z))
there. Hence, the holomorphic functionfa(z) on� and the meromorphic function
1/fa(R(z)) on the complement of� in �̂ both extend continuously up tob� and
have the same values there. Hencefa extends meromorphically to the double. Sim-
ilar reasoning can be applied to the quotients as follows. The Garabedian kernel
is related to the Szeg˝o kernel via the identity

1

i
L(z, a)T (z) = S(a, z) for z∈ b� anda ∈�, (2.4)

whereT(z) denotes the complex number of unit modulus pointing in the tan-
gent direction atz ∈ b� chosen so thatiT (z) represents an inward-pointing nor-
mal vector to the boundary. Hence,S(z, ai)/S(z, a) is equal to the conjugate of
L(z, ai)/L(z, a) on the boundary, and the same reasoning used previously for
fa shows thatS(z, ai)/S(z, a) extends to the double meromorphically. Similarly
L(z, ai)/S(z, a) is equal to the conjugate ofS(z, ai)/L(z, a) on the boundary, and
this shows thatL(z, ai)/S(z, a) extends to the double meromorphically.

It is proved in [6] that it is possible to choose a second Ahlfors mapfb so that
fa andfb generate the field of meromorphic functions on�̂. (Such a pair is called
a primitive pair; see [1] and [9]). Hence, we have now shown that there exists a
rational function onC6 such that

fw(z) = λ(w)R(fa(z), fb(z), fa(w), fb(w), fa(w), fb(w)), (2.5)

whereλ(w) is the unimodular function given by

λ(w) = S(w, a)/S(w, a).
This formula is reminiscent of the formula for the Riemann maps mentioned at the
beginning of this paper. It now becomes irresistible to drop the factorλ(w) from
equation (2.5) and to define a functionF(z,w) via

F(z,w) = fw(z)/λ(w).
Let us call this function thealternatively normalized Ahlfors map.Under this nor-
malization, the mapz 7→ F(z,w) has a derivative atw with extremal modulus;
however, the argument of the derivative is−argλ(w) there instead of zero. This
family of extremal maps has the astonishing feature that it extends in a unique way
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to�̂×�̂as a complex rational function offa(z), fb(z),andfa(w), fb(w), fa(w),
fb(w). Furthermore, this extension is meromorphic inz and real-analytic inw. One
might also glimpse some semblance of an analogue of a Möbius function in these
deliberations, and we shall come back to this point later in the paper.

Another important consequence of formula (2.5) is that the infinitesimal Cara-
théodory metric can be expressed in terms of twoAhlfors maps. In fact, it is shown
in [6, p. 344] that the quotientf ′b(z)/f ′a(z) extends to be meromorphic on the dou-
ble of� and is therefore a rational combination offa(z) andfb(z). Hence, if we
differentiate (2.5) with respect toz and take the modulus of the expression, we
obtain that|f ′w(z)| is given by|f ′a(z)| times the modulus of a rational function of
fa(z), fb(z), fa(w), fb(w), fa(w), andfb(w). Now, if we setw = z, we may
conclude that the infinitesimal Carathéodory metric is given byρ(z)|dz|, where

ρ(z) = |f ′a(z)||Q(fa(z), fb(z), fa(z), fb(z))|;
hereQ is a rational function onC4.

Many questions present themselves at this point. The preceding formula for the
infinitesimal Carathéodory metric almost looks exact. Might there exist special
multiply connected domains where the Carathéodory metric could be computed
as easily as it is in the unit disk? Another natural question to ask is whether or not
similar formulas hold for finite Riemann surfaces. Ahlfors mappings are available
in this setting, but the relationship between these maps and the kernel functions
used in the proof in the planar case are not as straightforward. New methods of
proof would have to be discovered.

3. The Nonsmooth Case

Suppose that� is merely ann-connected domain in the plane such that no bound-
ary component is a point. It is well known that there is a biholomorphic mapping
φ that maps� one-to-one onto a bounded domain�a in the plane with smooth
real-analytic boundary. The standard construction yields a domain�a that is a
boundedn-connected domain withC∞-smooth boundary whose boundary con-
sists ofnnonintersecting simple closed real analytic curves. Let subscript or super-
script a indicate that a kernel function or mapping is associated to�a; kernels
without sub- or superscripts are associated to�. It is well known that the function
φ ′ has a single-valued holomorphic square root on� (see [3, p. 43]). We define
the Szeg˝o kernel and Garabedian kernel associated to� via the natural transfor-
mation formulas,

S(z,w) = √φ ′(z)Sa(φ(z), φ(w))√φ ′(w)
and

L(z,w) = √φ ′(z)La(φ(z), φ(w))√φ ′(w).
The Ahlfors map associated to a pointb ∈ � is defined to be the solution to the
extremal problem,fb : �→ D1(0) with f ′b(b) > 0 and maximal. It is easy to see
that Ahlfors maps satisfy
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fb(z) = λf aφ(b)(φ(z))
for some unimodular constantλ, and it follows thatfb(z) is a proper holomorphic
mapping of� ontoD1(0). It also follows thatfb(z) is given byS(z, b)/L(z, b)
just as in the smooth case. Now it is easy to see that all quotients appearing in the
proofs of results in Section 2 are invariant underφ, and the proofs carry over line
for line. We may now state the following theorem.

Theorem 3.1. Suppose that� is ann-connected domain in the plane such that no
boundary component is a point. Then there exist two pointsa andb in� such that
the alternatively normalized Ahlfors mapF(z,w) associated to� is a complex ra-
tional function offa(z), fb(z), andfa(w), fb(w), fa(w), fb(w). Furthermore,
the family of Ahlfors mappings is given by formula(2.5)and the infinitesimal Car-
athéodory metric is given byρ(z)|dz|, where

ρ(z) = |f ′a(z)||Q(fa(z), fb(z), fa(z), fb(z))|;
hereQ is a rational function onC4.

4. What Is a Möbius Transformation?

Here is one way to “invent” Möbius transformations. Letp(z) denote an irre-
ducible polynomial of one variable with no zeroes in the unit disc—that is, let
p(z) = z−b where|b| > 1. Notice thatp(1/z̄) is equal top(z) on the unit circle.
Let q(z) denote the polynomial obtained by multiplying the conjugate ofp(1/z̄)
by the power ofz needed to clear the poles in the unit disc (i.e.,q(z) = 1− zb̄).
Since|q(z)| = |z̄p(1/z̄)|, it follows that |q(z)| = |p(z)| on the unit circle. No-
tice thatq(z)/p(z) is a Möbius transformation (letb = 1/ā to make it look more
standard).

It is shown in [6] that every proper holomorphic mapping of a smoothn-
connected domain� onto the unit disk can be expressed as a rational combi-
nation of two Ahlfors mapsfa andfb associated to pointsa andb in �. It is an
interesting problem to determine just exactly which rational functions arise in this
manner, and it is tempting to call some of these rational functions Möbius trans-
formations. Here is one way to construct such a rational function. Let12 denote
the unit bidisc. Letp(z,w) denote an irreducible polynomial of two variables
with no zeroes in the closure of12. Notice thatp(1/z̄,1/w̄) is equal top(z,w)
on the distinguished boundary of12. SupposeN is the degree ofp(z,w) in z and
thatM is the degree inw. Let q(z,w) be the polynomial given byzNwM times
the conjugate ofp(1/z̄,1/w̄). Sinceq(z,w) andp(z,w) have the same modulus
on the distinguished boundary of12 and since|zNwM | = 1 there, it follows that
the modulus ofq(z,w)/p(z,w) is also one there. Thus, if it is not constant, then
q(fa(z), fb(w))/p(fa(z), fb(w)) is a proper holomorphic mapping of� onto the
unit disc.

More generally, the same construction can be carried out ifp(z,w) is an ir-
reducible polynomial onC2 that does not vanish on the portion of the curve
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z 7→ (fa(z), fb(z)) inside the closed unit bidisc. Can any proper map from�
to the unit disc be expressed in a similar manner, perhaps as some kind of combi-
nation of these basic maps?

5. The Poisson Kernel Extends Nicely to the Double

Of course, the Poisson kernel extends to the double by simple reflection. Here we
show that it extends nicely in both variables and in terms of some special functions
with geometric meaning.

Assume that� is a boundedn-connected domain in the plane withC∞-smooth
boundary consisting ofn nonintersecting curves. Letγ1, . . . , γn−1 denote the inner
curves and letγn denote the outer curve.

The classical Poisson kernel for� is related to the normal derivative of the
Green’s function via

p(z,w) = 1

2π

∂

∂nw
G(z,w), z∈�, w ∈ b�,

where(∂/∂nw) denotes the normal derivative in thew variable. It is a standard
fact that we may rewrite this last formula (see [3, pp. 134–136]) in the form

p(z,w) = − i
π

∂

∂w
G(z,w)T (w).

It is proved in [4, p. 1367] (see also [7, p. 12] for an easier proof ) that the derivative
of the Green’s functionGw(z,w) := ∂

∂w
G(z,w) is given by

Gw(z,w) = π S(w, z)L(w, z)
S(z, z)

+ iπ
n−1∑
j=1

(ωj(z)− λj(z))uj(w), (5.1)

where the functionsλj(z) are given by

λj(z) =
∫
w∈γj

|S(w, z)|2
S(z, z)

ds,

the functionsωj(z) are the harmonic measure functions, and the functionsuj are
a basis for the linear spanF ′ of the functionsF ′j := 2(∂ωj/∂z) normalized so that

δkj =
∫
γk

uj(w) dw.

We now show that the principal termS(w,z)L(w,z)
S(z,z)

in the expression forGw(z,w)

has the interesting property that it extends to the double of� in thez variable as
a real-analytic function that is a rational combination of two Ahlfors mapsfa(z)

andfb(z) and their conjugates. Indeed, if we substitute equations (2.1) and (2.2)
into this expression, we obtain that

S(w, z)L(w, z)

S(z, z)
= T1(z, w)T2(z, w), (5.2)

where
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T1(z, w) = (1− |fa(z)|2)fa(z)
(fa(w)− fa(z))(1− fa(w)fa(z))

and

T2(z, w) =
(∑n−1

i,j=0 cijS(w, ai)S(z, aj )
)(∑n−1

i,j=0 cijS(w, ai)L(z, aj )
)∑n−1

i,j=0 cijS(z, ai)S(z, aj )
.

The first term extends to the double as a real-analytic function becausefa does.
If we divide the numerator and denominator of the second term by|S(z, a)|2,
we observe that the numerator is a linear combination of functions that are given
as products ofL(z, an)/S(z, a) times the conjugate ofS(z, am)/S(z, a) times
S(w, aq)S(w, ak). As mentioned previously, the functionsS(z, am)/S(z, a) and
L(z, an)/S(z, a)extend meromorphically to the double and hence can be expressed
as rational functions of two Ahlfors mapsfa(z) andfb(z). The denominator is a
linear combination of functions given as the product ofL(z, an)/S(z, a) times the
conjugate ofS(z, am)/S(z, a). Hence it has these properties, too, in thez variable.

We have shown that, for fixedw, the function ofz given byS(w, z)L(w, z)/
S(z, z) is a rational combination of two Ahlfors mapsfa(z) andfb(z) and their
conjugates.

We now claim that functions of the form

S(w, aq)S(w, ak)/f
′
a(w)

extend meromorphically to the double of�. Indeed, since identity (2.4) yields
thatS(w, aq)S(w, ak)T (w) is equal to the conjugate of−L(w, aq)L(w, ak)T (w)
for w in the boundary and sinceT(w)f ′a(w)/fa(w) is equal to the conjugate of
−T(w)f ′a(w)/fa(w), we may use similar reasoning to that in [5, p. 202] and
divide these two expressions to see thatS(w, aq)S(w, ak)fa(w)/f

′
a(w) extends

meromorphically to the double. Sincefa(w) extends to the double, the claim is
proved. Now, if we were to divide the large expression on the right-hand side of
(5.2) forS(w, z)L(w, z)/S(z, z) by f ′a(w), we would deduce that

S(w, z)L(w, z)

f ′a(w)S(z, z)

is a rational combination of the two functionsfa(w), fb(w) and the four functions
fa(z) andfb(z) and their conjugates.

It is proved in [7] that there existn−1 pointswj in � such that the functions

(ωk(z)− λk(z))
are linear combinations of functions ofz of the form

Gw(z,wj )− π S(wj, z)L(wj, z)
S(z, z)

.

The functionGw(z,wj ) is harmonic inz on�−{wj }and vanishes on the boundary.
Hence, it extends to the double as a harmonic function with two singular points.
The functionS(wj, z)L(wj, z)/S(z, z) has been shown to extend to the double.
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SinceF ′j (w)T (w) is equal to the conjugate of−F ′j (w)T (w) on the boundary, the
same reasoning used previously yields that functions of the form

F ′j (w)/f
′
a(w)

extend meromorphically to the double of�. We may now state thatGw(z,w) is
given asf ′a(w) times a rational combination of the two functionsfa(w), fb(w)
and the four functionsfa(z) andfb(z) and their conjugates, plus a linear combina-
tion of the functionsGw(z,wj ) times rational combinations offa(w) andfb(w).
In symbols,

Gw(z,w) = f ′a(w)R0(fa(w), fb(w), fa(z), fb(z), fa(z), fb(z))

+ f ′a(w)
n−1∑
j=1

Gw(z,wj )Rj(fa(w), fb(w)),

where the functionsR0 andRj are rational. All the functions that constitute
Gw(z,w) extend nicely to the double exceptf ′a(w).

The results of this section can be generalized ton-connected domains with non-
smooth boundaries in the same way as in Section 3, but we shall not do this here.

6. Linearizing the Green’s Function and Bergman Kernel

In the simply connected case, the Green’s function is related to a Riemann map
f(z) by the simple formula

G(z,w) = ln

∣∣∣∣ f(z)− f(w)1− f(z)f(w)
∣∣∣∣.

In the multiply connected setting, the Green’s function is also related to Ahlfors
maps, but it is not clear if the Green’s function can be expressed naturally in terms
of maps. We saw some tantalizing evidence in the previous section that there might
be such an expression. In this section, I give some further evidence that leads me to
believe that such an expression may exist. This evidence fits nicely into the subject
matter of this paper because a genuine Möbius transformation is a key ingredient.

Suppose that� is a multiply connected domain withC∞-smooth boundary, and
let f(z) denote an Ahlfors map associated to(�, a) that has simple zeroes. Let
L(z, w) denote the function

ln

∣∣∣∣ f(z)− f(w)1− f(z)f(w)
∣∣∣∣.

We want to investigate the boundary behavior of the quotientG(z,w)/L(z, w) as
z andw are both allowed to approach the boundary. First assume thatz is a fixed
point in� and letw approach the boundary. Both the numerator and the denomi-
nator extendC∞-smoothly inw to the boundary, and the Hopf lemma reveals that
both terms vanish to first order along the boundary. Hence, the quotient extends
C∞-smoothly up to the boundary inw and the limit is given (by L’Hôpital’s rule)
as the quotient of the normal derivatives(∂/∂nw) in thew variable. Recall that
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∂

∂nw
G(z,w) = −2iGw(z,w)T (w).

SinceL is also a real-valued harmonic function that vanishes on the boundary, the
same reasoning that yields this identity can be applied to the normal derivative of
L(z, w) to obtain

∂

∂nw
L(z, w) = −2iLw(z,w)T (w) = f ′(w)(1− |f(z)|2)T (w)

i(f(w)− f(z))(1− f(z)f(w)) .

Notice the similarity of this expression withT1(z, w) in formula (5.2). We may
now divide these two normal derivatives and use (5.1) and (5.2) to obtain that

(∂/∂nw)G(z,w)

(∂/∂nw)L(z, w) =
if(z)

f ′(w)
T2(z, w)+ T3(z, w),

where

T2(z, w) =
(∑n−1

i,j=0 cijS(w, ai)S(z, aj )
)(∑n−1

i,j=0 cijS(w, ai)L(z, aj )
)∑n−1

i,j=0 cijS(z, ai)S(z, aj )

and

T3(z, w) = i(f(w)− f(z))(1− f(z)f(w))
f ′(w)(1− |f(z)|2)

n−1∑
j=1

iπ(ωj(z)− λj(z))uj(w).

Although this formula is painful to look at, a moment of suffering reveals that the
right-hand side can be written as a sum of simple terms to yield that

(∂/∂nw)G(z,w)

(∂/∂nw)L(z, w) =
∑
j

µj(z)hj(w), (6.1)

where all functionsµj extend to the double as real analytic functions and all func-
tionshj(w) extend to the double as meromorphic functions. (Note that here we
have used the fact, proved earlier, thatuj/f

′ extends to the double as a meromor-
phic function.) I view this formula as a linearization or polarization of the Poisson
kernel. I take this opportunity to state a theorem.

Theorem 6.1. Suppose that� is a bounded finitely connected domain in the
plane withC∞-smooth boundary. Then the Green’s function associated to� sat-
isfies an identity of the form

∂

∂w
G(z,w) = ∂

∂w
L(z, w)

∑
j

µj(z)hj(w),

where eachµj extends to be real analytic on the double of� and eachhj extends
to be meromorphic on the double of�.

We note that we have proved this identity whenz is in� andw is in the bound-
ary of�, but since the functions ofw in the expression are all meromorphic, the
identity extends to hold for allw in �̄.
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We now continue to deal with equation (6.1). We assume thatw is back in the
boundary, and we let thez-variable tend to a boundary point other thanw to obtain

(∂2/∂nz∂nw)G(z,w)

(∂2/∂nz∂nw)L(z, w) =
(∂2/∂z̄∂w)G(z,w)

(∂2/∂z̄∂w)L(z, w) =
if(z)

f ′(w)
T2(z, w)+ T4(z, w),

whereT2(z, w) is as before andT4(z, w) is given by

T4(z, w) = i(f(w)− f(z))(1− f(z)f(w))
f ′(w)

n−1∑
j=1

νj(z)uj(w);

hereνj(z) is equal to the limit ofiπ(ωj(z)− λj(z))/(1− |f(z)|2) asz tends to the
boundary. Since(∂2/∂z̄∂w)G(z,w) is equal toK(w, z) and(∂2/∂z̄∂w)L(z, w) is
equal to

f ′(w)f ′(z)
(1− f(w)f(z))2 ,

we deduce that

K(w, z) = f ′(w)f ′(z)
(1− f(w)f(z))2

(∑
j

σj(z)Hj(w)

)
,

where the sum is finite and each functionHj(w) extends to be meromorphic on
the double of�. We may assume that this sum has been collapsed so that the
functionsHj(w) are linearly independent on�. We can now exploit the hermitian
property of the Bergman kernel to easily deduce that theσj functions are actually
linear combinations of the conjugates of theHj . Hence, we have proved that

K(w, z) = f ′(w)f ′(z)
(1− f(w)f(z))2

( N∑
j,k=1

λjkHj(w)Hk(z)

)
.

We have shown only that this identity holds on the boundary, but it is clear that
it extends to the inside of the domain because all the functions that appear in the
identity are meromorphic. The fact (proved in [6]) that the field of meromorphic
functions on the double is generated by two Ahlfors maps now enables us to state
that the functionsHj are rational combinations of two Ahlfors maps. We have op-
erated under the assumption that� has smooth boundary. Finally, if� does not
have smooth boundary, we can map to a domain with smooth boundary and use
the fact that the terms in the expression forK(z,w) transform under biholomor-
phic mappings to obtain the following theorem.

Theorem 6.2. Suppose that� is a finitely connected domain in the plane such
that no boundary component is a point. Then there exist two pointsa andb in �
such that the Bergman kernel associated to� is given by

K(w, z) = f ′a(w)f ′a(z)
(1− fa(w)fa(z))2

( N∑
j,k=1

λjkHj(w)Hk(z)

)
,
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where the functionsHj are rational combinations of the two Ahlfors mapsfa
andfb and where theλjk are constants.

There are many interesting questions that present themselves at this point. The ra-
tional functions that appear in the formula in Theorem 6.2 most likely satisfy an
invariance property under biholomorphic mappings and have algebraic geometric
significance. The functionsλj have many interesting properties. I wonder if they
might be expressible as rational combinations of two Ahlfors maps and their con-
jugates. I also wonder if the Green’s function can be shown to have similar finite
complexity to all the other kernel functions that have been studied in this paper,
modulo some logarithmic expressions. It is also a safe bet that many of the results
in this paper extend to the case of finite Riemann surfaces. I leave these investi-
gations for the future.
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