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The Index of a Farey Sequence

R. R. HaLL & P. SHIU

1. Introduction and Statement of Results

LetFy = {x;,i =1 2,..., R} denote the Farey sequence of ortlethere YN =
X1 <xp<---<xp=21and

3N?2

R=Ry= ) ¢(a)="—5+ O(NIlogN). (1.2)
b
1<a<N
The sequenceéx;) may be extended ontd by definingx;, g = x; + 1 for all i.
We suppose that; = b/s and that the adjacent fractions are
Xi-1= 2 and Xit1 = S;
r t

we writer = r(x;), s = s(x;), andr = r(x;).

DerINITION.  We define thendexof the fractionx; as

1
) = L HE_ate 1.2)
K b

Thusv(x;) is an integer becaude — as = ¢s — bt = 1. In particular we have
v(x1) = 1andv(xg) = 2N. We are interested in some properties of the index,
which is a periodic function on the extended Farey sequéncei € Z}.

There are two formulae for the index: expressing it as a functiaw of andr,
or of N, s, andb. For the first formula we recall from Hall and Tenenbaum [5] that

t:s[N+r]—r. 1.3)

N

We remark that Boca, Cobeli, and Zaharescu [1] have made some very interesting
applications of (1.3). It yields immediately

N
v(x,»)z[ +r] (1.4)
S
and, since > N — s, we see that
2N +1 2N
[ - }—151)()@)5 [—] (L5)
S S
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It follows that if s|2N + 1 thenv(x;) = [2N/s]; otherwise, the index may take
the two values [%/s] and [2N/s] — 1. We refer to these as the upper and lower
values of the index. As an example, we give a table for the indice&phere
R = 28 and the index is symmetric (i.e(xz_;) = v(x;)) so that we need only
give the first 15 terms:

Y= 987659473857929 (1.6)
U(xi) = 1-7 27 2’ 2’ 3’ 1-7 47 1-’ 55 :_I-’ 37 27 1-’ 9’ 1—
The lower values have been underlined, and we remark that 1 is always a lower
value (since [&//s] > 2) and that, as in the case= 5 here, the index may be
single-valued when does not divide & + 1. In fact, it is not difficult to show
thats < N is single-valued if and only if satisfies one of the following condi-
tions: (a)s is a divisor of N, N + 1, or 2N + 1; (b) s is twice a divisor ofN or
N +1; (c) s is twice a divisor ofN + 2 or N — 1 if these numbers are odd.

For the second formula for the index, we teaindn be such that k b < s,
bb = 1 (mods), and 0< n < s, N = n (mods). Thenr = b (mods), giving

r = ps + b with B
MM
— |+ .
s s

BEG!

v(x,-)=p+q=2|:§:|+|:n_b:|+|:n:b:|. @.7)

p

Similarly, t = gs — b with

q

so that

N

The second and third terms on the right of (1.7) can take the valligdand Q 1,
respectively. Their sum can take the values0 but not both the valuesl.

Our investigation was initiated by one of us making a numerical observation
while walking in a park. The observation led us to the following theorem.

THEOREM 1. For all N, we have
R

> v(xi)=3R-1 (1.8)

i=1

We need to consider the frequency of the upper and lower values of the index, and
this leads us to another exact formula.

DeriniTION.  The deficiencys(s) is the number of fractions; € Fy with de-
nominators such that(x;) takes its lower value.

THEOREM 2. For all N, we have

N
> 8(s)=N@N+1) — Roy — 2R+ 1 (1.9)
s=1
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Thus, forN = 9, the right-hand side of (1.9) has the value 7102— 56+ 1 =
14, which is in agreement with the table in (1.6). An immediate corollary of
Theorem 2 is that the number of lower values-i§27%/3 — 6)R. The constant
here is 057973..., so that the probability that(x;) takes its lower value is rather
more than%. Of course, there are quite a few indices taking the necessarily lower
value 1.

A slightly more difficult result, which in the present treatment requires some
analytic number theory, is as follows.

THEOREM 3. For all N, we have

R
24 QR 17
Z(N) = 2= "N?(log2N —>—— - — 42
(N) ;vu) — (og > 8" y)
+ O(N log?N). (1.10)
We may inquire about the frequency with whietx;) takes the valug. We define

F(N, k) := Z 1:= L(N, k) + U(N, k), (1.11)

i<R
v(x)=k

whereL (N, k) andU (N, k) count, respectively, the number of occurrences of
as a lower and upper value.

THeorREM 4. For all N we have, uniformly fok € N, that

N
L(N, k) = £;R + 0<k + 7 IogN),

N 1.12)
U(N,k):bth-f-O(k-‘ergN),
in which
1 1 1
0, =4 — k>1 1.13
¢ <(k+1)2 k+1+k+2)’ =5 (L13)
1 1 1
=0, =4 - =) k>2 1.14
e i <k k+1 (k+1)2> (1.14)
It follows at once that
N
F(N, k) = fiR + O(k + log N), (1.15)
where 1 1 ) 1
=z, =4l —+—), k>2. 1.16
h=z (k k—|—1+k+2> (1.16)

These results are useful only wheh< N/log N, butwe also have, in any case, that

4 logN
D F(N.h) < ﬁ<1+ 0( 5 ))RlogR.

h>k
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We next consider the partial sums of the index. One definition that seems ap-
propriate is

J
D;j =D;(N) =Y (v(x;) —3) + % (1.17)
i=0

where the star indicates that the end terms of the sum are each halved. For ex-
ample,D; = (2N — 3) + 3(1— 3) + 3 = N — 2. Notice thatD; is odd in the
sense thaDy_; = —D;. We were surprised to find in our numerical trials that
|D;| seemed never to excedd — 2 and apparently was much smaller than this
on average. The explanation lies in the following remarkable theorem, which was
communicated to us by Don Zagier.

THEOREM 5 (Zagier). We have

t—r 1 b

—_—t == -, 1.18
2s + 2 s ( )

wherex; = b/s and D(b, s) is 12 times Dedekind’s sunthat is,

D(b.s)=12 Y Bl(§>él<i—£), (1.19)

£ (mods)

D; = D(b,s) +

with )
Bux) = { x—[x] -3, xeR\Z,

0, xel.

We give our proof, which is by induction gh it is merely a verification of the for-
mula(1.18) andthus does not explain how Zagier found the identity. The reader
will find this secret, and much more information, in [8]. Our next set of results is
concerned with the behavior of

r—t

O(x;))=|——|, r=r(x), s=s5(x;), t =t(x;). (1.20)

Notice that 0< 6(x;) < 1 always becaus¥f —s < r,t < N.

THEOREM 6. For all N, we have

R
1
ZG(xi)(l—Q(xi)) = R+ 0w). (1.21)
i=1
The same argument also shows that et 1,2, ... andN — oo,

R

0 le— R Ox(N
Z((xi)—é) = FarsD T oW

i=1

This might at first suggest thétis uniformly distributed in(0, 1). However, this
is not the case: it may be shown that ,Mas—> oo,
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R R 1
Z 0(x;) ~ CR, ; 0(x;)% ~ (c - 6>R’ (1.22)

i=1

whereC = 21/2—8log2— 8y = 0.33709.... The sumsin (1.22) take the values
0.33523 and Q1702R (respectively) whemv = 40.

In an earlier version of our paper we had various conjectures that are now corol-
laries of Zagier’s theorem.

THEOREM 7. We havgD;| < N — 2, with equality if and only iff = 1or j =
R-1

THEOREM 8. We have

R
Y D2 ;;(g)zm + O(N¥210g2 N). (1.23)
=1

THEOREM 9. We have

R
> ID;| < 2R10g? N + O(R). (1.24)

j=1
ConNJECTURE 1. There exists a distribution function
F@©) = lim R tcardi:0(x;) <6}
N—oo

such that(necessarily

1
/ (260 — VR (©O) do = k=12, .... (1.25)
0

4k + 2
In an earlier version of our paper, we also made the following conjecture.

CONJECTURE 2. There exists a functiod: N — R* such that, for each fixed

h eN, we have
R

> v(xi)v(xisn) ~ AWR, N — oo.
i=1

In fact, a stronger form of Conjecture 2 has now been established in a forthcoming
paper by Boca, Gologan, and Zaharescu [2].

We thank the referee for indicating to us the much simpler proof of Theo-
rem 1 and also for suggesting that the quantity- ¢)/s might have interesting
properties, which led us to the results associated @ith) in (1.20). Various
names for this function occurred to us, one of them suggested by the referee. After
some reflection, we decided to follow the title of one of Wilkie Collins’s novels:
No Name.
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2. Proofs of Theorems 1, 2, 3, and 4

Theorems 1, 2, and 4 are entirely elementary, although Theorem 1 was not proved
in the park. Instead of the referee’s proof given below, we had a more complicated
argument that began with the formula

N

2 N
T(s)= ), v == ) r=22u(d>[ﬂ—¢(s>+e<s), (2.1)

Sy )= r=N—s+1 d
S(XI) $ '<r,x);1 lX

which we mention as we need it later. (In (24)]) = 1ande(s) =0fors > 1)
Theorem 3 is elementary except for our estimate of the sum appearing in (2.16),
for which we require contour integration and the functional equation for the Rie-
mann zeta-function. We may have overlooked something here and we should be
interested to discover an elementary treatment of this sum.

Proof of Theorem 1

We use induction oV, so that we have to establish that, in passing ft6n ; to
Fy, we add 3 (N) to the indices. Lef be the set of such that
si+si;a=N, (5;,N)=1 (2.2)

so that|7| = ¢(N). It suffices to show that, on inserting the new fractions with
denominatorN betweenb;/s; andb;,1/s; .1, we add exactly 3 units to the sum
concerned. Indeed, the sum of the two existing relevant indices, namely

Si—1+ 58 Si + 8
1 +1 i +2’
Si Si+1
is being replaced by
Sic1+N s +sie N +s;
1 n 1 n +2’
Si N Si+1

so that the increase in value to the sum is simply

N —sin1

N —s; . .
+1+ =—4+1+ —=3

Si Si+1 Si Si+1
as required. O
Proof of Theorem 2

Lets = s(x;). Recall thatv(x;) takes at most two values Ns] and [2N/s] — 1,
the latters(s) times. Hence the expressid@iis) in (2.1) is given by

2N 2N 2N
T(s) = (¢(s) — S(S))[T} +5(S)<[T} - 1) = ¢>(S)[T} —4(s). (2.3

Applying Theorem 1, we find that
2N
= — | -3R+1 2.4
> 8(s) =) ¢>(S)[S] 3R + (2.4)

s<N s<N
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and, since [2//s] = 1 throughout the rangll < s < 2N, we may rewrite this as
2N
d s =Y ¢(s)[—] — Roy — 2R+ 1.
N
s<N s<2N
The sum on the right-hand side is

dDials) Y. 1= D p(s)= Y n=N2N+D,

s<2N n<2N n<2N s|n n<2N
n=0(mods)

so that the required result (1.9) follows from (2.3). O

Proof of Theorem 3

It may be worth mentioning that the inductive argument used in the proof of
Theorem 1 gives

Z(N) = Z(N = 1) = 3¢(N) +2)_ (v(x;) + v(xi42),

iel

but we are unable to evaluate the sum here to withitog? N ). Instead we put

Vi)=Y v (2.5)
s(xj)=s
and we have
2N 72 2N 2
V(s) = (¢(s) — 5(S))[T] +8(S)<|:T:| - )
2
- ¢>(s)[2—N] - a<s><2[2—N} _ 1).
S S
We write
2N 712
Xy = KZN(MS)[T] ) (2.6)
- 2N
Yy = S_;V(S(S)[ - ] (2.7)
so that, by Theorem 2,
> V(s)=Xy—2Yy+N@N+1) — Roy —2R+1 (2.8)

s<N

Extending the range from% s < Nto1l< s < 2N as in the proof of Theo-
rem 2, we find that

2N7?
Z¢(S)|:T:| — Roy + R

s<2N

> ¢(s)[ZTN}<[ZTN} + 1) —N@N+1) — Ry +R. (2.9

s<2N

Xn
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The sumin (2.9) is

2y ‘Ns) o n=23 nf, (2.10)

s<2N n<2N n<2N
n=0 (mods)

where 5(5)

N
= . 2.11
fn) |Z , (2.12)

Assembling (2.8), (2.9), and (2.10), the suftw ) in the theorem becomes
Z(N) =2 Z nf(n) —2Yy —2Roy — R+ 1. (2.12)
n<2N

We now turn our attention to the sury in (2.7), which we are unable to eval-
uate exactly. We recall from (2.3) and (2.1) that

2N N
6(s)=¢><s>[7}—ns> ¢><s>([ }+1)—2Zu<d)[ ]—e(s)

d|s

5(s) = ¢(s)<[ N}Ll) 2Nf(s)+0(r(s)), (2.13)

wherert is the divisor function. From (2.7) and (2.13), we now have

YN_Z¢(s)[ }([ }rl) 2NZ¢(S)[ ]+0(NI092N), (2.14)
=N

SN

so that

in which our largest error term arises. Extending the range of the sums here, we
find that

Yn=2) nf(n)—2N > fn)— — + O(N log?N). (2.15)

n<2N n<2N

Inserting this into (2.12) yields

Z(N)=2 Y (2N —n)f(n) — (2.16)

n<2N
and it remains to consider the sum here.
In the following, it will be convenient to let the lettesso, ¢, andT be the usual
symbols used in the theory of the Riemann zeta-function. The Dirichlet series for
f(n) in (2.11) is given by

s 2
Z f(n) g°(s) 2.17)
—n t(s+1
Employing
1 2+ioco xs+l
— ———ds=maxx —1,0), x>0, (2.18)

270 Joie S(s+D)
we find that
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> 2N
Y @N-nfm) =) max(— -1 O)nf(n)
n
n<2N n=1

B 1 /2+ioo (2N)s+1§2(s)

270 Jyiee SGSHDE(Gs+D
The integrand has a removable singularity at 0, and we move the line of inte-
gration to the contou€ comprising the five line segments= 2 + it (|¢| > T),
s=0+iT O<o <2),s=it (—T <t <T). The residue of the integrand at
the poles = 1is given by

12N2 '@ 3
— (Iog 2N — 2 2 +2y>, (2.20)

and we proceed to estimate the integral along our corfo@n the segments on
whicho = 2, the integrand isg N3/¢2 and the integrals are

ds. (2.19)

o dt
<</ N3t—2 < T7IN3, (2.21)
T
On the line segments on which= o =+ iT, we have¢(s) < TY?* and
lz(s +1)| > 1/logT, so that the integrals are
& N3T 713, (2.22)

We setl’ = N3, so that the contributions from these integrals@(&v/ ). On the
line o = 0 we employ the functional equation. We have

|t|m |z]7

. 1/2
‘F(l— it)sinlt?n‘ = (Ttanh7> < min(|t|, \/H) (2.23)

and|¢(1—ir)| = |¢(1+ it)], so that the integrand is

min(2, [t |¢(L+ it)|
N 2.24
< 111+ D (2.24)

and the integral is
T o dt
< N<1+/ |§(1+zt)|7>. (2.25)
1

We apply Cauchy’s inequality and the formula

X
/ lc@+in)?dt ~ ()X (2.26)
1

[7, Thm. 7.2] to see that the integral in (2.25)<s logT « log N. Hence, by
(2.19), (2.20), and the estimates (2.21) and (2.22),

12N2 7' 3
— <IogZN—m—§+2y>+0(NlogN), (2.27)

and the required result follows by inserting this into (2.16). O

> @N=n)f(n) =

n<2N
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Proof of Theorem 4

It will be sufficient to consideL (N, k) as the other case is similar; we already saw
thatU(N,1) = 0. Lets(x;) = s and letv(x;) = k take its lower value [®/s] — 1
Thus [2N/s] = k + 1, so that

2N 2N

T < = . 2.2
kt2 T kr1 (2.28)
moreover, from (1.4) we require that
N
[ +r]=h (2.29)
N
that is,
maxN —s+1sk—N)<r <min(N,s(k+1) — N). (2.30)
From (2.28) this reduces to
N—-s+1<r<sk+1)-—N (2.31)
and, since- is prime tos, the number of choices forin (2.31) is
Gtk +2-20 P 4 oy, (2.32)

and we need to sum over the range in (2.28). We proceed by partial summation,
writing

6
O(s) = M = —SZ + O(logs) (2.33)
T
and 5 5
N N
=|— =|—| 2.34
Y [k—i—Z]’ ¢ [k+1} (2.34)
Assuming thaty < z to begin with, we find that

o (s)

N

Z (s(k+2) —2N)

y<s=z

=—((y+D(k+2)—2N)D(y)
—(k+2) Y @)+ (z(k +2) — 2N)D(2). (2.35)
y<s<z
Notice that O< (y + D (k+2) — 2N < z(k+2) — 2N < 2N/(k+1), so that the
end terms contribute kN log N to the error. The middle terms contribute
L (z—y—D(k+2)logN <« kNlogN (2.36)

to the error, since

2N
z—y—1<

—_—. 2.37
T (k+D(k+2) (2:37)
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The main term in (2.35) is

6
— ) (s(k+2)—2N) =

y<s=z

3z—y)((z+y+D(k+2)—4N)
12

., (2.38)

and we remark that the last factor in the numerator does not exdégdé 2- 1),
so that the error involved in (2.38) if we remove the square brackets in (2.34) is
< k + N/k. Hence the sum in (2.35) equals
12N? NlogN
72(k +D?(k +2) ko)
It is easy to see that the error term arising from the divisor function in (2.32) is
absorbed here; for example, Dirichlet’s theorem gives

Z T(s) € (z =y logz + vz < <%+1)N+\/¥ (2.40)

+ 0<k + (2.39)

y<s<z

Therefore, (2.39) provides a formula fbKN, k) in the casey < z, and ify = z
thenL(N, k) = 0 because the range foiin (2.28) is empty and the formula re-
mains valid. Finally we may replaceéVd/x2 by R in (2.39) without affecting the
error term, and this gives the first asymptotic formulglii2)together with the
formula for ¢;. The remaining formulae can be established similarly, @rib)
follows at once. U

3. Proofs of Theorems 5, 6, 7, 8, and 9

Proof of Theorem 5

We take as our induction hypothesis tffai8)holds atj, and we begin by check-

ing itwhen;j = 1. We already saw thab, = N — 2, andwe have = N, b =1,

t=N-1Lr=21andD(1, N)=N — 3+ 2/N, so that(1.18) iscorrect.
Suppose now thdt.18) istrue. We have

r+t+s—|—u
2s 2t

whereu is the denominator of the fraction following'¢ in Fy. From(1.18),
t s+u 5 b

1 1
Djta=D;+ E(U(xj) -3+ E(V(Xj+1) -3)=D;+ -3,

Dj+1= D(b,S)+;+ 2 _E_;; (31)
we now apply Lemma 2 of [4], which tells us that
241241
Db, 5) = D(c, 1) — % +3 3.2)
N
so that from (3.1) and (3.2) we have
Diy= D l)+u—s+l 1 b—D( t)+u—s+1 c
L= e 26 2 st s © 2t 2 1

as required. This completes the induction and the proof. O
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Proof of Theorem 6

We use induction otV as we did in the proof of Theorem 1. Foe I, wherel is
defined in (2.2), we have

Si-1— Siy1|  Si-a+si— N
O(x;) = = )
Si Si
Si —Sit2|  SitatSiq2— N
0(xip1) = = .
Si+1 Si+1

These two values fat are replaced by the following three new ones:

N —si1 [si — siqal N —siy0
a=—, f=—" y=—"
S N Sit+1
We then have

Si1 N —sip2 | Isi = sipal

N —
a+pB+y—0(xi)—0(xip1) =2

+2 2,

S Sit+1 N

a? + B2+ Y% — 0(x;)? — 0(x;41)?
N —si1 N —sip2  |si —sipal?

=2 +2 + -2,

S Si+1 N2

so that the sum concerned is increased by
i — sizal |5 — siqal?
Ay = Z( ). (3.3)

iel
We observe here thatx;) — 1 = 1 —«a andd (x;41) — 3 = 3 —y; furthermore,

|s; — six1] = |2s; — N|. Starting from the not quite obvious formula

M

1
Z|2q —M" = h—HM’““l—i— oM"Y, M, heN,
g=1

we derive
al 1
> 125 = N|" = —=N"¢(N) + ON""o(N)),
s=1 h +1
(s,N)=1

whereo(N) is the sum of the divisors a¥. This then yieldsAy = ¢(N)/6 +

O(o(N)/N)in(3.3) and, moreover, copes with all the even momen@so%. The

odd moments, none of which may be expected to be zero, are more mystefious.
Proof of Theorem 7

We first prove the following lemma.

LEmma 1. We have
[t —r| <s—24pip(s),

wherepip(s) = 1if s|]2N + 1and= 0 otherwise.
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Proof. SinceN —s +1 < r ands < N, itis evident thair — | < s — 1 with
equality if and only if maxr, r) = N and minr,t) = N — s + 1, which implies
r+1t=2N +1—s. Sinces|r + t this gives the result stated.

It will be sufficient to show thaD; < N — 2 with equality if and only ifj = 1.

We have

-2 i 1 1
Dy < Db, 5+ 1222 PRO) | 21 (3.4)
2s 2 s

by Theorem 5 and the lemma; there is equality in (3.3) if and onby=f 1. We
have

2
Db,s) <DAs)=s—3+—,
N
whence, from (3.4),
Dj<s—2+ % p'p(s) <N-2
with equality if and only ifs = N. This is aII we need. O

Proof of Theorem 8
By Theorem 5 and Lemma 1, we haide = D(b, s) + O(1) and therefore
= D(b, 5)*+ O(ID;|) + O(D).
Hence the sumin (1.23) is
Z > D5+ 0<Z|D |) + O(R).
s=1 (b,s)=1
We employ a theorem of Jia [6] to evaluate the inner sum, which is
fu(9)s? + O(s¥2log?s),

where f1(s) is defined as the coefficient in a Dirichlet series—namely,

f(n) _tz+3)
Z =122t @

From this it follows that our sum is

5:(4) 3 52112 ( )
3{(3)2N + O(N%?10g’N) + O ;|D]| . (3.5)

As Theorem 9 shows, the second error term in (3.5) is of a smaller order than the
first; in any case, for our purpose here, Cauchy’s inequality yields

R
> IDjl < N2,
j=1
so the theorem is proved. O



222 R. R. HALL & P. SHIU

Proof of Theorem 9

An alternative representation of the Dedekind sum, due to Eisenstein, is
s—1

D(b,s) = ?Z cot(%) cot(LM>, (3.6)

N
=1
and it is a straightforward matter to deduce from (3.6) that

12
> DB, 9)| < = slog?s. (3.7)
(b,s)=1 T
Hence
R 12 N
2
Z|Dj| < ;Zslog s+ O(R)
j=1 s=1
3 21An2
< 5N l0g“N + O(R)
T
< 2R10g*N + O(R),
as required. O

We end with a table of values fat, >~ ;_|D;|, and)_,_, D?. We remark that
35;((34))2 ~ 1.24841 and that it appears from the table that (3.7) has a constant which

is perhaps too large by a factor of about 4.

1D; > bf
N R 2IDjl 2 Djz RZI:ogsz 1\/3J
10 32 80.5 384.25 0.47447 0.38425
50 774 5672.5 104831 0.47888 0.83865
100 3044 31093.5 971927 0.48165 0.97192

500 76116 141210<10° 1.44082<108 0.48035 1.15266
1000 304192 M7989%«10° 1.18975«<10° 0.48086 1.18975
5000 7600458 B6173x108 1.53870<10" 0.48276 1.23096

10000 30397486 .24780<10° 1.23822«102 0.48390 1.23822
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