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The Index of a Farey Sequence

R. R. Hall & P. Shiu

1. Introduction and Statement of Results

LetFN = {xi, i = 1,2, . . . , R} denote the Farey sequence of orderN; here1/N =
x1 < x2 < · · · < xR = 1 and

R = RN =
∑

1≤a≤N
φ(a) = 3N 2

π2
+O(N logN). (1.1)

The sequence(xi) may be extended ontoZ by definingxi+R = xi + 1 for all i.
We suppose thatxi = b/s and that the adjacent fractions are

xi−1= a

r
and xi+1= c

t
;

we writer = r(xi), s = s(xi), andt = t(xi).
Definition. We define theindexof the fractionxi as

ν(xi) := r + t
s
= a + c

b
. (1.2)

Thusν(xi) is an integer becausebr − as = cs − bt = 1. In particular we have
ν(x1) = 1 andν(xR) = 2N. We are interested in some properties of the index,
which is a periodic function on the extended Farey sequence{xi : i ∈Z}.

There are two formulae for the index: expressing it as a function ofN, s, andr,
or ofN, s, andb. For the first formula we recall from Hall and Tenenbaum [5] that

t = s
[
N + r
s

]
− r. (1.3)

We remark that Boca, Cobeli, and Zaharescu [1] have made some very interesting
applications of (1.3). It yields immediately

ν(xi) =
[
N + r
s

]
(1.4)

and, sincer > N − s, we see that[
2N +1

s

]
−1≤ ν(xi) ≤

[
2N

s

]
. (1.5)
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It follows that if s|2N +1 thenν(xi) = [2N/s]; otherwise, the index may take
the two values [2N/s] and [2N/s] − 1. We refer to these as the upper and lower
values of the index. As an example, we give a table for the indices ofF9; here
R = 28 and the index is symmetric (i.e.,ν(xR−i ) = ν(xi)) so that we need only
give the first 15 terms:

xi = 1
9,

1
8,

1
7,

1
6,

1
5,

2
9,

1
4,

2
7,

1
3,

3
8,

2
5,

3
7,

4
9,

1
2,

5
9;

ν(xi) = 1, 2, 2, 2, 3, 1, 4, 1, 5, 1, 3, 2, 1, 9, 1.
(1.6)

The lower values have been underlined, and we remark that 1 is always a lower
value (since [2N/s] ≥ 2) and that, as in the cases = 5 here, the index may be
single-valued whens does not divide 2N + 1. In fact, it is not difficult to show
that s ≤ N is single-valued if and only ifs satisfies one of the following condi-
tions: (a)s is a divisor ofN, N + 1, or 2N + 1; (b) s is twice a divisor ofN or
N +1; (c) s is twice a divisor ofN + 2 orN −1 if these numbers are odd.

For the second formula for the index, we letb̄ andn be such that 1≤ b̄ < s,

bb̄ ≡ 1 (mods), and 0≤ n < s, N ≡ n (mods). Thenr ≡ b̄ (mods), giving
r = ps + b̄ with

p =
[
N

s

]
+
[
n− b̄
s

]
.

Similarly, t = qs − b̄ with

q =
[
N

s

]
+
[
n+ b̄
s

]
,

so that

ν(xi) = p + q = 2

[
N

s

]
+
[
n− b̄
s

]
+
[
n+ b̄
s

]
. (1.7)

The second and third terms on the right of (1.7) can take the values−1,0 and 0,1,
respectively. Their sum can take the values 0,±1 but not both the values±1.

Our investigation was initiated by one of us making a numerical observation
while walking in a park. The observation led us to the following theorem.

Theorem 1. For all N, we have
R∑
i=1

ν(xi) = 3R − 1. (1.8)

We need to consider the frequency of the upper and lower values of the index, and
this leads us to another exact formula.

Definition. Thedeficiencyδ(s) is the number of fractionsxi ∈ FN with de-
nominators such thatν(xi) takes its lower value.

Theorem 2. For all N, we have
N∑
s=1

δ(s) = N(2N + 1)− R2N − 2R + 1. (1.9)
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Thus, forN = 9, the right-hand side of (1.9) has the value 171− 102− 56+ 1=
14, which is in agreement with the table in (1.6). An immediate corollary of
Theorem 2 is that the number of lower values is∼ (2π2/3− 6)R. The constant
here is 0.57973. . . , so that the probability thatν(xi) takes its lower value is rather
more than1

2 . Of course, there are quite a few indices taking the necessarily lower
value 1.

A slightly more difficult result, which in the present treatment requires some
analytic number theory, is as follows.

Theorem 3. For all N, we have

Z(N ) :=
R∑
i=1

ν(xi)
2 = 24

π2
N 2

(
log 2N − ζ

′(2)
ζ(2)

− 17

8
+ 2γ

)
+O(N log2N). (1.10)

We may inquire about the frequency with whichν(xi) takes the valuek. We define

F(N, k) :=
∑
i≤R

ν(xi )=k

1 := L(N, k)+ U(N, k), (1.11)

whereL(N, k) andU(N, k) count, respectively, the number of occurrences ofk

as a lower and upper value.

Theorem 4. For all N we have, uniformly fork ∈N, that

L(N, k) = `kR +O
(
k + N

k
logN

)
,

U(N, k) = ukR +O
(
k + N

k
logN

)
,

(1.12)

in which

`k = 4

(
1

(k + 1)2
− 1

k + 1
+ 1

k + 2

)
, k ≥ 1, (1.13)

u1= 0, uk = 4

(
1

k
− 1

k + 1
− 1

(k + 1)2

)
, k ≥ 2. (1.14)

It follows at once that

F(N, k) = fkR +O
(
k + N

k
logN

)
, (1.15)

where

f1= 1

3
, fk = 4

(
1

k
− 2

k +1
+ 1

k + 2

)
, k ≥ 2. (1.16)

These results are useful only whenk2<N/logN,but we also have, in any case, that∑
h≥k

F(N, h) ≤ 4

k2

(
1+O

(
logN

N

))
R logR.
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We next consider the partial sums of the index. One definition that seems ap-
propriate is

Dj = Dj(N ) :=
j∑?

i=0

(ν(xi)− 3)+ 1

2
, (1.17)

where the star indicates that the end terms of the sum are each halved. For ex-
ample,D1 = 1

2(2N − 3) + 1
2(1− 3) + 1

2 = N − 2. Notice thatDj is odd in the
sense thatDR−j = −Dj . We were surprised to find in our numerical trials that
|Dj | seemed never to exceedN − 2 and apparently was much smaller than this
on average. The explanation lies in the following remarkable theorem, which was
communicated to us by Don Zagier.

Theorem 5 (Zagier). We have

Dj = D(b, s)+ t − r
2s
+ 1

2
− b
s
, (1.18)

wherexj = b/s andD(b, s) is 12 times Dedekind’s sum; that is,

D(b, s) = 12
∑

` (mods)

B̄1

(
`

s

)
B̄1

(
b`

s

)
, (1.19)

with

B̄1(x) =
{
x − [x] − 1

2, x ∈R \ Z,
0, x ∈Z.

We give our proof, which is by induction onj ; it is merely a verification of the for-
mula (1.18) andthus does not explain how Zagier found the identity. The reader
will find this secret, and much more information, in [8]. Our next set of results is
concerned with the behavior of

θ(xi) =
∣∣∣∣ r − ts

∣∣∣∣, r = r(xi), s = s(xi), t = t(xi). (1.20)

Notice that 0≤ θ(xi) < 1 always becauseN − s < r, t ≤ N.
Theorem 6. For all N, we have

R∑
i=1

θ(xi)(1− θ(xi)) = 1

6
R +O(N ). (1.21)

The same argument also shows that, fork = 1,2, . . . andN →∞,
R∑
i=1

(
θ(xi)− 1

2

)2k

= R

4k(2k +1)
+Ok(N ).

This might at first suggest thatθ is uniformly distributed in(0,1). However, this
is not the case: it may be shown that, asN →∞,
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R∑
i=1

θ(xi) ∼ CR,
R∑
i=1

θ(xi)
2 ∼

(
C − 1

6

)
R, (1.22)

whereC = 21/2−8 log 2−8γ = 0.33709. . . . The sums in (1.22) take the values
0.33523R and 0.17027R (respectively) whenN = 40.

In an earlier version of our paper we had various conjectures that are now corol-
laries of Zagier’s theorem.

Theorem 7. We have|Dj | ≤ N − 2, with equality if and only ifj = 1 or j =
R − 1.

Theorem 8. We have

R∑
j=1

D2
j =

5ζ(4)

3ζ(3)2
N 3+O(N 5/2 log2N). (1.23)

Theorem 9. We have

R∑
j=1

|Dj | ≤ 2R log2N +O(R). (1.24)

Conjecture 1. There exists a distribution function

F(θ) := lim
N→∞R

−1 card{i : θ(xi) ≤ θ}
such that(necessarily)∫ 1

0
(2θ − 1)2k−1F(θ) dθ = 1

4k + 2
, k = 1,2, . . . . (1.25)

In an earlier version of our paper, we also made the following conjecture.

Conjecture 2. There exists a functionA : N → R+ such that, for each fixed
h∈N, we have

R∑
i=1

ν(xi)ν(xi+h) ∼ A(h)R, N →∞.

In fact, a stronger form of Conjecture 2 has now been established in a forthcoming
paper by Boca, Gologan, and Zaharescu [2].

We thank the referee for indicating to us the much simpler proof of Theo-
rem 1 and also for suggesting that the quantity(r − t)/s might have interesting
properties, which led us to the results associated withθ(xi) in (1.20). Various
names for this function occurred to us, one of them suggested by the referee. After
some reflection, we decided to follow the title of one of Wilkie Collins’s novels:
No Name.
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2. Proofs of Theorems 1, 2, 3, and 4

Theorems 1, 2, and 4 are entirely elementary, although Theorem 1 was not proved
in the park. Instead of the referee’s proof given below, we had a more complicated
argument that began with the formula

T(s) :=
∑

s(xi )=s
ν(xi) = 2

s

N∑
r=N−s+1
(r,s)=1

r = 2
∑
d|s
µ(d )

[
N

d

]
− φ(s)+ ε(s), (2.1)

which we mention as we need it later. (In (2.1),ε(1) = 1 andε(s) = 0 for s > 1.)
Theorem 3 is elementary except for our estimate of the sum appearing in (2.16),
for which we require contour integration and the functional equation for the Rie-
mann zeta-function. We may have overlooked something here and we should be
interested to discover an elementary treatment of this sum.

Proof of Theorem 1

We use induction onN, so that we have to establish that, in passing fromFN−1 to
FN, we add 3φ(N ) to the indices. LetI be the set ofi such that

si + si+1= N, (si, N ) = 1, (2.2)

so that|I | = φ(N ). It suffices to show that, on inserting the new fractions with
denominatorN betweenbi/si andbi+1/si+1, we add exactly 3 units to the sum
concerned. Indeed, the sum of the two existing relevant indices, namely

si−1+ si+1

si
+ si + si+2

si+1
,

is being replaced by

si−1+N
si

+ si + si−1

N
+ N + si+2

si+1
,

so that the increase in value to the sum is simply

N − si+1

si
+1+ N − si

si+1
= si

si
+1+ si+1

si+1
= 3,

as required.

Proof of Theorem 2

Let s = s(xi). Recall thatν(xi) takes at most two values [2N/s] and [2N/s] −1,
the latterδ(s) times. Hence the expressionT(s) in (2.1) is given by

T(s) = (φ(s)− δ(s))
[

2N

s

]
+ δ(s)

([
2N

s

]
−1

)
= φ(s)

[
2N

s

]
− δ(s). (2.3)

Applying Theorem 1, we find that∑
s≤N

δ(s) =
∑
s≤N

φ(s)

[
2N

s

]
− 3R +1 (2.4)
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and, since [2N/s] = 1 throughout the rangeN < s ≤ 2N, we may rewrite this as∑
s≤N

δ(s) =
∑
s≤2N

φ(s)

[
2N

s

]
− R2N − 2R +1.

The sum on the right-hand side is∑
s≤2N

φ(s)
∑
n≤2N

n≡0 (mods)

1=
∑
n≤2N

∑
s|n
φ(s) =

∑
n≤2N

n = N(2N +1),

so that the required result (1.9) follows from (2.3).

Proof of Theorem 3

It may be worth mentioning that the inductive argument used in the proof of
Theorem 1 gives

Z(N )− Z(N −1) = 3φ(N )+ 2
∑
i∈I
(ν(xi)+ ν(xi+1)),

but we are unable to evaluate the sum here to withinO( log2N). Instead we put

V(s) :=
∑

s(xi )=s
ν(xi)

2, (2.5)

and we have

V(s) = (φ(s)− δ(s))
[

2N

s

]2

+ δ(s)
([

2N

s

]
−1

)2

= φ(s)
[

2N

s

]2

− δ(s)
(

2

[
2N

s

]
−1

)
.

We write

XN :=
∑
s≤N

φ(s)

[
2N

s

]2

, (2.6)

YN :=
∑
s≤N

δ(s)

[
2N

s

]
, (2.7)

so that, by Theorem 2,∑
s≤N

V(s) = XN − 2YN +N(2N +1)− R2N − 2R +1. (2.8)

Extending the range from 1≤ s ≤ N to 1≤ s ≤ 2N as in the proof of Theo-
rem 2, we find that

XN =
∑
s≤2N

φ(s)

[
2N

s

]2

− R2N + R

=
∑
s≤2N

φ(s)

[
2N

s

]([
2N

s

]
+1

)
−N(2N +1)− R2N + R. (2.9)
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The sum in (2.9) is

2
∑
s≤2N

φ(s)

s

∑
n≤2N

n≡0 (mods)

n = 2
∑
n≤2N

nf(n), (2.10)

where

f(n) :=
∑
s|n

φ(s)

s
. (2.11)

Assembling (2.8), (2.9), and (2.10), the sumZ(N ) in the theorem becomes

Z(N ) = 2
∑
n≤2N

nf(n)− 2YN − 2R2N − R +1. (2.12)

We now turn our attention to the sumYN in (2.7), which we are unable to eval-
uate exactly. We recall from (2.3) and (2.1) that

δ(s) = φ(s)
[

2N

s

]
− T(s) = φ(s)

([
2N

s

]
+1

)
− 2

∑
d|s
µ(d )

[
N

d

]
− ε(s)

so that

δ(s) = φ(s)
([

2N

s

]
+1

)
− 2Nφ(s)

s
+O(τ(s)), (2.13)

whereτ is the divisor function. From (2.7) and (2.13), we now have

YN =
∑
s≤N

φ(s)

[
2N

s

]([
2N

s

]
+1

)
−2N

∑
s≤N

φ(s)

[
2N

s

]
+O(N log2N), (2.14)

in which our largest error term arises. Extending the range of the sums here, we
find that

YN = 2
∑
n≤2N

nf(n)− 2N
∑
n≤2N

f(n)− 6N 2

π2
+O(N log2N). (2.15)

Inserting this into (2.12) yields

Z(N ) = 2
∑
n≤2N

(2N − n)f(n)− 15N 2

π2
+O(N log2N), (2.16)

and it remains to consider the sum here.
In the following, it will be convenient to let the letterss, σ, t, andT be the usual

symbols used in the theory of the Riemann zeta-function. The Dirichlet series for
f(n) in (2.11) is given by

∞∑
n=1

f(n)

ns
= ζ2(s)

ζ(s +1)
. (2.17)

Employing

1

2πi

∫ 2+i∞

2−i∞
x s+1

s(s +1)
ds = max(x −1,0), x > 0, (2.18)

we find that
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∑
n≤2N

(2N − n)f(n) =
∞∑
n=1

max

(
2N

n
−1,0

)
nf(n)

= 1

2πi

∫ 2+i∞

2−i∞
(2N)s+1ζ2(s)

s(s +1)ζ(s +1)
ds. (2.19)

The integrand has a removable singularity ats = 0, and we move the line of inte-
gration to the contourC comprising the five line segmentss = 2+ it (|t | ≥ T ),
s = σ ± iT (0 < σ ≤ 2), s = it (−T ≤ t ≤ T ). The residue of the integrand at
the poles = 1 is given by

12N 2

π2

(
log 2N − ζ

′(2)
ζ(2)

− 3

2
+ 2γ

)
, (2.20)

and we proceed to estimate the integral along our contourC. On the segments on
whichσ = 2, the integrand is� N 3/t 2 and the integrals are

�
∫ ∞
T

N 3 dt

t 2
� T −1N 3. (2.21)

On the line segments on whichs = σ ± iT, we haveζ(s) � T 1/2+ε and
|ζ(s +1)| � 1/logT, so that the integrals are

� N 3T −1+3ε. (2.22)

We setT = N 3, so that the contributions from these integrals areO(N 3ε). On the
line σ = 0 we employ the functional equation. We have∣∣∣∣0(1− it) sin

itπ

2

∣∣∣∣ = ( |t |π2 tanh
|t |π

2

)1/2

� min
(|t |,√|t |) (2.23)

and|ζ(1− it)| = |ζ(1+ it)|, so that the integrand is

� N
min(t 2, |t |)|ζ(1+ it)|

|t |(|t | +1)
(2.24)

and the integral is

� N

(
1+

∫ T

1
|ζ(1+ it)| dt

t

)
. (2.25)

We apply Cauchy’s inequality and the formula∫ X

1
|ζ(1+ it)|2 dt ∼ ζ(2)X (2.26)

[7, Thm. 7.2] to see that the integral in (2.25) is� logT � logN. Hence, by
(2.19), (2.20), and the estimates (2.21) and (2.22),∑
n≤2N

(2N−n)f(n) = 12N 2

π2

(
log 2N− ζ

′(2)
ζ(2)
− 3

2
+2γ

)
+O(N logN), (2.27)

and the required result follows by inserting this into (2.16).
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Proof of Theorem 4

It will be sufficient to considerL(N, k) as the other case is similar; we already saw
thatU(N,1) = 0. Let s(xi) = s and letν(xi) = k take its lower value [2N/s]−1.
Thus [2N/s] = k +1, so that

2N

k + 2
< s ≤ 2N

k +1
; (2.28)

moreover, from (1.4) we require that[
N + r
s

]
= k, (2.29)

that is,
max(N − s +1, sk −N) ≤ r ≤ min(N, s(k +1)−N). (2.30)

From (2.28) this reduces to

N − s +1≤ r ≤ s(k +1)−N (2.31)

and, sincer is prime tos, the number of choices forr in (2.31) is

(s(k + 2)− 2N)
φ(s)

s
+O(τ(s)), (2.32)

and we need to sum over the range in (2.28). We proceed by partial summation,
writing

8(s) :=
∑
m≤s

φ(m)

m
= 6s

π2
+O( logs) (2.33)

and

y =
[

2N

k + 2

]
, z =

[
2N

k +1

]
. (2.34)

Assuming thaty < z to begin with, we find that∑
y<s≤z

(s(k + 2)− 2N)
φ(s)

s

= −((y +1)(k + 2)− 2N)8(y)

− (k + 2)
∑
y<s<z

8(s)+ (z(k + 2)− 2N)8(z). (2.35)

Notice that 0< (y+1)(k+ 2)− 2N ≤ z(k+ 2)− 2N ≤ 2N/(k+1), so that the
end terms contribute� k−1N logN to the error. The middle terms contribute

� (z− y −1)(k + 2) logN � k−1N logN (2.36)

to the error, since

z− y −1≤ 2N

(k +1)(k + 2)
. (2.37)
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The main term in (2.35) is

6

π2

∑
y<s≤z

(s(k + 2)− 2N) = 3(z− y)((z+ y +1)(k + 2)− 4N)

π2
, (2.38)

and we remark that the last factor in the numerator does not exceed 2N/(k + 1),
so that the error involved in (2.38) if we remove the square brackets in (2.34) is
� k +N/k. Hence the sum in (2.35) equals

12N 2

π2(k +1)2(k + 2)
+O

(
k + N logN

k

)
. (2.39)

It is easy to see that the error term arising from the divisor function in (2.32) is
absorbed here; for example, Dirichlet’s theorem gives∑

y<s≤z
τ (s)� (z− y) logz+√z�

(
N

k2
+1

)
N +

√
N

k
. (2.40)

Therefore, (2.39) provides a formula forL(N, k) in the casey < z, and if y = z
thenL(N, k) = 0 because the range fors in (2.28) is empty and the formula re-
mains valid. Finally we may replace 3N 2/π2 byR in (2.39) without affecting the
error term, and this gives the first asymptotic formula in(1.12)together with the
formula for `k. The remaining formulae can be established similarly, and(1.15)
follows at once.

3. Proofs of Theorems 5, 6, 7, 8, and 9

Proof of Theorem 5

We take as our induction hypothesis that(1.18)holds atj, and we begin by check-
ing it whenj = 1. We already saw thatD1= N − 2, and we haves = N, b = 1,
t = N −1, r = 1, andD(1, N ) = N − 3+ 2/N, so that(1.18) iscorrect.

Suppose now that(1.18) istrue. We have

Dj+1= Dj + 1

2
(ν(xj )− 3)+ 1

2
(ν(xj+1)− 3) = Dj + r + t

2s
+ s + u

2t
− 3,

whereu is the denominator of the fraction followingc/t in FN. From(1.18),

Dj+1= D(b, s)+ t

s
+ s + u

2t
− 5

2
− b
s
; (3.1)

we now apply Lemma 2 of [4], which tells us that

D(b, s) = D(c, t)− s
2 + t 2 +1

st
+ 3, (3.2)

so that from (3.1) and (3.2) we have

Dj+1= D(c, t)+ u− s
2t
+ 1

2
− 1

st
− b
s
= D(c, t)+ u− s

2t
+ 1

2
− c
t
,

as required. This completes the induction and the proof.
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Proof of Theorem 6

We use induction onN as we did in the proof of Theorem 1. Fori ∈ I, whereI is
defined in (2.2), we have

θ(xi) =
∣∣∣∣ si−1− si+1

si

∣∣∣∣ = si−1+ si −N
si

,

θ(xi+1) =
∣∣∣∣ si − si+2

si+1

∣∣∣∣ = si+1+ si+2 −N
si+1

.

These two values forθ are replaced by the following three new ones:

α = N − si−1

si
, β = |si − si+1|

N
, γ = N − si+2

si+1
.

We then have

α + β + γ − θ(xi)− θ(xi+1) = 2
N − si−1

si
+ 2

N − si+2

si+1
+ |si − si+1|

N
− 2,

α2 + β2 + γ 2 − θ(xi)2 − θ(xi+1)
2

= 2
N − si−1

si
+ 2

N − si+2

si+1
+ |si − si+1|2

N 2
− 2,

so that the sum concerned is increased by

1N =
∑
i∈I

( |si − si+1|
N

− |si − si+1|2
N 2

)
. (3.3)

We observe here thatθ(xi)− 1
2 = 1

2−α andθ(xi+1)− 1
2 = 1

2−γ ; furthermore,
|si − si+1| = |2si −N |. Starting from the not quite obvious formula

M∑
q=1

|2q −M|h = 1

h+1
Mh+1+O(Mh−1), M, h∈N,

we derive
N∑
s=1

(s,N)=1

|2s −N |h = 1

h+1
Nhφ(N )+O(Nh−1σ(N )),

whereσ(N ) is the sum of the divisors ofN. This then yields1N = φ(N )/6+
O(σ(N )/N ) in (3.3) and, moreover, copes with all the even moments ofθ− 1

2 . The
odd moments, none of which may be expected to be zero, are more mysterious.

Proof of Theorem 7

We first prove the following lemma.

Lemma 1. We have
|t − r| ≤ s − 2+ pip(s),

wherepip(s) = 1 if s|2N + 1 and= 0 otherwise.
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Proof. SinceN − s + 1 ≤ r ands ≤ N, it is evident that|t − r| ≤ s − 1 with
equality if and only if max(r, t) = N and min(r, t) = N − s + 1, which implies
r + t = 2N +1− s. Sinces|r + t this gives the result stated.

It will be sufficient to show thatDj ≤ N − 2 with equality if and only ifj = 1.
We have

Dj ≤ D(b, s)+ s − 2+ pip(s)

2s
+ 1

2
− 1

s
(3.4)

by Theorem 5 and the lemma; there is equality in (3.3) if and only ifb = 1. We
have

D(b, s) ≤ D(1, s) = s − 3+ 2

s
,

whence, from (3.4),

Dj ≤ s − 2+ pip(s)

2s
≤ N − 2

with equality if and only ifs = N. This is all we need.

Proof of Theorem 8

By Theorem 5 and Lemma 1, we haveDj = D(b, s)+O(1) and therefore

D2
j = D(b, s)2 +O(|Dj |)+O(1).

Hence the sum in (1.23) is

N∑
s=1

∑
(b,s)=1

D(b, s)2 +O
( R∑
j=1

|Dj |
)
+O(R).

We employ a theorem of Jia [6] to evaluate the inner sum, which is

f1(s)s
2 +O(s 3/2 log2 s),

wheref1(s) is defined as the coefficient in a Dirichlet series—namely,

∞∑
n=1

f1(n)

nz
= 5

ζ(z+ 3)

ζ(z+ 2)2
ζ(z).

From this it follows that our sum is

5ζ(4)

3ζ(3)2
N 3+O(N 5/2 log2N)+O

( R∑
j=1

|Dj |
)
. (3.5)

As Theorem 9 shows, the second error term in (3.5) is of a smaller order than the
first; in any case, for our purpose here, Cauchy’s inequality yields

R∑
j=1

|Dj | � N 5/2,

so the theorem is proved.
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Proof of Theorem 9

An alternative representation of the Dedekind sum, due to Eisenstein, is

D(b, s) = 3

s

s−1∑
`=1

cot

(
π`

s

)
cot

(
πb`

s

)
, (3.6)

and it is a straightforward matter to deduce from (3.6) that∑
(b,s)=1

|D(b, s)| < 12

π2
s log2 s. (3.7)

Hence
R∑
j=1

|Dj | ≤ 12

π2

N∑
s=1

s log2 s +O(R)

≤ 6

π2
N 2 log2N +O(R)

≤ 2R log2N +O(R),
as required.

We end with a table of values forR,
∑

j≤R|Dj |, and
∑

j≤R D
2
j . We remark that

5ζ(4)

3ζ(3)2
≈ 1.24841, and that it appears from the table that (3.7) has a constant which

is perhaps too large by a factor of about 4.

N R
∑|Dj| ∑

D2
j

∑|Dj |
R log2N

∑
D

2
j

N 3

10 32 80.5 384.25 0.47447 0.38425
50 774 5672.5 104831 0.47888 0.83865

100 3044 31093.5 971927 0.48165 0.97192
500 76116 1.41210×106 1.44082×108 0.48035 1.15266

1000 304192 6.97989×106 1.18975×109 0.48086 1.18975
5000 7600458 2.66173×108 1.53870×1011 0.48276 1.23096

10000 30397486 1.24780×109 1.23822×1012 0.48390 1.23822
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