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Examples Relating to the Crossing Number,
Writhe, and Maximal Bridge Length

of Knot Diagrams

Mark E. Kidwell & Alexander Stoimenow

1. Introduction

The “Perko pair” knot 10161 = 10162 [R, p. 415; identification noted in second
printing] is exceptional in at least two distinct ways. It first achieved its name and
fame when Perko [P] discovered that the knot refutes a conjecture of Tait: it pos-
sesses two 10-crossing diagrams (the minimum possible) with distinct writhes.
All previous knot tables of that depth had incorrectly listed the diagrams as repre-
senting distinct knots.

The same knot refutes a much shorter-lived conjecture concerning one of the
link polynomials discovered in the 1980s. LetQ(z) be the polynomial of Brandt,
Lickorish, and Millett [BLM] and Ho [Ho]. Define anoverbridgein a link diagram
to be a consecutive sequence of overcrossing segments, and define anunderbridge
(the natural word “tunnel” has a different meaning in low-dimensional topology)
to be a consecutive sequence of undercrossing segments. Abridgeis the common
term for both under- and overbridges. Define thelengthof a bridge to be the num-
ber of segments overcrossed or undercrossed. Kidwell [K] proved that, if a knot
has a diagram withc crossings and its longest (over or under-) bridge has lengthd,

then
degQ(z) ≤ c − d. (a)

(Kidwell was thinking only of overbridges at the time; the dual underbridges
were more recently pointed out to him by Stoimenow.) Kidwell asked (see [M2])
whether every knot or link has a diagram for which (a) is an equality, knowing
that this was probably too much to hope for, since it would imply that the unknot
is characterized as the unique knot withQ(z) = 1 (still an intractable open ques-
tion). Equality in (a) can be achieved for alternating knots and for all knots with
minimal crossing number below 10. The Perko pair, however, became a leading
candidate to refute the conjecture. It has recently been demonstrated [SK] that
relation (a) is a strict inequality for every diagram of the Perko pair.

Kauffman [Ka] soon generalizedQ(z) to his two-variable polynomialF(a, z),
and Thistlethwaite [T1] investigated its degree properties. He proved an analogous
inequality to (a):

degz F(a, z) ≤ c − d. (b)
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Table 1

Minimal Number of Strict
crossing nonalter- inequality % of
number nating knots in (b) “exceptions”

10 42 1 2.4
11 185 8 4.3
12 888 59 6.6
13 5110 416 8.1
14 27436 2997 10.9

Recently, examples have come to light to show that (b) can be stronger than (a),
though degQ(z) = degz F(a, z) for the Perko pair. This phenomenon first ap-
pears among 12-crossing knots, where there are ten examples. (Other examples
with 15 crossings were shown in [SK].)

2. Some Statistics

If one looks at the knot tables from the era of Conway, Bailey–Rolfsen, and Perko,
the behavior of the Perko pair seems truly exceptional. However, the recent vast
expansion of the knot tables [HTW] has taught us that special properties of a knot,
such as being alternating or invertible, are seriously overrepresented among knots
of low crossing number. This appears to be the case with knots in which relation (b)
is an equality for some diagram with minimal crossing number, as Table 1 shows.

These statistics were generated by the computer program KnotScape [HT] and
take into account only prime knots and diagrams with minimal crossing number.

A further search on KnotScape has turned up the example 15219453 (Figure 1)
to show thatc − d is not necessarily minimized with minimalc. This knot has a
unique 15-crossing diagram with maximal bridge length 2, but it has a 16-crossing
diagram with maximal bridge length 4, and degQ = degz F = 12. Such an ex-
ample makes it more difficult to assert that (a) or (b) is a strict inequality for all
diagrams of a given knot. There is, however, a helpful bound on the size ofc.

Results of [SK] show that, if a knot diagram has a bridge of length more than one
third its crossing number, then it can be turned into a diagram of smaller cross-
ing number without increasing the differencec − d. Suppose, for example, that
a knot had minimalc = 12, that the longest bridge among 12-crossing diagrams
had length 2, and that degz F = 9. Then the knot could have a diagram withc =
13 andd = 4 but, if not, it will not have any diagram withc − d = 9 for c ≥ 14.
We are thus searching in a huge but finite domain.

A remark and a warning with regard to the knot tables is in order.
It is understood that alternative work on knot tabulation is being done byAneziris

[A]. Unfortunately, it seems as if every new knot tabulator chooses and insists on
his own numbering convention for knots, which will lead to confusion in using the
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Figure 1 The knot 15219453has degz F = degQ = 12. The diagram on the left is its
only 15-crossing diagram, and it has no over- or underbridge of length 3. However,
some16-crossing diagrams of the same knot (like the one on the right) have an under-
bridge of length 4. Thus the Kidwell inequality for this knot is sharp, but the minimal
value ofc − d is not attained in any minimal-crossing-number diagram. There are
at least twenty additional 15-crossing knots for which this phenomenon occurs.

different knot tables. It appears most correct to stick to the convention of the first
tabulator for each crossing number. We use here the convention of Rolfsen’s tables
[R] for ≤ 10 crossing knots and that of [HT] for≥ 11 crossing knots; this coin-
cides with those of the first tabulators for any crossing number except 11, where
the initial tables were compiled by Conway [C]. We apologize for not using his
numbering. An excuse is that all calculations have been performed by KnotScape,
which does not yet provide a translator between its notation and that of Conway.
For uniformity reasons, we will need to continue using this convention in subse-
quent papers, too.

To generate all minimal-crossing-number diagrams of a given nonalternating
knot, we applied Thistlethwaite’s diagram move toolknotfind and a special list
of duplications. Although improvements were made toknotfind in February
2002, the program occasionally misses some minimal crossing diagrams. Table 1
and the remark after Question 2 are to be understood modulo this problem. (It
occurs rather seldom, so expectedly alters the outcome only insignificantly.)

In the case of the particular examplesK ∈ {15219453,138838,139221}, where it
is important to have the correct list of minimal-crossing-number diagrams, the
completeness ofknotfind’s output was independently checked in the following
manner.

Knots are tabulated in [HT] lexicographically by their smallest Dowker–Thistle-
thwaite notation [DT] and so, in order to make the diagram ofK alternating, it
suffices to change crossings, obtain an alternating knotK ′, and then consider all
diagrams that (i) are obtained by crossing changes from the alternating knots after

K ′ in the alternating knot table and (ii) contain no trivial clasps . The Jones
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polynomial of such diagrams was checked against the Jones polynomial ofK, giv-
ing only the diagrams rendered byknotfind.

3. The Kauffman Polynomial

The Kauffman polynomial is usually defined via a regular isotopy invariant3(a, z)

with the properties

(1) 3( )+3( ) = z(3( )+3( )
)
.

(2a) 3( ) = a3( );
(2b) 3( ) = a−13( ).

(3) 3( ) = 1.
The isotopy invariantF(a, z) of the knotK with diagramD is then defined as
a−w(D)3(a, z), wherew(D) is the writhe ofD. Thus degz(F ) = degz(3) in any
of its forms.

The Brandt–Lickorish–Millett–Ho polynomialQ is given byQ(z) = F(1, z).
Note that there is a way to distinguish the two smoothings of a crossing, as shown
in Figure 2.

Figure 2 The A- and B-corners of a crossing, and its two smoothings. The corner
A (resp. B) is the one passed by the overcrossing strand when rotated counterclock-
wise (resp. clockwise) toward the undercrossing strand. A type-A (resp. type-B)
smoothing is obtained by connecting the A (resp. B) corners of the crossing.

Since the defining relations (1) and (2) provide at most one letter(a or z) for
each reduction in crossing number of a diagram, Thistlethwaite [T1] was able to
prove that, ifurs arzs is a nonzero term of3(a, z), then

|r| + s ≤ c. (c)

The Perko pair has smaller-than-expected degz F, so it would seem natural to
guess that variation of minimal writhe is another contributor (besides long bridges)
to truncation of the Kauffman polynomial. We now demonstrate that the need to
fit two or more versions of3(a, z) within Thistlethwaite’s bounds also restricts
degz F.

Thistlethwaite [T2] made a substantial study of the terms on the “critical lines”
|r| + s = c, wherec is the minimal crossing number. His main notion was that
of an adequate link, which we pause to define. A link diagramD is plus semi-
adequateif the positive (A) smoothing ofD yields a link in which the two strands
of every former crossing belong to different components. The definition ofminus
semiadequateis similar for the negative (B) smoothing ofD. A diagram isade-
quateif it is both plus semiadequate and minus semiadequate andinadequateif it
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is neither. A link is adequate, plus semiadequate, and/or minus semiadequate if it
possesses a diagram with the respective properties andinadequateotherwise.

Thistlethwaite demonstrated that a link is plus semiadequate if and only if there
are nonzero termsurs arzs on the “positive critical line” wherer+ s = c and that a
link is minus semiadequate if and only if there are nonzero terms on the “negative
critical line” where−r+s = c. He also proved that nonzero coefficientsurs along
the critical lines must be positive.

LetD1 andD2 be two minimal crossing diagrams of a knotK, each with cross-
ing numberc but with differing writhes. Thevariation w(D2) − w(D1) must
be an even number 2v. Without loss of generality, assume 2v > 0. The3 poly-
nomials31 and32 of D1 andD2 are related bya−w(D1)31(a, z) = F(a, z) =
a−w(D2)32(a, z), or

32(a, z) = a2v31(a, z). (d)

Define the variation of a link to be the maximum ofw(D2) − w(D1) over all its
minimal crossing diagrams.

For anys > 0, there must be two nonzero terms of the formarzs if there are
any at all, sinceF(i, z) = (−1)|L|−1 [L1, p. 573, table].

Theorem 1. LetL be a link with Kauffman polynomialF(a, z), minimal cross-
ing numberc, and variationv.

(i) If L has an adequate diagram, thenv = 0.
(ii) If L is not adequate but has a semiadequate diagram with crossing number

c, then
degz F ≤ c − v − 2. (e)

(iii) If L is inadequate, then

degz F ≤ c − v − 3. (f )

Proof. (i) If L has an adequate minimal crossing diagramD, then3(D) will
have terms on both critical lines. No multiplication by powers ofa is permitted
by Thistlethwaite’s condition. Thus, no writhe other than that ofD is possible in
a minimal crossing diagram. This part is added for completeness and duplicates
[T2, Cor. 3.3].

(ii) Suppose32 has nonzero termsac−szs (on the positive critical line) and
ac−s−2zs. (A parity condition prevents a nonzeroac−s−1zs term.) Then31 will
have nonzero termsac−s−2vzs andac−s−2v−2zs. If the latter term is on the nega-
tive critical line, then

−(c − s − 2v − 2)+ s = c
or

2s = 2c − 2v − 2
or

s = c − v −1.

Other positions for the nonzero terms are less favorable and lead to a smallers

for givenc andv. Thus, if the term on the positive critical line is zero thens ≤
c − v − 2, and similarly if the term on the negative critical line is zero.

(iii) If both critical-line terms are zero thens ≤ c − v − 3.
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Theorem 2. LetK be a knot with minimal crossing numberc, Kauffman poly-
nomialF(a, z), and Brandt–Lickorish–Millett–Ho polynomialQ(z).

(1) If degz F = c − 2, thendegQ = c − 2.
(2) If degz F = c−3 anddegQ < c−3, thenK is semiadequate(or adequate).

Curiously, no examples illustrating part (2) have yet turned up in the tables.

Proof. (1) We can assume thatc ≥ 3. By Thistlethwaite’s bounds, the terms in3
of highestz-degree must be of the form(uc−2,−2a

−2+uc−2,0+uc−2,2a
2)zc−2. By

the Lickorish condition onF(i, z),we must have−uc−2,−2+uc−2,0−uc−2,2 = 0.
If degQ < c− 2 then we must also haveuc−2,−2+ uc−2,0+ uc−2,2 = 0. Adding
these two equations givesuc−2,0 = 0; subtracting them givesuc−2,−2+ uc−2,2 =
0. But if these two critical-line terms are nonzero then they must be positive, which
is impossible.

(2) In this case, the terms in3 of highestz-degree must be(uc−3,−3a
−3 +

uc−3,−1a
−1+ uc−3,1a + uc−3,3a

3)zc−3. The condition onF(i, z) givesuc−3,−3 −
uc−3,−1+uc−3,1−uc−3,3 = 0. If degQ< c−3,we also haveuc−3,−3+uc−3,−1+
uc−3,1 + uc−3,3 = 0. Adding and subtracting as before, we obtainuc−3,−3 +
uc−3,1 = 0 anduc−3,−1+ uc−3,3 = 0. If the two critical-line termsuc−3,−3 and
uc−3,3 are zero, then all four terms are zero and we could not have degz F = c−3.
ThusK must be semiadequate or adequate.

4. Bridge Length and Variation

Theorem 3. Any link has a diagram of maximal bridge length2. This diagram
can be made to have no nugatory crossings or trivial clasps.

Proof. This is achieved by the moves shown in Figure 3. Consider an over-
bridge (a), and add kinks on all its segments (b). When putting the kinks as
shown, on the first segment a kink is allowed but not necessary. To construct a re-
duced diagram, replace each pair of kinks by the tangle in (c) (by putting or not a
kink on the first segment, we can adjust the number of kinks always to be even).
Notice that, to avoid creating a longer underbridge or overbridge on the under-
passing strandd between the two kinks involved in the move, we must take care
that the first and last crossings of this strand are underpasses and that the second
and second-to-last are overpasses. To avoid the creation of a trivial clasp, modify
the tangle in (c) to the one in (d).

Clearly, this construction is made possible at the cost of high augmentation of the
crossing number of the diagram. On the other hand, bridge length 2 sometimes
cannot be achieved inany minimal diagram, as example 138838 shows (see Fig-
ure 4). It has 37 diagrams of 13 crossings, all with bridge length 3.

We have so far considered overbridges and underbridges as equivalent, since
we did not care about mirror images. However, the next example shows that there
is sometimes a difference when distinguishing mirror images. If a knotK has
a minimal diagram with an overbridge of lengthc, then its mirror image has a
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Figure 3 Several ways of modifying a diagram so as to avoid overbridges of
length> 2 (the mirrored moves deal with underbridges).

Figure 4

minimal diagram with an underbridge of lengthc. Thus the knot’s maximal over-
bridge length in minimal diagrams is the same as the maximal underbridge length
of the minimal diagrams of its mirror image. However, this may not be equal to
the maximal underbridge length of the minimal diagrams ofK itself. The knot
139221 has a unique 13-crossing diagram with maximal underbridge length 3 but
maximal overbridge length only 2.

Given inequality (b) and Theorem 1, one might hope that a long bridge and
variation of writhe could be used simultaneously to bound degz F. These hopes
are dashed by the knot 138962 (Figure 4). The knot has a plus semiadequate mini-
mal crossing diagram of writhe 7 and an inadequate minimal crossing diagram of
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writhe 9. Since degz F = 9, it follows that inequality (e) of Theorem 1 is strict;
one cannot subtract a further term for the bridge of length 3 in the writhe-9 dia-
gram. Inequality (b) fails by 1 to be strict for this knot.

5. Questions

We conclude our exposition with some problems.
When the crossing number increases, so does (in general) the number of mini-

mal diagrams and hence the variation of their writhes. The Perko knot is the first
one with variation 2. Among the 16-crossing knots there are several examples
with variation 4. Particularly interesting among them is the amphicheiral knot in
Figure 5, which features a minimal diagram of nonzero writhe. (This is the first
even-crossing-number example of such type after the amphicheiral 15-crossing
knot found by Thistlethwaite; see [HTW].) This naturally leads to the following
question.

Figure 5 The knot 161184186is amphicheiral but has a diagram of minimal crossing
number and (nonzero) writhe−2 (right) and hence also one of writhe 2. It also has
many zero writhe diagrams of minimal crossing number, such as the diagram on the
left (which is the one included in the table).

Question 1. Are there knots with arbitrarily large (minimal crossing) writhe
variation?

The answer is surely “yes”: take some knot with nonzero variation and consider
its iterated connected sums. The problem is how to show that the crossing number
is additive under connected sums for such a knot.

An even more difficult question is whether the writhes occurring in minimal
diagrams are always consecutive.

Question 2. Is the set of minimal writhes for every knot connected? That is, if
w + 2 andw − 2 are minimal writhes then isw a minimal writhe?



Crossing Number, Writhe, and Bridge Length of Knot Diagrams 11

The answer is positive for all knots in the tables of [HT] up to 16 crossings (mod-
ulo the warning in Section 2).

Here is another curious problem.

Question 3. LetK be a nontrivial knot,WK a Whitehead double ofK, P the
HOMFLY polynomial, andm the Alexander variable ofP. Is then degmP(WK) =
2 degz F(K)+ 2?

The equality holds forK up to 11 crossings. The origin of this problem is as
follows.

The diagrammatic genusgD of a knot is defined to be the minimum genus ob-
tained by applying Seifert’s algorithm to any diagram of the knot. Suppose a
diagram achieving such a surface hasc crossings ands Seifert circuits. Morton
[M1] proved that degmP(K) ≤ 2gD = c− s+1. This inequality is not always an
equality, but it is often sharp. (For example, Crowell proved that deg1 = 2g =
2gD for alternating knots.) Satellite knots were exactly the examples Morton used
to show that diagrammatic genus can be larger than ordinary genus. Now take the
simplest (possibly twisted) Whitehead double diagramDw with 4c + 2 crossings
of the knot obtained fromD. We countc “little square” Seifert circuits (one for
each crossing of the original diagram),c + 2 larger Seifert circuits (one for each
region of the original diagram), and a clasp where the doubling occurs, for a total
of 2c + 3 Seifert circuits. So, for this particular diagram,

2gDw = cW − sW +1= (4c + 2)− (2c + 3)+1= 2c.

Thus we have an estimate for the crossing number ofK by the diagrammatic
genus of the Whitehead double ofK, as from degz F. (Note that, by a simple skein
argument, degmP(WK) is independent of the twist ofWK if it is > 2.) It is also
a simple skein calculation to show that this estimate is 2-subadditive under con-
nected sums, thus suggesting the relation to 2 degz F + 2.

In a related paper, Yamada [Y] proves that the Kauffman polynomial contains
the 2-cable Jones polynomial. A like proof won’t work here to show a direct rela-
tionship betweenF(K) andP(WK), because both invariants have two variables.
If a variable substitutionR2→ R2 has a noncritical point, then it would be locally
invertible and hence bothP(WK) andF(K) would be interconvertible. But this is
not the case—there are examples of knotsK with equalF(K)but differentP(WK).
One such pair are the knots 1130 and 11189 mentioned in [L1, p. 573] (a picture may
be found in [S]) to have equal Kauffman but distinct Conway polynomials.
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