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Some Refined Schwarz—Pick Lemmas

H. TURGAY KAPTANOGLU

1. Introduction

There has recently been an unexpected activity in the discovery of some new and
sharper versions of the Schwarz lemma (see [1; 2; 3; 7; 8; 9]), mostly in the disc.
Itis our aim in this paper to obtain further forms in the spirit of Pick for functions
between discs and between balls of different dimensions.

Several new forms in the disc [1; 7; 9] consider functighthat map the origin
to the origin and then use the functiofi&)/z to refine the estimates given in the
classical forms of the Schwarz lemma. We first relax the condjfi@ = 0 and
obtain the Pick versions of these forms. The other generalization comes from re-
placing the functiory'(z)/z by a suitable variant for functions between balls. The
results in these directions are given in two sections: those pertaining to deriva-
tives in Section 4; and those about the function values in Section 5. In Section 6,
we apply the results of Section 4 to obtain quantitative estimates on derivatives at
boundary points—in particular, on angular derivatives in discs and in balls. Two
earlier sections are for the preliminary material: Section 2 for the more analytic;
and Section 3 for the more geometric.

Our notation is fully explained in Section 2, but we mention two points in order
to give a sample of our main results. Firgt, denotes the integrated Bergman
metric in the unit balB, of C". Second,f*(a) = goji(u)(f(a))f’(a)w;(O) is the
hyperbolic derivative of a holomorphic functigf at a pointa € B,,, whereg,
is a Mobius transformation that interchanges 0 anth this work, the ball case
always includes the disc case.

Lemma 4.1. If f: B, — B,, is holomorphic,f(a) = b, and f(A) = B, then

®a(A) pala)
,TF*(A

|@a(A)] T )|</)A(a)|

whereS and T are unitary transformations satisfyin§(¢;, (B)) = T(¢g(b)).

Bm <Sf*(a) ) < 2B,(a, A),

CoroLLARY 5.3. If ¢ € B, then, for all holomorphicf: B, — B,, satisfying
f(a) = b and f(A) = B, the region of values of *(A)¢ is a closed ellipsoid
whose center is
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_ 1- P2 G(P|D)
Cg = >

1-1G(PIDI |P]
and whose radi{see Section)3are

_ 2 2 _ 2 2
_1 IG(IPIZ)I/ISI \P| and US:\/l IG(IPIC)I/Ifl Pl
1-1G(PID)I 1-1G6(PID)I

whereG = g o fops and P = @u(a).

LemMma 6.4. Let f: B, — B, be holomorphic and satisf§(a) = 0. Suppose
that A € 9B, and thatf has finite angular derivative at. Then

Him (A, B) > 14!
A o 14 |al’

whereB = r-lim,_, 4 f(z) andr-lim indicates the restricted limit.

2. Preliminaries

We useD for the unit disc in the complex plar@ andB,, for the unit ball in the
complexn-spaceC”. ClearlyB; = D. A pointin D or B, is denoted by the same
letter, sayz, which in the latter case is antuple (zy, ..., z,) of complex num-
bers. The overbai™) denotes the closure of a set or the complex conjugate of a
number, and indicates the topological boundary of a set. FerB,,, we occa-
sionally put¢, = z/|z| € aB,. The inner product and the corresponding norm in
C" are(z, w) = zazw1 + - -- + z,w, and|z| = /(z, z). Orthogonality is always
with respect to this inner product in this paper.

Our main tools are the slice functions and the automorphisms of balfsisla
holomorphic function o3, and¢ € dB,,, then theslice functionf; is the restric-
tion of f to thecomplex ling(one-complex-dimensional subspaceg) through
the origin andz and is defined foi € D by f;(1) = f(A¢). Then f; is holo-
morphic inD. Given f: B, — B,,, the functionf,(1)/1: B, — D is essentially
what replaces the quotienfi(z)/z foran f: D — D.

The one-to-one holomorphic mappings®f onto itself, whose inverses also
turn out to be holomorphic, constitute the groupaotomorphism®f B,. This
group is generated by the unitary transformations along witivitigius transfor-
mationsy, (z) for a € B, given by

a— X.z2—5.Y,2

0a(z) = 1—(z,a)

wheres, = /1— |a|?, X, is the projection onto the complex line][generated
by a and given by

(z,a)

|a?

andY, = I — X,. Whenn =1, itfollows thatX, = I, Y, = 0, andg, reduces
to the familiar

al =
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a—7z

0a(2) = 1—az

Eachg, is its own inverse and exchangesnd 0. Ifa andA are any two points
in B, theng4 o ¢, Mapsa to A. The identity

_ A—la»)A—[APP)

1— g, (A))? = 1

9a(A)] AP (@)

is very useful. The explicit formula fag, in the special case = (a3, 0, ..., 0) is

alr— 21 —S8a22 —S8aln
a = - ’ - LRI - ’ 2
#al2) (1—61121 l-aizs 1—611Z1> ( )
wheres, = /1 — |a|2. Then

. _ 11 1

¢, (0) = —d|ag{sa2, Sas---y8a) and ¢l (a) = —dlag{—z, = ..., —}. 3)
S Sa Sa

For much more on the automorphismshy, see Chapter 2 of [10] and of [4].
The Mobius transformations give rise to the integralBeigman metriqthe
hyperbolic metricthe Poincaré metridn the disc)g onB,, that is given by

1 1+ e (w)]
Bz, w) = S log ————
2 T1-p(w)
wherey (z, w) = |¢,(w)| is thepseudohyperbolic metridChe importance of the
Bergman metric lies in the fact that every holomorpfiicB, — B,, is a contrac-
tion when the Bergman metric is used for both the domain and the range; that is,

Bn(f(2), f(w)) < Bu(z, w). 4)

In particular, the Bergman metric is invariant under the automorphisig when
m = n; this statement is true also for the pseudohyperbolic metric.
For an analytic functiorf : D — D, [1] makes use of the hyperbolic derivative

1— |al?
1-f(a)?
of f ata € D, which satisfie$f*(a)| < 1 by the Schwarz—Pick lemma. This form

is not suitable for use with a function of several complex variableg: 8, — B,,
and f(a) = b, we use instead the transformed holomorphic function

=tanhty(z, w),

) = f(@) ®)

g=wpo fop, B, = B,.

This new function has the propertigs= ¢, o g o ¢,, g(0) = 0, andg’(0) =

¢, (D) f'(a) ¢, (0). The standard form of the Schwarz lemma says that the linear
transformatiorg’(0) mapsB, toB,, (see [10, Thm. 8.12]). Following [1], we call
£’(0) thehyperbolic derivativef f ata and denote it by *(a). Hencel f*(z)¢| <
1forallz € B,. InDD, no¢ is required, and equality holds if and only ffis an
automorphism o). Whenn = m > 1, a sufficient condition ory to conclude
that f is linear is thatf’(0) be an isometry; see [10, Thm. 8.13]. S¢if(a) is an
isometry, thenf is an automorphism.
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For the functionf(z) = ¢,(z), [10, Thm. 2.2.2(ii)] immediately gives that
©*(0) = ¢X¥(a) = —1, which should be read asl whenn = 1. The same method
also gived/*(z) = U'(z) = U for all z for a unitaryU. More generally, iff is an
automorphism of3,, then so isg, and sinceg(0) = 0 it follows thatg is unitary
and thusf*(z) = g'(0) = g = @y 0o f o @, foranyz e B,.

The hyperbolic derivative is almost invariant under the automorphisnits, of
To make this statement clear, suppgseB, — B,, is holomorphic and satis-
fies f(A) = b. Lety be an automorphism &, and putz = ¥ 1(4). Now the
automorphismp, o ¥ o @, fixes 0 and hence is a unitary transformatiégnand
Y o@, =@aoU. Then

(f o ¥)*(@) = ¢, (O)(f ) (@) 9, (0) = ¢, (D) f'(A)Y (@) ¢, (0)
= ¢, D) (AW ©92)'(0) = ¢,(b) f'(A) (a0 U)'(0)
= ¢,(0) f'(A),(OU = fH(AU = f* (Y (a)U.

Also, if ¢ € C" then|(f o ¥)*(@)¢] = | f*(¥(a))s].

We list some other properties of the transformed functiolVe have already
indicated thatf(a) = b meansg(0) = 0. Similarly, if also f(0) = 0 then also
g(a) = b. Now supposef satisfies onlyf(a) = b and f(A) = B. We can then
consider two transformed functiogs= ¢, o f o ¢, andG = ¢ o f op,. Clearly
£2’(0) = f*(a) andG'(0) = f*(A). Now put

P =¢a(A), q=@s(B), P =g, and Q = gp(b).
Then
qg=g(p), Q@=G(P), Ipl=IP|, and |q| =10 (6)

This notation is used repeatedly without further mention.

A function f: B, — B,, is said to have finiteangular derivativeat A € 9B, if
there exists & € 9B,, such that

(B — f(2), B)
(A —z, A)

has finiterestricted limitat A. We denote the restricted limit by r-lim(For the

definition of the restricted limit we refer to [10, Sec. 8.4.3].) The restricted limit
includes the radial limit. On the other hand, we use the notation of [4, Sec. 2.6]

and let
1-17(2)]
1—|z| °
where the limit is unrestricted withifi,,. The Julia—Carathéodory theorem states
the equivalence of the following: (ig;(A) < oo; (ii) f has finite angular de-

rivative at A; and (iii) f has restricted limitB at A and (f’(z)A, B) has finite
restricted limit atA. Moreover, when these conditions hold, it states that

r;ﬂT(f/(Z)A, B) =ds(A).

dr(A) = liminf
7z—A

For functionsf: D — D, the restricted limit is replaced by the nontangential
limit, and we are allowed to usg'(A) for the angular derivative &.
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3. A Little Hyperbolic Geometry

The balls with center and radius- in the Bergman, pseudohyperbolic, and Eu-
clidean metrics are denoted By (c, r), Bp(c, r), andB(c, r), respectively. One
general relation between these ball8jg(c, tanf™r) = Bp(c, r) = ¢.(B(0, r)).
The automorphism invariance gfandy shows thatp, (Bg(c, r)) = Bg(¢p(c), 1)
andg,,(Bp(c, r)) = Bp(gs(c), r).

Whenn = 1we talk instead about discs denotedhyeveryDp» and hence every
D3 is also a Euclidean disc whose center and radius are obtained in [6, Sec. 1.1].
ThusDg(c, tani ™t r) = Dp(c, r) = ¢.(D(0, r)) = D(C, R), where

1—r2 1—|cl?
= TZMZC and R = Tzldzr. (7

Note thatC — 0 andc — 0 together, which is forced for example by— 1 or
R — 1, which also occur together. Setting= 0, we see thaDg (0, tanhtr) =
Dp(0,r) = D(O, R).

Whenn > 1, a non-Euclidean ball is actually a Euclidean ellipsoid as explained
in [10, Sec. 2.2.7]. Such an ellipsoid has different radii in different directipns:
in the complex line]; ando in all other orthogonal directions. We denote such
an ellipsoid byE(C, p, o). Thus Bz(c, tani™r) = Bp(c,r) = ¢.(B(0,r)) =
E(C, p, o), where

1—r2 1—|cf? 1—|c|?
C= —— R = —F 7, and = a— . 8
1—|c|2r2C p 1—|c|2r2r “ 1—|c|2r2r (®)

Again C = 0 andc = 0 together. Whem is small,o can be much larger than
p; but asr — 1, the difference disappears and both tend to 1. It is clear from the
forms of p ando that not every Euclidean ellipsoid is a non-Euclidean ball.

The computation in the reverse direction (i.e., determining the hyperbolic center
and radius of a given Euclidean disc situate@jns considerably more involved.
Itis not easy to find in the literature, so we include it. However, we do not attempt
a similar computation in the ball.

Let the discD given be the Euclidean disb(C, R), which is also a non-
Euclidean dis®g(c, r) = Dp(c, tanhr). We determine andr in terms ofC and
R. From (7) we know that andc are in the same direction, so we put :C
for somer > 1. SinceDg(c, r) = ¢.(Dg(0, r)) and since the line through 0 and
C (or¢) is invariant under,, half the length of the segment= [C — RC/|C|,

C + RC/|C|] in the Bergman metric is the hyperbolic radiusf D. Therefore,

)/(CJrR£ C—R£> = ¢C+RC/|C<C_R£> LT
|’ IC] IC] 1+ R2—|CJ?
and
1+2—R
po 1l TIERE-ICE 1 \/<1+R—|C|><1+R+|C|)_ ©
22 2R 2 P\ @A-R—|CHA-R+[C])

1 — -
1+ R2—|CJ?
Also, tanhr is the pseudohyperbolic radius Df
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Now ¢.(L) = [(tanhr)c/|c|, —(tanhr)c/|c|] is another segment symmetric
about the origin, s@.(C — RC/|C|) + ¢.(C + RC/|C|) = 0. After the substitu-
tionc = ¢C and forg,, the last equation eventually leads to the quadratic equation

IC?12 = 1= R?>+|CPP)t+1=0,
which can be solved farto obtain
o L RPHICP - /(A4 R—|CDA+R+|C)A-R—|CA-R+|C]

B 2|C|?

The minus sign is chosen because, when (7) is substituted in (10), we must have
¢ = c. Infact, as a referee pointed out, a plus sign would leadd@atsideD.

Likewise, when (7) is substituted in (9), we obtair= tanh *(tanhr). Note the
similarity between the terms under the radicals in (9) and (10).

C. (10)

4. Schwarz—Pick Lemmas for Derivatives

In [1], a classical lemma of Dieudonné is restated and proved in more modern
and geometric terms using the Bergman metric. The main result there is that
B(f*(0), f*(a)) < 2B(0, a) for analytic f: D — D satisfying f(0) = 0. This

result is also trivially satisfied whefi is an automorphism db, contrary to the
implication in [1], because the only origin-preserving automorphisms are rotations
and then the left side is 0. This section concerns the theorem’s generalizations to
several dimensions and to functions that need not map the origin to the origin.

LemMma 4.1. If f: B, — B, is holomorphic,f(a) = b, and f(A) = B, then

o P woan P
ﬂm<Sf (@)—,Tf (A)—) < 2B,(a, A),
[Pl |P|

whereS and T are unitary transformations satisfyinfg) = T(Q).

Proof. Considerg, G, p, g, P, and Q. If ¢ € 9B, we pick two unitary rota-
tions V andW on C" by requiringV(¢) = p/|pl andW(¢) = P/|P|. We pick
two other unitary rotations and7 on C™ in such a way that(q) = T(Q),
say, they both equdlyg], O, ..., 0). And we define two holomorphic functions
h,H: D — B, by

o= SEUOD) oy g TCWVOD)
Then, using (6), we compute
P S
hO) = SFH @ L. HO) = Tf*4) -, and h(pl) = H(P) = ~ 4.
7] P 7|

Now we apply (4) toh and H and so obtain

B(h(0), h(IpD) < BO, |p) and B(H(0), H(Ip]) < B(O, |p])
or (equivalently), by the invariance property @f

S P S
ﬂ(Sf*(a)i,ﬂ)sﬂ(a,A) and ﬂ(Tf*(A)—,ﬂ>sﬁ<a,A>.
o ol 1" 1ol
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In other words, bottsf*(a) p/|p| andTf*(A) P/| P| lie in the closed hyperbolic
ball Bz (S(¢)/|pl, B(a, A)). The triangle inequality yields the desired conclusion.

[
The theorem in [1] is the case= m = 1 andA = B = 0 of Lemma 4.1. Two
other less restricted cases are also of interest.

CoRrOLLARY 4.2. If f: B, — B, is holomorphic,f(0) = 0, and f(a) = b,
then

ﬂm(f (O)H [ )ﬂ) =< 2,(0, a).
Proof. We setA = B=0sothatG=f,P=p=a,Q=qg=b,T =S, and
W = V. Then Lemma 4.1 read®(Sf*(0)a/|a|, Sf*(a)a/|al) < 28(0,a). The
invariance ofg under automorphisms disposesSof O

ExampLE 4.3. Let’s show that the inequality in Corollary 4.2 is sharp. Consider
f(z1, ..y 20) = (zf, 0,...,0)anda = (a, 0, ..., 0). A calculation using (2) and
(3) shows that

%0 =0 and f(a)|| (L o,...,o). 11)

A+ |ail®al’
We obtain
2|ay]
1 1+ |aq)? 1+ |a
ﬂm<f (0) f (a )—) = §|09 2| ! = log il = 28,0, a).
1 _2lail 1—|a
1+ |aaf?

As a consequence, the functigg o f o ¢4 gives equality in Lemma 4.1.

The condition in [10, Thm. 8.1.3] that’(0) is an isometry cannot be stated in
terms off *(0) ina simple enough manner. Onthe other hand, we can easily see that
rather different functions give an equality in Corollary 4.2. lfgt1, ..., z,) =
((z1+73/2)2,0,...,0) anda = (a1, 0, ..., 0). Another calculation using (2) and
(3) shows thatf *(0) and f *(a) are as in (11). Hence equality is obtained again in
Corollary 4.2. Other examples can be produced from Example 8.1.5(iii) of [10].

Further inequalities can be obtained from Lemma 4.1 and Corollary 4.2. First, if
0 < r < 1then by (4) we hav@,,(rSf*(a)p/|pl, rTf*(A)P/|P|) < 2Bu(a, A)
andg,,(rf*(O)a/lal, rf*(a)a/|a|) < 28,(0,a). Ifalso¢ € 9B, and if f*(a)V =
Mf*(a) and f*(A)W = Nf*(A) for some unitaryM and N that satisfySM =

TN, then B,,(rf*(a)¢, rf*(A),) < 2B.(a, A) in Lemma 4.1. In the context

of Corollary 4.2, this means that, (rf*(0)¢, rf*(a)?) < 2B.(0, a) whenever
f*O)V = MfF*(0)andf*(a)V = Mf*(a). Whenn = m = 1, the extra assump-
tions are not required.

CoroOLLARY 4.4. If f: D — D is analytic, f(a) = b, and f(A) = B, then
ﬂ(%fﬂm,

%ﬂmﬂsmwﬁy (12)
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Proof. We pickn = m = 1in Lemma 4.1. TherV is a rotation that takelyp|
to p; so it is multiplication byp/|p|. Similarly, W, S, andT are multiplications
by P/|P|, G/Iq|, andQ/|Q|, respectively. Using (6) and also the invariancesof
under automorphisms yields the inequality claimed. O

Another inequality that follows from (12) B(rpQf*(a), rPqf*(A)) < 2B(a, A)
for 0 < r < 1 by an application of (4).

Equality in the theorem of [1] is obtained precisely for a function of the form
z¥(z), wherey is an automorphism ab. Hence, equality in (12) is obtained if
and only if £ (z) = @p(@a(2)¥(¢a(2))). One such function ig(z) = ¢p(a(2)?).

5. Two-Point Schwarz—Pick Lemmas

In classical Schwarz—Pick inequalities, the valug'ofD — D at a single point is
fixed: at O in the Schwarz lemma andaat D in the Schwarz—Pick lemma. Then
these lemmas conclude thétz) lies inthe discD (0, |z|) andDp (f(a), p(z, a)),
respectively. From this point of view,does not vary and the holomorphic func-
tion f: D — Dor f: B, - B, isthe variable entity. Two other classical results,
the Dieudonné and Rogosinski lemmas, add more flavor by incorporating also the
derivative at; and 0, respectively (see [5, Sec. 6.3]).

Reference [7] is a rare paper that considers functions that have fixed values at
two pointsa and A and describes the range of valuesfo#it athird pointz. The
surprising point about [7] is that the proof of its main proposition is based on a
classical and nonintuitive lemma rather than the simpler and more geometric idea
of a non-Euclidean disc. In this section we generalize the results of [7] in several
ways by using the more modern and convenient Bergman metric.

Lemma 5.1. Letz € B, be fixed. For all holomorphig': B, — B,, satisfying
f(a) = b and f(A) = B, the region of values of (z) is the closed ellipsoid

E(c3, p3, 03) Whose center and radii are described in the proof.

Proof. ConsiderG, P, andQ. Let¢ € 3B, be arbitrary, and define a holomorphic
functionH: D — B, by H(A) = G(x¢)/A. ThenB(H(L), H(|P|)) < B(%, | P|)

by (4), which means thak (1) lies in the closed hyperbolic baBlz (H(|P)),
B, |P))). ThisballisBr(H(|Pl), |¢,r|(»)]) which is the ellipsoid(co, po, 00),
where (by (8))

1_|§0|P|()L)|2 1—|H(|P|)|2
= H(P]), _ ol
R B (T T T (T TP T

andog has a square root around the fractiorpiy Pick A = |z| and¢ = ¢,
z/1z]. ThenG(A¢) = G(z) = ¢p(f(pa(2))) liesin the ellipsoidE(cy, p1, 01) =
E(|z|co, |z]po, |1z|o0).

Now z is fixed but otherwise arbitrary. Hence the preceding argument is valid
if z is replaced by (z). Thuses(f(2)) lies in the ellipsoidE(cz, p2, 02), Where
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" 1= oo (@allzD)2 10a1ZDIG(PlEor)
L= 1GUP o) Plore (ealz P P ’
1— |G P1Lyu) Y| PI?
p2— GAPEyu0) /1P eallzDllerei @allz)],

1= 1G(PIpu)Ploip (@allz))I?/ | PI?
ando; has a square root around the fractiopn Note the similarity betweee,
andp», on the one hand, and betweeandr of the proposition of [7], on the other.
Finally, f(z) liesin the seC = @z (E(c2, p2, 02)). The ellipsoidE(ca, p2, 02) iS
the image under a Mébius transformation of a ball of some radius centered at the
origin. Thus,C is the image of the closure of this ball under some fixed automor-
phism ofB,, and soC is an ellipsoid, which we namg(cs, ps, 03). O

This lemma does not look very practical as it stands, but several special cases yield
interesting results.

CoroLLARY 5.2. Letz € B, be fixed. For all holomorphig¢': B, — B,, satis-
fying f(0) = 0 and f(a) = b, the region of values of (z) is the closed ellipsoid
E(ca, pa, 04), Where

e 1— g (2D P 121 f(al,)
1 1fGal) Plew(zDZal  lal
1— ; 2 2
ps= falg/lal oz,

1 f(alg) Pl (2D al?
and o4 has a square root around the fraction in.

Proof. We setA = B =0sothatG = f, P=p =a,andQ = ¢ = b in
Lemma 5.1. To obtain the claimed values, we compute the values of, and
o1 in this special case. U

CoroLLARY 5.3. If ¢ € B, then, for all holomorphicf: B, — B,, satisfying

f(a) = band f(A) = B, the region of values of *(A)¢ is the closed ellipsoid
E(cs, ps, 05), where

_ 1-|P” G(Plp) _1-|G(PID)IP?

C5 - 2 ’ p5 - 2

1-1GUPIDI= |PI 1-1G(PIDI

and o5 has a square root around the fraction jn.

|P],

Proof. We letA — 0; thenH(A) — G'(0)¢ = f*(A)¢. We next compute the
values ofcg, pg, andog wheni = 0. O

Corollary 5.3 is a Dieudonné—Pick lemma for the ball. A Dieudonné lemma for
the ball is obtained by further specializing to the case B = 0, in whichG =
f andP = a. This case says that'(0)¢ lies in the ellipsoidE(cs, ps, 06), Where
_ 1-1jal®  f(al) _1-1f(al)l¥/lal?
Co 3 pG - |a|7

1= [f(al)P  al 1-|f(al®)?
andog has a square root around the fractiopin
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CoroLLARY 5.4. If z € B, then, for all holomorphicf: B, — B,, satisfying
f(a) = b, the region of values of (z) is the closed ellipsoi&(cs, ps, og) whose
center and radii are described in the proof.

Proof. We letA — a; thenB — b, P — 0, Q — 0, andH(|P|) — G'(0)¢ =
f*(a)¢, where¢ = ¢.. We next compute the values of, p», ando, whenP =
0 to gety,(f(z)) € E(c7, p7, 07), Where

_ 1- |(pa(Z)|2 *

T F@glop’ O

= LI @@ PlleaF
! 1= [f*@)pa(2)P

ando7 has a square root around the fractiomin Hencef(z) lies in

lpa(2) 1%,

E(cs, ps, 08) = ¢p(E(c7, p7,07)). O

Corollary 5.4 is a Rogosinski—Pick lemma for the ball. A Rogosinskilemma for the
ball is obtained by further specializing to the case b = 0, in which f*(a) =
f/(0). This case says that(z) lies in the ellipsoidE(cg, p9, 09), Where

1-|z? _1—|f’(0)ZI2/IZ|2| 2

= /O s =
1= o) @ =TT porp

andog has a square root around the fractiompin

If f*(a) is anisometry in Corollary 5.4, or if’(0) is an isometry in the previ-
ous paragraph, thery = f*(a)¢.(z), cg = f'(0)z, andp7 = 07 = pg = 09 =
0 as expected by [10, Thm. 8.1.3].

Let’s investigate the preceding results for the casem = 1

Co

9}

CoroLLARY 5.5. Letz € D be fixed. For all analytic/: D — D satisfying
f(a) = band f(A) = B, the region of values of (z) is a closed dis®(c12, r12)
whose center and radius are described in the proof.

Proof. We evaluate, andp, of Lemma 5.1 whem = m = 1, and there is no.
Now H(z) = G(z)/z, ¢ does notexist, and we can directly evaludie’) = Q/P.
These lead to the result th&(z) = ¢p(f(¢a(2))) lies in the discD(c10, r10),
where

__lolee@P 00 4, 1-10/PP
1—-10/PPler(2)I* P 1—-10/PPler ()17

Thengg(f(2)) lies in the disd(c11, r11), Whereey; andry; are obtained fronasg
andrg by replacing: by g4 (z). After some manipulation and using (6), these take
the forms

1- a 2 1- 2
= lpa(2)1° 9a(2)Q and ryy = lg/p!

T 1-q/plPle.()2 P 1 g/plPleJ(2)?

c10 lzllp(2)].

loa(2)]@a(2)].
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Finally, f(z) lies in the disd(c12, r12) = @z (D(c11, r11)). The center and radius
of this disc can be found as in Section 3. O

A simple consequence of Corollary 5.5 is th#tz)| < |c12| + r12. A similar in-
equality follows also from Corollaries 5.6 and 5.7. These upper bounds foy]|
are sharp, as will be shown in Example 5.8.

In Lemma 5.1 and Corollaries 5.2, 5.3, and 5.4, we can likewise conclude that
| f(2)] < |c| + o, wherec ando are with appropriate subscripts. But these upper
bounds for| f(z)| are clearly not sharp.

The disc case of Corollary 5.2 is the proposition of [7].

CoroLLARY 5.6. For all analytic f: D — D satisfyingf(a) = b and f(A) =
B, the region of values of ’(A) is the closed dis®(c14, r14), Where
_1—|P|21—|B|2Q . |PI>— 10> 1-|BJ?

T 1-(QP1-|ARP T IPIA— 0P 1- AR

C14

Proof. Corollary 5.3 tells us thaf *(a) lies in the disd(c13, r13), where

_1-PPR O P2 —|0P
W=1T0Er MM T A on
Employing (7) finishes the proof. O

This is a Dieudonné—Pick lemma. The case= B = 0, in which alsoP = a
andQ = b, is a Dieudonné lemma and is in [7].

CoroLLAry 5.7. For all analytic f: D — D satisfyingf(a) = b, the region of
values off (z) is the closed dis®(c16, r16) Whose center and radius are described
in the proof.

Proof. Corollary 5.4 tells us thap,( f(z)) lies in the disa(c1s, r15), Wwhere

L 1- e )P .
5= T @Rl @p 9@
and )
1) )
5= R @E O
Hencef(z) lies in the discD(c16, r16) = ¢5(D(c15, r15)). O

This is a Rogosinski—Pick lemma. The case- b = 0 is a Rogosinski lemma
and can also be found in [7].

It is shown in [7] that the function& (z) = zgg/p(x@p(z)) cover the disc
D(c10, r10) @sa varies inD. Then the functions (z) = ¢s(G(¢a(z))) cover the
disc D(c12, r12) asa varies inD. We can extend these examples to several vari-
ables, at least when> 1 andm = 1
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ExampLE 5.8. Leta = (a1, 0, ..., 0) with a; > 0 for simplicity,b € D, « €
D, and f(2) = z1¢p/a, (@4 (2)1), Where we invoke (2). For any € D, we have
f(0) =0andf(a) = b. Now look at onlyz = (z1, 0, ..., 0) with z; > 0. Then
. =@1,0,...,00andf(|lalz;) = b. With alsou = (a1—z1)/(1—a1z1), we obtain

1-p? b 1 |bP/a?

4= —————— and rg=ps= ————zulul
YT pRuYal @ S T e
We compute to see
M:i% (@)
ra a7

which coverdD asa varies in. Thus the functiong'(z) cover the disd (c4, r4)

aso varies inD. We can take care of the other cases of Corollary 5.2 wihen
1 by using unitary rotations; to deal with Lemma 5.1 when= 1, we resort to
functions of the formpg o f o 4.

6. Boundary Derivatives

A development in a different direction is the boundary Schwarz lemma of [9],
where a lower bound for the derivative at a boundary point is found. The result
is derived from an interior Schwarz lemma, which is nothing but a Rogosinski
lemma and which can be found in [5] with the same proof (just add the moduli of
the two fractions on top of p. 201) and in [7] with a different proof (just perform
|c2| + r2). In this section, we present Pick forms in the disc and in the ball. We
base our proofs on the results in Sections 3 and 5 to highlight the geometric nature
of the problem.

LemMma 6.1. Let f: D — D be analytic and satisfy(a) = b. SupposeA, B €
oD and thatf has a radial limitB and radial derivativef’(A) at A. Then
2 — bl 1—|a]
|f'(A)] =
1+ [f*(a)l 1+ |b| 1+ |a|”

Proof. By Corollary 5.7,¢,(f(z)) lies in the discD(c1s, r15), Which is (say)
Dp(c17, r17). Then f(z) lies in the disce,(Dp(c17,r17) = Dp(@p(c1r), r17),
whose Euclidean center and radius are callgéndrie in Corollary 5.7. By (7),

2
1-rfy

1= ———————@p(c17) and rie=
1—rZ|ep(c17)|?

It follows that

— lop(c17)I? .
1—rZ|ep(c17)|?

ri7 + lop(c17)|

()] < lciel + 116 = ——F—
! 1+ ri7les(c17)l

and
— @I 1=dard+rn) _1-r7 1-lgp(rr)l

=zl — 1-|z| 1 z| 1+ raglep(ern)|
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As |z| — 1, we have|p,(z)] > 1, ¢15 — 0, andris — 1 Then, by (7), also
c17 — 0 andri7 — 1. Therefore,

1= 1—-1b . 1-

lim inf /)] > 6] lim =
—A  1—|z| 1416 12-11— |z]

It remains to compute the limit in (13).

Observe that;7 can be obtained by substitutiags andrs for C andR in (9).
This substitution, after some tedious work and obvious simplifications, gives

_ Vo
— l9a(2)|?
wherew = (14 |94 (2)|2)? — 4|94 (2)|?| f*(a)|?. Using the definition of tantv1;

takes the form
i YO A= lga@P)
Vo+ Q=192

(13)

ri7 = tanh(log

Then, by (1),
1-r17 21— |al®») A+ |z])
—lzl - azl(Vo+1-|e.(2)?)
- A—lah@+ |z]) 2
B 1+ |al Vo+1—]p.(2)]?
Thus, leaving the caskf*(a)| =1 aside,
1—r17 — |a| 2 — lal 2

lim
li>11—1z| 1+|a| Vi=|f*@|? ~ 1+ lal 1+ | f*(a)|”
Finally, under the hypotheses of the lemmas |z|A and
B @ jim it 121/
H 1A |z|A —»A  1—|z]
This completes the proof. O

|f'(A)] =

As a consequence, singg*(a)| < 1, we also have
6] 1—|a

|f'(A )|_1+|b|1+|a| a4)

ExaMmPLE 6.2. Looking back at the statement of Lemma 6.1, equality holds in
(14) ifand only if| f*(a)| = 1, which holds (as mentioned in Section 2) if and only
if fis an automorphism db, satisfying of coursef(a) = b. In fact, let f(z) =
b (e, (2)), wheree®® = —ab/|ab|. Then
, 1—|bJ? 1—lal?
) = ——12 al,

|1— beibp,(7)|? |11 — az|
Let A = —a/|a| so thatp,(A) = —A = a/|al|. SubstitutingA for z, using the
particular value o chosen, and simplifying, we obtain equality in (14).
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In particular, the hypotheses of Lemma 6.1 are satisfied (by the Julia-Carathéodory
theorem) whery has finite angular derivativg’(A) at A. Then Lemma 6.1 and
what follows its proof give lower bounds for the modulus of the angular derivative
of f atA and for thed;(A) mentioned in Section 2.

REMARK 6.3.  We can say something also about the region of valugg(af) in
Lemma 6.1, at least when= b = 0. Corollary 5.7 in this case (actually a Ro-
gosinski lemma) says thaft(z) lies in the disa(c1g, r1s), where
o 1-zP 1- 1) 22

1—1zI?| f(0)[? 1—1zI? f(0)[?
are obtained fromtys andris by settinga = 0. Then the difference quotient
(B — f(2))/(A — z) lies in the disad(c1g, r19), Where
B~ s and rig = 18 .
A—z |A — z|

Now, asz approaches radially, we have; = |z|A and|z| — 1, and bothcig
andrigtend to infinity. However, the termcigin the numerator of 19 is bounded,
andcyg is asymptotic toA B/(1— |z|). Similarly, r19is asymptotic to 4(1— |z|) as
z — Aradially. These discs enlarge to fill the half-plahe= {w : Re(A Bw) > 0}
asz — A radially. Thusf’(A) lies in the intersection of and the complement
of the discD(0, 2/(1+ | f'(0)])).

c18 zf'(0) and rig=

€19 =

Proving a result in the ball in the generality of Lemma 6.1 would require either a
computation of derivatives of automorphisms at arbitrary points or a computation
of pg of Corollary 5.4 in a way similar to that in Section 3. Either computation is
prohibitively complicated, so we are content with the following simpler form.

LEMMA 6.4. Let f: B, — B,, be holomorphic and satisfy(a) = 0. Suppose
that A € 9B,, and thatf has finite angular derivative at. Then

tlim(f()A, B) = =141,

7—A 1+ |a|
whereB = r-lim,_ 4 f(z).

Proof. By the casé = 0 of Corollary 5.4,f(z) lies in the ellipsoid&(c7, p7, o7).
It is impossible to find an upper bound ¢fi(z)| as directly as in the proof of
Lemma 6.1. However, the intersectionBfc7, p7, o7) with [¢7] and with its or-
thogonal complement has circular symmetry. Hence the distance between the ori-
gin and the points of the planar ellipse
2 2
(x — |207I) n y_2 _1 (15)
P7 o7
farthest from the origin is also the same as the distance between the origin and
the points ofE(c7, p7, o7) farthest from the origin. We therefore first solve the
Lagrange multiplier problem of finding the maximum of the functiifx, y) =

v x2 + y2 subject to condition (15); we obtain the maximum as
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2 2 2_ 52
K:\/G (ler? +02 = p?)

02— p2

It follows that| f(z)| < K. Substituting the values aef;, o7, andp7 into the ex-
pression forK yields K = |¢,(z)|. Thus,

1-1f@| 1=K _ 1-lp)P
1—jz ~ 11—l A= lDA+Iga(D
A—laPA=1z®)  _l-lal 1+

T L@ 9PA— DA+ 1ga@D) ~ 1+ lal 1+ [¢a(2)]
1-1/@I _ 1-lal
1-1lzl ~ 1+|al

The proof is complete by the remarks on angular derivatives and the Julia—Cara-
théodory theorem in Section 2. O

and

ds(A) = liminf
z—A

ExampLE 6.5. We modify Example 6.2 and obtain a function that shows that
equality occursin Lemma 6.4. Let = n, f(z) = ¢,(z), andA = —a/|a|. This
function is holomorphic in a neighborhood Bf,, so we haveB = f(4) = —A

and f'(A) exists. Imitating the proof of [10, Thm. 2.2.2(ii)], we obtain

P 1-|al
~ 1+41al” 14 |al
SinceX,(A) = A andY,(A) =0,
/ 1_ |a|
A)A, B) =
(f'(A) ) 11 a]
immediately follows.
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