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Some Refined Schwarz–Pick Lemmas

H. Turgay Kaptanoğlu

1. Introduction

There has recently been an unexpected activity in the discovery of some new and
sharper versions of the Schwarz lemma (see [1; 2; 3; 7; 8; 9]), mostly in the disc.
It is our aim in this paper to obtain further forms in the spirit of Pick for functions
between discs and between balls of different dimensions.

Several new forms in the disc [1; 7; 9] consider functionsf that map the origin
to the origin and then use the functionsf(z)/z to refine the estimates given in the
classical forms of the Schwarz lemma. We first relax the conditionf(0) = 0 and
obtain the Pick versions of these forms. The other generalization comes from re-
placing the functionf(z)/z by a suitable variant for functions between balls. The
results in these directions are given in two sections: those pertaining to deriva-
tives in Section 4; and those about the function values in Section 5. In Section 6,
we apply the results of Section 4 to obtain quantitative estimates on derivatives at
boundary points—in particular, on angular derivatives in discs and in balls. Two
earlier sections are for the preliminary material: Section 2 for the more analytic;
and Section 3 for the more geometric.

Our notation is fully explained in Section 2, but we mention two points in order
to give a sample of our main results. First,βn denotes the integrated Bergman
metric in the unit ballBn of Cn. Second,f ∗(a) = ϕ ′f(a)(f(a))f ′(a)ϕ ′a(0) is the
hyperbolic derivative of a holomorphic functionf at a pointa ∈ Bn, whereϕa
is a Möbius transformation that interchanges 0 anda. In this work, the ball case
always includes the disc case.

Lemma 4.1. If f : Bn→ Bm is holomorphic,f(a) = b, andf(A) = B, then

βm

(
Sf ∗(a)

ϕa(A)

|ϕa(A)| , Tf
∗(A)

ϕA(a)

|ϕA(a)|
)
≤ 2βn(a,A),

whereS andT are unitary transformations satisfyingS(ϕb(B)) = T(ϕB(b)).
Corollary 5.3. If ζ ∈ Bn then, for all holomorphicf : Bn → Bm satisfying
f(a) = b andf(A) = B, the region of values off ∗(A)ζ is a closed ellipsoid
whose center is
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c5 = 1− |P |2
1− |G(|P |ζ)|2

G(|P |ζ)
|P |

and whose radii(see Section 3) are

ρ5 = 1− |G(|P |ζ)|2/|P |2
1− |G(|P |ζ)|2 |P | and σ5 =

√
1− |G(|P |ζ)|2/|P |2

1− |G(|P |ζ)|2 |P |,

whereG = ϕB B f B ϕA andP = ϕA(a).
Lemma 6.4. Let f : Bn → Bm be holomorphic and satisfyf(a) = 0. Suppose
thatA∈ ∂Bn and thatf has finite angular derivative atA. Then

r-lim
z→A 〈f

′(z)A,B〉 ≥ 1− |a|
1+ |a| ,

whereB = r-lim z→A f(z) and r-lim indicates the restricted limit.

2. Preliminaries

We useD for the unit disc in the complex planeC andBn for the unit ball in the
complexn-spaceCn. ClearlyB1= D. A point inD orBn is denoted by the same
letter, sayz, which in the latter case is ann-tuple (z1, . . . , zn) of complex num-
bers. The overbar( ¯ ) denotes the closure of a set or the complex conjugate of a
number, and∂ indicates the topological boundary of a set. Forz ∈ Bn, we occa-
sionally putζz = z/|z| ∈ ∂Bn. The inner product and the corresponding norm in
Cn are〈z,w〉 = z1w̄1+ · · · + znw̄n and|z| = √〈z, z〉. Orthogonality is always
with respect to this inner product in this paper.

Our main tools are the slice functions and the automorphisms of balls. Iff is a
holomorphic function onBn andζ ∈ ∂Bn, then theslice functionfζ is the restric-
tion of f to thecomplex line(one-complex-dimensional subspace) [ζ ] through
the origin andζ and is defined forλ ∈ D by fζ(λ) = f(λζ). Thenfζ is holo-
morphic inD. Givenf : Bn→ Bm, the functionfζ(λ)/λ : Bn→ D is essentially
what replaces the quotientf(z)/z for anf : D→ D.

The one-to-one holomorphic mappings ofBn onto itself, whose inverses also
turn out to be holomorphic, constitute the group ofautomorphismsof Bn. This
group is generated by the unitary transformations along with theMöbius transfor-
mationsϕa(z) for a ∈Bn given by

ϕa(z) = a −Xaz− saYa z
1− 〈z, a〉 ,

wheresa =
√

1− |a|2, Xa is the projection onto the complex line [a] generated
by a and given by

Xaz = 〈z, a〉|a|2 a,
andYa = I − Xa. Whenn = 1, it follows thatXa = I, Ya = 0, andϕa reduces
to the familiar



Some Refined Schwarz–Pick Lemmas 651

ϕa(z) = a − z
1− āz .

Eachϕa is its own inverse and exchangesa and 0. Ifa andA are any two points
in Bn, thenϕA B ϕa mapsa toA. The identity

1− |ϕa(A)|2 = (1− |a|2)(1− |A|2)
|1− 〈A, a〉|2 (1)

is very useful. The explicit formula forϕa in the special casea = (a1,0, . . . ,0) is

ϕa(z) =
(
a1− z1

1− ā1z1
,
−sa z2

1− ā1z1
, . . . ,

−sa zn
1− ā1z1

)
, (2)

wheresa =
√

1− |a|2. Then

ϕ ′a(0) = −diag{s2
a , sa, . . . , sa} and ϕ ′a(a) = −diag

{
1

s2
a

,
1

sa
, . . . ,

1

sa

}
. (3)

For much more on the automorphisms ofBn, see Chapter 2 of [10] and of [4].
The Möbius transformations give rise to the integratedBergman metric(the

hyperbolic metric,thePoincaré metricin the disc)β onBn that is given by

β(z,w) = 1

2
log

1+ |ϕz(w)|
1− |ϕz(w)| = tanh−1γ (z,w),

whereγ (z,w) = |ϕz(w)| is thepseudohyperbolic metric.The importance of the
Bergman metric lies in the fact that every holomorphicf : Bn→ Bm is a contrac-
tion when the Bergman metric is used for both the domain and the range; that is,

βm(f(z), f(w)) ≤ βn(z,w). (4)

In particular, the Bergman metric is invariant under the automorphisms ofBn when
m = n; this statement is true also for the pseudohyperbolic metric.

For an analytic functionf : D→ D, [1] makes use of the hyperbolic derivative

f ∗(a) = 1− |a|2
1− |f(a)|2f

′(a) (5)

of f ata ∈D,which satisfies|f ∗(a)| ≤ 1 by the Schwarz–Pick lemma. This form
is not suitable for use with a function of several complex variables. Iff : Bn→ Bm
andf(a) = b, we use instead the transformed holomorphic function

g = ϕb B f B ϕa : Bn→ Bm.

This new function has the propertiesf = ϕb B g B ϕa, g(0) = 0, andg ′(0) =
ϕ ′b(b)f ′(a)ϕ ′a(0). The standard form of the Schwarz lemma says that the linear
transformationg ′(0) mapsBn toBm (see [10, Thm. 8.12]). Following [1], we call
g ′(0) thehyperbolic derivativeof f ata and denote it byf ∗(a). Hence|f ∗(z)ζ| ≤
1 for all ζ ∈ Bn. In D, no ζ is required, and equality holds if and only iff is an
automorphism ofD. Whenn = m > 1, a sufficient condition onf to conclude
thatf is linear is thatf ′(0) be an isometry; see [10, Thm. 8.13]. So iff ∗(a) is an
isometry, thenf is an automorphism.
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For the functionf(z) = ϕa(z), [10, Thm. 2.2.2(ii)] immediately gives that
ϕ∗a(0) = ϕ∗a(a) = −I,which should be read as−1 whenn = 1. The same method
also givesU ∗(z) = U ′(z) = U for all z for a unitaryU. More generally, iff is an
automorphism ofBn then so isg, and sinceg(0) = 0 it follows thatg is unitary
and thusf ∗(z) = g ′(0) = g = ϕb B f B ϕa for anyz∈Bn.

The hyperbolic derivative is almost invariant under the automorphisms ofBn.
To make this statement clear, supposef : Bn → Bm is holomorphic and satis-
fiesf(A) = b. Let ψ be an automorphism ofBn and puta = ψ−1(A). Now the
automorphismϕA B ψ B ϕa fixes 0 and hence is a unitary transformationU, and
ψ B ϕa = ϕA B U. Then

(f B ψ)∗(a) = ϕ ′b(b)(f B ψ)′(a)ϕ ′a(0) = ϕ ′b(b)f ′(A)ψ ′(a)ϕ ′a(0)
= ϕ ′b(b)f ′(A)(ψ B ϕa)′(0) = ϕ ′b(b)f ′(A)(ϕA B U)′(0)
= ϕ ′b(b)f ′(A)ϕ ′A(0)U = f ∗(A)U = f ∗(ψ(a))U.

Also, if ζ ∈Cn then|(f B ψ)∗(a)ζ| = |f ∗(ψ(a))ζ|.
We list some other properties of the transformed functiong. We have already

indicated thatf(a) = b meansg(0) = 0. Similarly, if alsof(0) = 0 then also
g(a) = b. Now supposef satisfies onlyf(a) = b andf(A) = B. We can then
consider two transformed functionsg = ϕb Bf Bϕa andG = ϕB Bf BϕA. Clearly
g ′(0) = f ∗(a) andG′(0) = f ∗(A). Now put

p = ϕa(A), q = ϕb(B), P = ϕA(a), and Q = ϕB(b).
Then

q = g(p), Q = G(P ), |p| = |P |, and |q| = |Q|. (6)

This notation is used repeatedly without further mention.
A functionf : Bn → Bm is said to have finiteangular derivativeatA∈ ∂Bn if

there exists aB ∈ ∂Bm such that

〈B − f(z), B〉
〈A− z,A〉

has finiterestricted limitatA. We denote the restricted limit by r-lim. (For the
definition of the restricted limit we refer to [10, Sec. 8.4.3].) The restricted limit
includes the radial limit. On the other hand, we use the notation of [4, Sec. 2.6]
and let

df (A) = lim inf
z→A

1− |f(z)|
1− |z| ,

where the limit is unrestricted withinBn. The Julia–Carathéodory theorem states
the equivalence of the following: (i)df (A) < ∞; (ii) f has finite angular de-
rivative atA; and (iii) f has restricted limitB at A and〈f ′(z)A,B〉 has finite
restricted limit atA. Moreover, when these conditions hold, it states that

r-lim
z→A 〈f

′(z)A,B〉 = df (A).
For functionsf : D → D, the restricted limit is replaced by the nontangential
limit, and we are allowed to usef ′(A) for the angular derivative atA.
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3. A Little Hyperbolic Geometry

The balls with centerc and radiusr in the Bergman, pseudohyperbolic, and Eu-
clidean metrics are denoted byBB(c, r), BP (c, r), andB(c, r), respectively. One
general relation between these balls isBB(c, tanh−1 r) = BP (c, r) = ϕc(B(0, r)).
The automorphism invariance ofβ andγ shows thatϕb(BB(c, r)) = BB(ϕb(c), r)
andϕb(BP (c, r)) = BP (ϕb(c), r).

Whenn = 1we talk instead about discs denoted byD;everyDP and hence every
DB is also a Euclidean disc whose center and radius are obtained in [6, Sec. I.1].
ThusDB(c, tanh−1 r) = DP (c, r) = ϕc(D(0, r)) = D(C,R), where

C = 1− r 2

1− r 2|c|2 c and R = 1− |c|2
1− r 2|c|2 r. (7)

Note thatC → 0 andc → 0 together, which is forced for example byr → 1 or
R → 1, which also occur together. Settingc = 0, we see thatDB(0, tanh−1 r) =
DP (0, r) = D(0, R).

Whenn > 1, a non-Euclidean ball is actually a Euclidean ellipsoid as explained
in [10, Sec. 2.2.7]. Such an ellipsoid has different radii in different directions:ρ

in the complex line [c]; andσ in all other orthogonal directions. We denote such
an ellipsoid byE(C, ρ, σ). ThusBB(c, tanh−1 r) = BP (c, r) = ϕc(B(0, r)) =
E(C, ρ, σ), where

C = 1− r 2

1− |c|2r 2
c, ρ = 1− |c|2

1− |c|2r 2
r, and σ =

√
1− |c|2

1− |c|2r 2
r. (8)

AgainC = 0 andc = 0 together. Whenr is small,σ can be much larger than
ρ; but asr → 1, the difference disappears and both tend to 1. It is clear from the
forms ofρ andσ that not every Euclidean ellipsoid is a non-Euclidean ball.

The computation in the reverse direction (i.e., determining the hyperbolic center
and radius of a given Euclidean disc situated inD) is considerably more involved.
It is not easy to find in the literature, so we include it. However, we do not attempt
a similar computation in the ball.

Let the discD given be the Euclidean discD(C,R), which is also a non-
Euclidean discDB(c, r) = DP (c, tanhr). We determinec andr in terms ofC and
R. From (7) we know thatC andc are in the same direction, so we putc = tC
for somet > 1. SinceDB(c, r) = ϕc(DB(0, r)) and since the line through 0 and
C (or c) is invariant underϕc, half the length of the segmentL = [C − RC/|C|,
C + RC/|C|] in the Bergman metric is the hyperbolic radiusr ofD. Therefore,

γ

(
C + R C

|C| , C − R
C

|C|
)
=
∣∣∣∣ϕC+RC/|C|(C − R C

|C|
)∣∣∣∣ = 2R

1+ R2 − |C|2
and

r = 1

2

1

2
log

1+ 2R

1+ R2 − |C|2

1− 2R

1+ R2 − |C|2
= 1

2
log

√
(1+ R − |C|)(1+ R + |C|)
(1− R − |C|)(1− R + |C|) . (9)

Also, tanhr is the pseudohyperbolic radius ofD.
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Now ϕc(L) = [(tanhr)c/|c|,−(tanhr)c/|c|] is another segment symmetric
about the origin, soϕc(C −RC/|C|)+ ϕc(C +RC/|C|) = 0. After the substitu-
tion c = tC and forϕc, the last equation eventually leads to the quadratic equation

|C|2t 2 − (1− R2 + |C|2)t +1= 0,

which can be solved fort to obtain

c = 1−R2+|C|2−√(1+R−|C|)(1+R+|C|)(1−R−|C|)(1−R+|C|)
2|C|2 C. (10)

The minus sign is chosen because, when (7) is substituted in (10), we must have
c = c. In fact, as a referee pointed out, a plus sign would lead to ac outsideD.
Likewise, when (7) is substituted in (9), we obtainr = tanh−1(tanhr). Note the
similarity between the terms under the radicals in (9) and (10).

4. Schwarz–Pick Lemmas for Derivatives

In [1], a classical lemma of Dieudonné is restated and proved in more modern
and geometric terms using the Bergman metric. The main result there is that
β(f ∗(0), f ∗(a)) ≤ 2β(0, a) for analyticf : D → D satisfyingf(0) = 0. This
result is also trivially satisfied whenf is an automorphism ofD, contrary to the
implication in [1], because the only origin-preserving automorphisms are rotations
and then the left side is 0. This section concerns the theorem’s generalizations to
several dimensions and to functions that need not map the origin to the origin.

Lemma 4.1. If f : Bn→ Bm is holomorphic,f(a) = b, andf(A) = B, then

βm

(
Sf ∗(a)

p

|p| , Tf
∗(A)

P

|P |
)
≤ 2βn(a,A),

whereS andT are unitary transformations satisfyingS(q) = T(Q).
Proof. Considerg, G, p, q, P, andQ. If ζ ∈ ∂Bn, we pick two unitary rota-
tionsV andW onCn by requiringV(ζ) = p/|p| andW(ζ) = P/|P |. We pick
two other unitary rotationsS andT on Cm in such a way thatS(q) = T(Q),

say, they both equal(|q|,0, . . . ,0). And we define two holomorphic functions
h,H : D→ Bm by

h(λ) = S(g(V(λζ)))

λ
and H(λ) = T(G(W(λζ)))

λ
.

Then, using (6), we compute

h(0) = Sf ∗(a) p|p| , H(0) = Tf ∗(A) P|P | , and h(|p|) = H(|P |) = S(q)

|p| .
Now we apply (4) toh andH and so obtain

β(h(0), h(|p|)) ≤ β(0, |p|) and β(H(0),H(|p|)) ≤ β(0, |p|)
or (equivalently), by the invariance property ofβ,

β

(
Sf ∗(a)

p

|p| ,
S(q)

|p|
)
≤ β(a,A) and β

(
Tf ∗(A)

P

|P | ,
S(q)

|p|
)
≤ β(a,A).
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In other words, bothSf ∗(a)p/|p| andTf ∗(A)P/|P | lie in the closed hyperbolic
ball B̄B(S(q)/|p|, β(a,A)). The triangle inequality yields the desired conclusion.

The theorem in [1] is the casen = m = 1 andA = B = 0 of Lemma 4.1. Two
other less restricted cases are also of interest.

Corollary 4.2. If f : Bn → Bm is holomorphic,f(0) = 0, and f(a) = b,

then

βm

(
f ∗(0)

a

|a| , f
∗(a)

a

|a|
)
≤ 2βn(0, a).

Proof. We setA = B = 0 so thatG = f, P = p = a, Q = q = b, T = S, and
W = V. Then Lemma 4.1 readsβ(Sf ∗(0)a/|a|, Sf ∗(a)a/|a|) ≤ 2β(0, a). The
invariance ofβ under automorphisms disposes ofS.

Example 4.3. Let’s show that the inequality in Corollary 4.2 is sharp. Consider
f(z1, . . . , zn) = (z2

1,0, . . . ,0) anda = (a1,0, . . . ,0). A calculation using (2) and
(3) shows that

f ∗(0) = 0 and f ∗(a)
a

|a| =
(

2a2
1

(1+ |a1|2)|a1| ,0, . . . ,0
)
. (11)

We obtain

βm

(
f ∗(0)

a

|a| , f
∗(a)

a

|a|
)
= 1

2
log

1+ 2|a1|
1+ |a1|2

1− 2|a1|
1+ |a1|2

= log
1+ |a1|
1− |a1| = 2βn(0, a).

As a consequence, the functionϕB B f B ϕA gives equality in Lemma 4.1.
The condition in [10, Thm. 8.1.3] thatf ′(0) is an isometry cannot be stated in

terms off ∗(0) in a simple enough manner. On the other hand, we can easily see that
rather different functions give an equality in Corollary 4.2. Letf(z1, . . . , zn) =
((z1+ z2

2/2)2,0, . . . ,0) anda = (a1,0, . . . ,0). Another calculation using (2) and
(3) shows thatf ∗(0) andf ∗(a) are as in (11). Hence equality is obtained again in
Corollary 4.2. Other examples can be produced from Example 8.1.5(iii) of [10].

Further inequalities can be obtained from Lemma 4.1 and Corollary 4.2. First, if
0 ≤ r ≤ 1 then by (4) we haveβm(rSf ∗(a)p/|p|, rTf ∗(A)P/|P |) ≤ 2βn(a,A)
andβm(rf ∗(0)a/|a|, rf ∗(a)a/|a|) ≤ 2βn(0, a). If alsoζ ∈ ∂Bn and iff ∗(a)V =
Mf ∗(a) andf ∗(A)W = Nf ∗(A) for some unitaryM andN that satisfySM =
TN, then βm(rf ∗(a)ζ, rf ∗(A)ζ) ≤ 2βn(a,A) in Lemma 4.1. In the context
of Corollary 4.2, this means thatβm(rf ∗(0)ζ, rf ∗(a)ζ) ≤ 2βn(0, a) whenever
f ∗(0)V = Mf ∗(0) andf ∗(a)V = Mf ∗(a). Whenn = m = 1, the extra assump-
tions are not required.

Corollary 4.4. If f : D→ D is analytic,f(a) = b, andf(A) = B, then

β

(
p

P
f ∗(a),

q

Q
f ∗(A)

)
≤ 2β(a,A). (12)
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Proof. We pickn = m = 1 in Lemma 4.1. ThenV is a rotation that takes|p|
to p; so it is multiplication byp/|p|. Similarly,W, S, andT are multiplications
byP/|P |, q̄/|q|, andQ̄/|Q|, respectively. Using (6) and also the invariance ofβ

under automorphisms yields the inequality claimed.

Another inequality that follows from (12) isβ(rpQf ∗(a), rPqf ∗(A)) ≤ 2β(a,A)
for 0 ≤ r ≤ 1 by an application of (4).

Equality in the theorem of [1] is obtained precisely for a function of the form
zψ(z), whereψ is an automorphism ofD. Hence, equality in (12) is obtained if
and only iff(z) = ϕB(ϕA(z)ψ(ϕA(z))). One such function isf(z) = ϕB(ϕA(z)2).

5. Two-Point Schwarz–Pick Lemmas

In classical Schwarz–Pick inequalities, the value off : D→ D at a single point is
fixed: at 0 in the Schwarz lemma and ata ∈D in the Schwarz–Pick lemma. Then
these lemmas conclude thatf(z) lies in the discsD(0, |z|) andDP (f(a), ρ(z, a)),
respectively. From this point of view,z does not vary and the holomorphic func-
tionf : D→ D orf : Bn→ Bm is the variable entity. Two other classical results,
the Dieudonné and Rogosinski lemmas, add more flavor by incorporating also the
derivative atz and 0, respectively (see [5, Sec. 6.3]).

Reference [7] is a rare paper that considers functions that have fixed values at
two pointsa andA and describes the range of values off at athird point z. The
surprising point about [7] is that the proof of its main proposition is based on a
classical and nonintuitive lemma rather than the simpler and more geometric idea
of a non-Euclidean disc. In this section we generalize the results of [7] in several
ways by using the more modern and convenient Bergman metric.

Lemma 5.1. Let z ∈ Bn be fixed. For all holomorphicf : Bn → Bm satisfying
f(a) = b and f(A) = B, the region of values off(z) is the closed ellipsoid
Ē(c3, ρ3, σ3) whose center and radii are described in the proof.

Proof. ConsiderG, P, andQ. Let ζ ∈ ∂Bn be arbitrary, and define a holomorphic
functionH : D→ Bn byH(λ) = G(λζ)/λ. Thenβ(H(λ),H(|P |)) ≤ β(λ, |P |)
by (4), which means thatH(λ) lies in the closed hyperbolic ball̄BB(H(|P |),
β(λ, |P |)). This ball isB̄P (H(|P |), |ϕ|P |(λ)|)which is the ellipsoidĒ(c0, ρ0, σ0),

where (by (8))

c0 = 1− |ϕ|P |(λ)|2
1− |H(|P |)|2|ϕ|P |(λ)|2H(|P |), ρ0 = 1− |H(|P |)|2

1− |H(|P |)|2|ϕ|P |(λ)|2 |ϕ|P |(λ)|,

andσ0 has a square root around the fraction inρ0. Pick λ = |z| andζ = ζz =
z/|z|. ThenG(λζ) = G(z) = ϕB(f(ϕA(z))) lies in the ellipsoidĒ(c1, ρ1, σ1) =
Ē(|z|c0, |z|ρ0, |z|σ0).

Now z is fixed but otherwise arbitrary. Hence the preceding argument is valid
if z is replaced byϕA(z). ThusϕB(f(z)) lies in the ellipsoidĒ(c2, ρ2, σ2), where
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c2 = 1− |ϕ|P |(ϕA(|z|))|2
1− |G(|P |ζϕA(z))|2|ϕ|P |(ϕA(|z|))|2/|P |2

|ϕA(|z|)|G(|P |ζϕA(z))
|P | ,

ρ2 = 1− |G(|P |ζϕA(z))|2/|P |2
1− |G(|P |ζϕA(z))|2|ϕ|P |(ϕA(|z|))|2/|P |2

|ϕA(|z|)||ϕ|P |(ϕA(|z|))|,
andσ2 has a square root around the fraction inρ2. Note the similarity betweenc2

andρ2, on the one hand, and betweenc andr of the proposition of [7], on the other.
Finally,f(z) lies in the setC = ϕB(Ē(c2, ρ2, σ2)). The ellipsoidE(c2, ρ2, σ2) is
the image under a Möbius transformation of a ball of some radius centered at the
origin. Thus,C is the image of the closure of this ball under some fixed automor-
phism ofBm and soC is an ellipsoid, which we namēE(c3, ρ3, σ3).

This lemma does not look very practical as it stands, but several special cases yield
interesting results.

Corollary 5.2. Let z ∈ Bn be fixed. For all holomorphicf : Bn → Bm satis-
fyingf(0) = 0 andf(a) = b, the region of values off(z) is the closed ellipsoid
Ē(c4, ρ4, σ4), where

c4 = 1− |ϕ|a|(|z|)|2
1− |f(|a|ζz)|2|ϕ|a|(|z|)|2/|a|2

|z|f(|a|ζz)
|a| ,

ρ4 = 1− |f(|a|ζz)|2/|a|2
1− |f(|a|ζz)|2|ϕ|a|(|z|)|2/|a|2 |z||ϕ|a|(|z|)|,

andσ4 has a square root around the fraction inρ4.

Proof. We setA = B = 0 so thatG = f, P = p = a, andQ = q = b in
Lemma 5.1. To obtain the claimed values, we compute the values ofc1, ρ1, and
σ1 in this special case.

Corollary 5.3. If ζ ∈ Bn then, for all holomorphicf : Bn → Bm satisfying
f(a) = b andf(A) = B, the region of values off ∗(A)ζ is the closed ellipsoid
Ē(c5, ρ5, σ5), where

c5 = 1− |P |2
1− |G(|P |ζ)|2

G(|P |ζ)
|P | , ρ5 = 1− |G(|P |ζ)|2/|P |2

1− |G(|P |ζ)|2 |P |,
andσ5 has a square root around the fraction inρ5.

Proof. We letλ → 0; thenH(λ) → G′(0)ζ = f ∗(A)ζ. We next compute the
values ofc0, ρ0, andσ0 whenλ = 0.

Corollary 5.3 is a Dieudonné–Pick lemma for the ball. A Dieudonné lemma for
the ball is obtained by further specializing to the caseA = B = 0, in whichG =
f andP = a. This case says thatf ′(0)ζ lies in the ellipsoidĒ(c6, ρ6, σ6), where

c6 = 1− |a|2
1− |f(|a|ζ)|2

f(|a|ζ)
|a| , ρ6 = 1− |f(|a|ζ)|2/|a|2

1− |f(|a|ζ)|2 |a|,
andσ6 has a square root around the fraction inρ6.
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Corollary 5.4. If z ∈ Bn then, for all holomorphicf : Bn → Bm satisfying
f(a) = b, the region of values off(z) is the closed ellipsoid̄E(c8, ρ8, σ8) whose
center and radii are described in the proof.

Proof. We letA→ a; thenB → b, P → 0, Q→ 0, andH(|P |)→ G′(0)ζ =
f ∗(a)ζ, whereζ = ζz. We next compute the values ofc2, ρ2, andσ2 whenP =
0 to getϕb(f(z))∈ Ē(c7, ρ7, σ7), where

c7 = 1− |ϕa(z)|2
1− |f ∗(a)ϕa(z)|2f

∗(a)ϕa(z),

ρ7 = 1− |f ∗(a)ϕa(z)|2/|ϕa(z)|2
1− |f ∗(a)ϕa(z)|2 |ϕa(z)|2,

andσ7 has a square root around the fraction inρ7. Hencef(z) lies in

Ē(c8, ρ8, σ8) = ϕb(Ē(c7, ρ7, σ7)).

Corollary 5.4 is a Rogosinski–Pick lemma for the ball. A Rogosinski lemma for the
ball is obtained by further specializing to the casea = b = 0, in whichf ∗(a) =
f ′(0). This case says thatf(z) lies in the ellipsoidĒ(c9, ρ9, σ9), where

c9 = 1− |z|2
1− |f ′(0)z|2f

′(0)z, ρ9 = 1− |f ′(0)z|2/|z|2
1− |f ′(0)z|2 |z|2,

andσ9 has a square root around the fraction inρ9.

If f ∗(a) is an isometry in Corollary 5.4, or iff ′(0) is an isometry in the previ-
ous paragraph, thenc7 = f ∗(a)ϕa(z), c9 = f ′(0)z, andρ7 = σ7 = ρ9 = σ9 =
0 as expected by [10, Thm. 8.1.3].

Let’s investigate the preceding results for the casen = m = 1.

Corollary 5.5. Let z ∈ D be fixed. For all analyticf : D → D satisfying
f(a) = b andf(A) = B, the region of values off(z) is a closed discD̄(c12, r12)

whose center and radius are described in the proof.

Proof. We evaluatec2 andρ2 of Lemma 5.1 whenn = m = 1, and there is noσ.
NowH(z) = G(z)/z, ζ does not exist, and we can directly evaluateH(P ) = Q/P.
These lead to the result thatG(z) = ϕB(f(ϕA(z))) lies in the discD̄(c10, r10),

where

c10 = 1− |ϕP (z)|2
1− |Q/P |2|ϕP (z)|2

zQ

P
and r10 = 1− |Q/P |2

1− |Q/P |2|ϕP (z)|2 |z||ϕP (z)|.

ThenϕB(f(z)) lies in the discD̄(c11, r11), wherec11 andr11 are obtained fromc10

andr10 by replacingz byϕA(z). After some manipulation and using (6), these take
the forms

c11= 1− |ϕa(z)|2
1− |q/p|2|ϕa(z)|2

ϕA(z)Q

P
and r11= 1− |q/p|2

1− |q/p|2|ϕa(z)|2 |ϕA(z)||ϕa(z)|.
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Finally,f(z) lies in the discD̄(c12, r12) = ϕB(D̄(c11, r11)). The center and radius
of this disc can be found as in Section 3.

A simple consequence of Corollary 5.5 is that|f(z)| ≤ |c12| + r12. A similar in-
equality follows also from Corollaries 5.6 and 5.7. These upper bounds for|f(z)|
are sharp, as will be shown in Example 5.8.

In Lemma 5.1 and Corollaries 5.2, 5.3, and 5.4, we can likewise conclude that
|f(z)| ≤ |c| + σ, wherec andσ are with appropriate subscripts. But these upper
bounds for|f(z)| are clearly not sharp.

The disc case of Corollary 5.2 is the proposition of [7].

Corollary 5.6. For all analytic f : D → D satisfyingf(a) = b andf(A) =
B, the region of values off ′(A) is the closed disc̄D(c14, r14), where

c14 = 1− |P |2
1− |Q|2

1− |B|2
1− |A|2

Q

P
and r14 = |P |

2 − |Q|2
|P |(1− |Q|2)

1− |B|2
1− |A|2 .

Proof. Corollary 5.3 tells us thatf ∗(a) lies in the discD̄(c13, r13), where

c13 = 1− |P |2
1− |Q|2

Q

P
and r13 = |P |

2 − |Q|2
|P |(1− |Q|2) .

Employing (7) finishes the proof.

This is a Dieudonné–Pick lemma. The caseA = B = 0, in which alsoP = a
andQ = b, is a Dieudonné lemma and is in [7].

Corollary 5.7. For all analyticf : D→ D satisfyingf(a) = b, the region of
values off(z) is the closed disc̄D(c16, r16)whose center and radius are described
in the proof.

Proof. Corollary 5.4 tells us thatϕb(f(z)) lies in the discD̄(c15, r15), where

c15 = 1− |ϕa(z)|2
1− |ϕa(z)|2|f ∗(a)|2ϕa(z)f

∗(a)

and

r15 = 1− |f ∗(a)|2
1− |ϕa(z)|2|f ∗(a)|2 |ϕa(z)|

2.

Hencef(z) lies in the discD̄(c16, r16) = ϕb(D̄(c15, r15)).

This is a Rogosinski–Pick lemma. The casea = b = 0 is a Rogosinski lemma
and can also be found in [7].

It is shown in [7] that the functionsG(z) = zϕQ/P (αϕP (z)) cover the disc
D(c10, r10) asα varies inD. Then the functionsf(z) = ϕB(G(ϕA(z))) cover the
discD(c12, r12) asα varies inD. We can extend these examples to several vari-
ables, at least whenn > 1 andm = 1.
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Example 5.8. Leta = (a1,0, . . . ,0) with a1 > 0 for simplicity, b ∈ D, α ∈
D, andf(z) = z1ϕb/a1(αϕa(z)1), where we invoke (2). For anyα ∈ D, we have
f(0) = 0 andf(a) = b. Now look at onlyz = (z1,0, . . . ,0) with z1 > 0. Then
ζz = (1,0, . . . ,0) andf(|a|ζz) = b.With alsoµ = (a1−z1)/(1−a1z1),we obtain

c4 = 1− µ2

1− |b|2µ2/a2
1

z1b

a1
and r4 = ρ4 =

1− |b|2/a2
1

1− |b|2µ2/a2
1

z1|µ|.

We compute to see
f(z)− c4

r4
= µ

|µ|ϕbµ/a1(α),

which coversD asα varies inD. Thus the functionsf(z) cover the discD(c4, r4)

asα varies inD. We can take care of the other cases of Corollary 5.2 whenm =
1 by using unitary rotations; to deal with Lemma 5.1 whenm = 1, we resort to
functions of the formϕB B f B ϕA.

6. Boundary Derivatives

A development in a different direction is the boundary Schwarz lemma of [9],
where a lower bound for the derivative at a boundary point is found. The result
is derived from an interior Schwarz lemma, which is nothing but a Rogosinski
lemma and which can be found in [5] with the same proof ( just add the moduli of
the two fractions on top of p. 201) and in [7] with a different proof ( just perform
|c2| + r2). In this section, we present Pick forms in the disc and in the ball. We
base our proofs on the results in Sections 3 and 5 to highlight the geometric nature
of the problem.

Lemma 6.1. Let f : D→ D be analytic and satisfyf(a) = b. SupposeA,B ∈
∂D and thatf has a radial limitB and radial derivativef ′(A) atA. Then

|f ′(A)| ≥ 2

1+ |f ∗(a)|
1− |b|
1+ |b|

1− |a|
1+ |a| .

Proof. By Corollary 5.7,ϕb(f(z)) lies in the discD̄(c15, r15), which is (say)
D̄P (c17, r17). Then f(z) lies in the discϕb(D̄P (c17, r17) = D̄P (ϕb(c17), r17),

whose Euclidean center and radius are calledc16 andr16 in Corollary 5.7. By (7),

c16 = 1− r 2
17

1− r 2
17|ϕb(c17)|2ϕb(c17) and r16 = 1− |ϕb(c17)|2

1− r 2
17|ϕb(c17)|2 r17.

It follows that

|f(z)| ≤ |c16| + r16 = r17+ |ϕb(c17)|
1+ r17|ϕb(c17)|

and
1− |f(z)|

1− |z| ≥
1− (|c17| + r17)

1− |z| = 1− r17

1− |z|
1− |ϕb(c17)|

1+ r17|ϕb(c17)| .
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As |z| → 1, we have|ϕa(z)| → 1, c15 → 0, andr15 → 1. Then, by (7), also
c17→ 0 andr17→ 1. Therefore,

lim inf
z→A

1− |f(z)|
1− |z| ≥

1− |b|
1+ |b| lim|z|→1

1− r17

1− |z| . (13)

It remains to compute the limit in (13).
Observe thatr17 can be obtained by substitutingc15 andr15 for C andR in (9).

This substitution, after some tedious work and obvious simplifications, gives

r17 = tanh

(
log

√ √
ω

1− |ϕa(z)|2
)
,

whereω = (1+ |ϕa(z)|2)2− 4|ϕa(z)|2|f ∗(a)|2. Using the definition of tanh, r17

takes the form

r17 =
√
ω − (1− |ϕa(z)|2)√
ω + (1− |ϕa(z)|2) .

Then, by (1),

1− r17

1− |z| =
2(1− |a|2)(1+ |z|)

|1− āz|2(√ω +1− |ϕa(z)|2
)

≥ (1− |a|)(1+ |z|)
1+ |a|

2√
ω +1− |ϕa(z)|2 .

Thus, leaving the case|f ∗(a)| = 1 aside,

lim|z|→1

1− r17

1− |z| ≥
1− |a|
1+ |a|

2√
1− |f ∗(a)|2 ≥

1− |a|
1+ |a|

2

1+ |f ∗(a)| .

Finally, under the hypotheses of the lemma,z = |z|A and

|f ′(A)| =
∣∣∣∣ lim|z|→1

B − f(z)
A− |z|A

∣∣∣∣ ≥ lim inf
z→A

1− |f(z)|
1− |z| .

This completes the proof.

As a consequence, since|f ∗(a)| ≤ 1, we also have

|f ′(A)| ≥ 1− |b|
1+ |b|

1− |a|
1+ |a| . (14)

Example 6.2. Looking back at the statement of Lemma 6.1, equality holds in
(14) if and only if|f ∗(a)| = 1,which holds (as mentioned in Section 2) if and only
if f is an automorphism ofD, satisfying of coursef(a) = b. In fact, letf(z) =
ϕb(e

iθϕa(z)), whereeiθ = −āb/|ab|. Then

|f ′(z)| = 1− |b|2
|1− b̄e iθϕa(z)|2

1− |a|2
|1− āz|2 .

Let A = −a/|a| so thatϕa(A) = −A = a/|a|. SubstitutingA for z, using the
particular value ofθ chosen, and simplifying, we obtain equality in (14).
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In particular, the hypotheses of Lemma 6.1are satisfied (by the Julia-Carathéodory
theorem) whenf has finite angular derivativef ′(A) atA. Then Lemma 6.1 and
what follows its proof give lower bounds for the modulus of the angular derivative
of f atA and for thedf (A) mentioned in Section 2.

Remark 6.3. We can say something also about the region of values off ′(A) in
Lemma 6.1, at least whena = b = 0. Corollary 5.7 in this case (actually a Ro-
gosinski lemma) says thatf(z) lies in the discD̄(c18, r18), where

c18 = 1− |z|2
1− |z|2|f ′(0)|2 zf

′(0) and r18 = 1− |f ′(0)|2
1− |z|2|f ′(0)|2 |z|

2

are obtained fromc15 and r15 by settinga = 0. Then the difference quotient
(B − f(z))/(A− z) lies in the discD̄(c19, r19), where

c19 = B − c18

A− z and r19 = r18

|A− z| .
Now, asz approachesA radially, we havez = |z|A and|z| → 1, and bothc19

andr19 tend to infinity. However, the term−c18 in the numerator ofc19 is bounded,
andc19 is asymptotic toĀB/(1− |z|). Similarly, r19 is asymptotic to 1/(1− |z|) as
z→ A radially. These discs enlarge to fill the half-planeJ = {w : Re(AB̄w) ≥ 0}
asz → A radially. Thusf ′(A) lies in the intersection ofJ and the complement
of the discD(0,2/(1+ |f ′(0)|)).
Proving a result in the ball in the generality of Lemma 6.1 would require either a
computation of derivatives of automorphisms at arbitrary points or a computation
of ρ8 of Corollary 5.4 in a way similar to that in Section 3. Either computation is
prohibitively complicated, so we are content with the following simpler form.

Lemma 6.4. Let f : Bn → Bm be holomorphic and satisfyf(a) = 0. Suppose
thatA∈ ∂Bn and thatf has finite angular derivative atA. Then

r-lim
z→A 〈f

′(z)A,B〉 ≥ 1− |a|
1+ |a| ,

whereB = r-limz→A f(z).

Proof. By the caseb = 0 of Corollary 5.4,f(z) lies in the ellipsoidĒ(c7, ρ7, σ7).

It is impossible to find an upper bound on|f(z)| as directly as in the proof of
Lemma 6.1. However, the intersection ofĒ(c7, ρ7, σ7) with [c7] and with its or-
thogonal complement has circular symmetry. Hence the distance between the ori-
gin and the points of the planar ellipse

(x − |c7|)2
ρ2

7

+ y2

σ 2
7

= 1 (15)

farthest from the origin is also the same as the distance between the origin and
the points ofĒ(c7, ρ7, σ7) farthest from the origin. We therefore first solve the
Lagrange multiplier problem of finding the maximum of the functionF(x, y) =√
x 2 + y2 subject to condition (15); we obtain the maximum as



Some Refined Schwarz–Pick Lemmas 663

K =
√
σ 2(|c7|2 + σ 2 − ρ2)

σ 2 − ρ2
.

It follows that |f(z)| ≤ K. Substituting the values ofc7, σ7, andρ7 into the ex-
pression forK yieldsK = |ϕa(z)|. Thus,

1− |f(z)|
1− |z| ≥

1−K
1− |z| =

1− |ϕa(z)|2
(1− |z|)(1+ |ϕa(z)|)

= (1− |a|2)(1− |z|2)
|1− 〈a, z〉|2(1− |z|)(1+ |ϕa(z)|) ≥

1− |a|
1+ |a|

1+ |z|
1+ |ϕa(z)|

and

df (A) = lim inf
z→A

1− |f(z)|
1− |z| ≥

1− |a|
1+ |a| .

The proof is complete by the remarks on angular derivatives and the Julia–Cara-
théodory theorem in Section 2.

Example 6.5. We modify Example 6.2 and obtain a function that shows that
equality occurs in Lemma 6.4. Letm = n, f(z) = ϕa(z), andA = −a/|a|. This
function is holomorphic in a neighborhood ofB̄n, so we haveB = f(A) = −A
andf ′(A) exists. Imitating the proof of [10, Thm. 2.2.2(ii)], we obtain

f ′(A) = −1− |a|
1+ |a|Xa −

√
1− |a|
1+ |a|Ya.

SinceXa(A) = A andYa(A) = 0,

〈f ′(A)A,B〉 = 1− |a|
1+ |a|

immediately follows.
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