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1. Introduction

In [C] Coble constructs for any nonhyperelliptic curveC of genus 3 a quartic hy-
persurface inP7 that is singular along the Kummer varietyK0 ⊂ P7 of C. It is
shown in [NR] that this hypersurface is isomorphic to the moduli spaceM0 of
semistable rank-2 vector bundles with fixed trivial determinant. For many reasons
Coble’s quartic hypersurface may be viewed as a genus-3 analogue of a Kummer
surface—that is, a quartic surfaceS ⊂ P3 with sixteen nodes. For example, the
restriction ofM0 to an eigenspaceP3

α ⊂ P7 for the action of a 2-torsion pointα ∈
JC[2] is isomorphic to a Kummer surface (of the corresponding Prym variety). It
is classically known (see e.g. [GH]) that a Kummer surfaceS ⊂ P3 is self-dual.

In this paper we show that this property holds also for the Coble quarticM0

(Theorem 3.1). The rational polar mapD : P7→ (P7)∗ mapsM0 birationally to
Mω ⊂ (P7)∗, whereMω (∼=M0) is the moduli space parametrizing vector bun-
dles with fixed canonical determinant. More precisely, we show that the embed-
ded tangent space at a stable bundleE toM0 corresponds to a semistable bundle
D(E) = F ∈Mω, which is characterized by the condition dimH 0(C,E ⊗ F ) =
4 (its maximum). We also show thatD resolves to a morphism̃D by two succes-
sive blow-ups and thatD contracts the trisecant scroll ofK0 to the Kummer variety
Kω ⊂Mω.

The condition dimH 0(C,E⊗F ) = 4,which relatesE to its “tangent space bun-
dle” F, leads to many geometric properties. First we observe thatPH 0(C,E⊗F )
is naturally equipped with a net of quadrics5 whose base points (Cayley oc-
tad) correspond bijectively to the eight line subbundles of maximal degree ofE

(and ofF ). The Hessian curve Hess(E) of the net of quadrics5 ∼= |ω|∗ is a
plane quartic curve, which is everywhere tangent (Proposition 4.7) to the canoni-
cal curveC ⊂ |ω|∗; that is, Hess(E)∩C = 21(E) for some divisor1(E)∈ |ω2|.
Since these constructions areJC[2]-invariant, we introduce the quotientN =
M0/JC[2] parametrizingPSL2-bundles overC and then show (Proposition 4.13)
that the mapN 1−→ |ω2|, E 7→ 1(E), is the restriction of the projection from
the projective spaceN ⊂ |L̄|∗ = P13 (L̄ is the ample generator of Pic(N )) with
center of projection given by the linear span of the Kummer varietyK0 ⊂ N
(K0 parametrizes decomposablePSL2-bundles).
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We also show (Corollary 4.16) that the Hessian mapN → R, E 7→ Hess(E),
is finite of degree 72, whereR is the rational space parametrizing plane quartics
everywhere tangent toC ⊂ |ω|∗ = P2. Considering the isomorphism class of
Hess(E), we deduce that the map Hess:N → M3 is dominant, whereM3 is
the moduli space of smooth genus-3 curves. We actually prove that some Galois
coversÑ → N andPC → R are birational (Proposition 4.15). In particular we
endow the spacẽN, parametrizingPSL2-bundlesE with an ordered set of eight
line subbundles ofE of maximal degree, with an action of the Weyl groupW(E7)

such that the action of the central elementw0 ∈W(E7) coincides with the polar
mapD.

We hope that these results will be useful for dealing with several open
problems—for example, rationality of the moduli spacesM0 andN.

I would like to thank S. Ramanan for some inspiring discussions on Coble’s
quartic.

2. The Geometry of Coble’s Quartic

In this section we briefly recall some known results related to Coble’s quartic hy-
persurface that can be found in the literature (see e.g. [DO; L2; NR; OPP]). We
refer to [B1; B2] for the results on the geometry of the moduli of rank-2 vector
bundles.

2.1. Coble’s Quartic as Moduli of Vector Bundles

Let C be a smooth nonhyperelliptic curve of genus 3 with canonical line bundle
ω. Let Picd(C) be the Picard variety parametrizing degree-d line bundles overC
and letJC := Pic0(C) be the Jacobian variety. We denote byK0 the Kummer
variety ofJC and byKω the quotient of Pic2(C) by the involutionξ 7→ ωξ−1.

Let2 ⊂ Pic2(C) be the Riemann Theta divisor and let20 ⊂ JC be a symmet-
ric Theta divisor (i.e., a translate of2 by a theta characteristic). We also recall
that the two linear systems|22| and|220| are canonically dual to each other via
Wirtinger duality [M2, p. 335]; that is, we have an isomorphism|22|∗ ∼= |220|.

LetM0 (resp.Mω) denote the moduli space of semistable rank-2 vector bun-
dles overC with fixed trivial (resp. canonical) determinant. The singular locus
of M0 is isomorphic toK0, and points inK0 correspond to bundlesE whose
S-equivalence class [E ] contains a decomposable bundle of the formM ⊕M−1

for M ∈ JC. We have natural morphisms

M0
D−→ |22| = P7 and Mω

D−→ |220| = |22|∗,
which send a stable bundleE ∈M0 to the divisorD(E) whose support equals
the set{L ∈ Pic2(C) | dimH 0(C,E ⊗ L) > 0} (if E ∈Mω, replace Pic2(C) by
JC). On the semistable boundaryK0 (resp.Kω), the morphismD restricts to the
Kummer map. The moduli spacesM0 andMω are isomorphic, albeit noncanon-
ically (consider tensor product with a theta characteristic). It is known that the
Picard group Pic(M0) isZ and that|L|∗ = |22|, whereL is the ample generator
of Pic(M0).
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The main theorem of [NR] asserts thatD embedsM0 as a quartic hypersurface
in |22| = P7, which was originally described by Coble [C, Sec. 33(6)]. Coble’s
quartic is characterized by a uniqueness property: it is the unique (Heisenberg-
invariant) quartic that is singular along the Kummer varietyK0 (see [L2, Prop. 5]).

We recall that Coble’s quartic hypersurfacesM0 ⊂ |22| andMω ⊂ |220|
contain some distinguished points. First [C, Sec. 48(4); L1; OPP], there exists a
unique stable bundleA0 ∈Mω such that dimH 0(C,A0) = 3 (its maximal di-
mension). We define for any theta characteristicκ and for any 2-torsion pointα ∈
JC[2] the stable bundles, calledexceptionalbundles,

Aκ := A0⊗ κ−1∈M0 and Aα := A0⊗ α ∈Mω. (2.1)

2.2. Global and Local Equations of Coble’s Quartic

Let F4 be the Coble quartic, that is, the equation ofM0 ⊂ |22| = P7. Then the
eight partialsCi = ∂F4

∂Xi
for 1 ≤ i ≤ 8 (theXi are coordinates for|22|) define

the Kummer varietyK0 scheme-theoretically [L2, Thm. IV.6]. We also need the
following results [L2, Thm. 6 bis].

(i) The étale local equation (in affine spaceA7) of Coble’s quartic at the point
[O ⊕ O] is T 2 = det[Tij ] with coordinatesT andTij, whereTij = Tji and
1≤ i, j ≤ 3.

(ii) The étale local equation at the point [M ⊕M−1] with M 2 6= O is a rank-4
quadric det[Tij ] = 0, whereTij (1≤ i, j ≤ 2) are four coordinates onA7.

Hence any point [M ⊕M−1] ∈K0 has multiplicity 2 onM0.

2.3. Extension Spaces

GivenL ∈ Pic1(C), we introduce the 3-dimensional spaceP0(L) := |ωL2|∗ =
P Ext1(L,L−1). A point e ∈ P0(L) corresponds to an isomorphism class of
extensions

0−→ L−1−→ E −→ L −→ 0 (e), (2.2)

and the composite of the classifying mapP0(L)→M0 followed by the embed-
dingD : M0 → |22| is linear and injective [B2, Lemme 3.6]. It is shown that
a pointe ∈ P0(L) represents a stable bundle precisely away fromϕ(C), whereϕ
is the map induced by the linear system|ωL2|. A point e = ϕ(p) for p ∈ C is
represented by the decomposable bundleL(−p)⊕ L−1(p).

We also introduce the projective spacesPω(L) := |ω2L−2|∗ = P Ext1(ωL−1, L).

A point f ∈ Pω(L) corresponds to an extension

0−→ L −→ F −→ ωL−1−→ 0 (f ). (2.3)

Similarly, we have an injective classifying mapPω(L)→Mω. Although we will
not use this fact, we observe thatP0(L) = Pω(κL−1) for any theta characteristicκ.

It is well known (see e.g. [M3]) that the Kummer varietyK0 ⊂ |22| admits a
4-dimensional family of trisecant lines. It follows from [OPP, Thm. 1.4, Thm. 2.1]
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that any trisecant line toK0 is contained in some spaceP0(L) where it is a trise-
cant to the curveϕ(C) ⊂ P0(L). We denote byT0 the trisecant scroll, which is a
divisor inM0. Similarly we defineTω ⊂Mω.

The main tool for the proof of the self-duality is thatM0 (resp.Mω) can be
covered by the projective spacesP0(L) (resp.Pω(L)). This is expressed by the
following result of [NR] (see also [OP2]): There exist rank-4 vector bundlesU0

andUω over Pic1(C) such that, for allL∈Pic1(C), (PU0)L ∼= P0(L), (PUω)L ∼=
Pω(L), and their associated classifying morphismsψ0 andψω,

PU0
ψ0−−→ M0 ⊂ |22|y

Pic1(C)

and

PUω ψω−−→ Mω ⊂ |220|y
Pic1(C),

are surjective (Nagata’s theorem) and of degree 8 (see Section 4.1).

2.4. Tangent Spaces to Theta Divisors

Following [B2, Sec. 2], we associate to any [F ] ∈ Mω ⊂ |220| the divisor
1(F ) ⊂M0 ⊂ |22|, which has the following properties:

(1) supp1(F ) = {[E ] ∈M0 | dimH 0(C,E ⊗ F ) > 0};
(2) 1(F ) ∈ |L| ∼= |22|∗ is mapped to [F ] under the canonical duality|22|∗ ∼=
|220|.

Symmetrically, we associate to anyE ∈M0 the divisor1(E) ⊂ Mω with the
analogous properties.

For anyE,F with [E ] ∈M0 and [F ] ∈Mω, the rank-4 vector bundleE⊗F =
Hom(E,F ) is equipped with anω-valued nondegenerate quadratic form (given
by the determinant of local sections); hence, by Mumford’s parity theorem [M1],
the parity of dimH 0(C,E ⊗ F ) is constant under degeneration. Considering for
example a degeneration of eitherE orF to a decomposable bundle, we obtain that
dimH 0(C,E ⊗ F ) is even. The divisor1(F ) is defined as the Pfaffian divisor
associated to a familyE ⊗F of orthogonal bundles [LS] and satisfies the equality

21(F ) = detdiv(E ⊗ F ),
where detdiv(E⊗F ) is the determinant divisor of the familyE⊗F. Thus, for any
stable bundleE ∈M0 we have

mult[E ] 1(F ) = 1
2 mult[E ] detdiv(E ⊗ F ) ≥ 1

2 dimH 0(C,E ⊗ F ).
The last inequality is [L1, Cor. II.3].

2.1. Lemma. Suppose thatE is stable and thatdimH 0(C,E ⊗ F ) ≥ 4. Then
1(F ) ⊂M0 is singular atE and the embedded tangent spaceTEM0 ∈ |22|∗ ∼=
|220| corresponds to the point[F ] ∈ |220|.
Proof. The first assertion is an immediate consequence of the previous inequal-
ity. To show the second, it is enough to observe that, sinceE is a singular
point of the divisor1(F ), we have equality between the Zariski tangent spaces
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TE1(F ) = TEM0 and soTE1(F ) coincides with the hyperplane cutting out the
divisor1(F ), which corresponds to the point [F ] by property (2).

We will also need the dual version.

2.2. Lemma. Suppose thatF is stable and thatdimH 0(C,E ⊗ F ) ≥ 4. Then
1(E) ⊂Mω is singular atF and the embedded tangent spaceTFMω ∈ |220|∗ ∼=
|22| corresponds to the point[E ] ∈ |22|.

3. Self-Duality

3.1. Statement of the Main Theorem

LetD be the rational map defined by the polars of Coble’s quarticF4, that is, the
eight cubicsCi,

D : |22| −−→ |22|∗ ∼= |220|
∪ ∪
M0 Mω.

Note thatD is defined away fromK0. Geometrically,D maps a stable bundleE ∈
M0 to the hyperplane defined by the embedded tangent spaceTEM0 at the smooth
pointE. The main theorem of this paper is the following.

3.1. Theorem (Self-Duality). The moduli spaceM0 is birationally mapped by
D toMω; that is,Mω is the dual hypersurface ofM0. More precisely, we have
the following statements.

(1) D restricts to an isomorphismM0 \ T0
∼−→Mω \ Tω.

(2) D contracts the divisorT0 toKω, whereT0 ∈ |L8|.
(3) For any stableE ∈M0, the moduli pointD(E) ∈Mω can be represented

by a semistable bundleF that satisfiesdimH 0(C,E ⊗ F ) ≥ 4. Moreover, if
E ∈M0 \ T0 then there exists a unique stable bundleF = D(E) for which
dimH 0(C,E ⊗ F ) has its maximal value of4.

(4) D resolves to a morphism̃D from a blow-upM̃0,

E ⊂

��

M̃0

��
D̃

��
7777777777777

K̃0 ⊂

��

Bls(M0)

��

K0 ⊂ M0
D // Mω,

whereM̃0 is obtained by two successive blow-ups: first we blow up the sin-
gular points ofK0 and then we blow upBls(M0) along the smooth proper
transformK̃0 of K0. The exceptional divisorE is mapped bỹD onto the divi-
sor Tω.
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3.2. Restriction ofD to the Extension Spaces

The strategy of the proof is to restrictD to the extension spacesP0(L). We start
by defining a map

DL : P0(L)→Mω

as follows. Consider a pointe ∈P0(L) as in (2.2) and denote byWe ⊂ H 0(C, ωL2)

the corresponding 3-dimensional linear subspace of divisors. If we suppose that
e /∈ ϕ(C), then the evaluation mapOC ⊗We ev−→ ωL2 is surjective and we define
Fe = DL(e) to be the rank-2 vector bundle such that ker(ev) ∼= (FeL)∗. That is,
we have an exact sequence

0−→ (FeL)
∗ −→ OC ⊗We ev−→ ωL2 −→ 0. (3.1)

If there is no ambiguity then we will drop the subscripte.

3.2. Lemma. Suppose thate /∈ ϕ(C). Then:

(1) the bundleFe has canonical determinant and is semistable, andFeL is gener-
ated by global sections;

(2) there exists a nonzero mapL→ Fe and so[Fe] defines a point inPω(L);
(3) we havedimH 0(C,E ⊗ Fe) ≥ 4, whereE is the stable bundle associated to

e as in(2.2).

Proof. (1) The first assertion is immediately deduced from the exact sequence
(3.1). We take the dual of (3.1),

0−→ ω−1L−2 −→ OC ⊗W ∗ −→ FL −→ 0. (3.2)

Taking global sections leads to the inclusionW ∗ ⊂ H 0(FL), which proves the
last assertion. Let us check semistability: suppose that there exists a line sub-
bundleM that destabilizesFL (assumeM saturated), that is, 0−→ M −→
FL −→ ωL2M−1 −→ 0. Then degM ≥ 4, which implies that degωL2M−1 ≤
2. Hence dimH 0(ωL2M−1) ≤ 1 and so the subspaceH 0(M) ⊂ H 0(FL) has
codimension≤ 1, which contradicts thatFL is globally generated.

(2) Since detF = ω,we have(FL)∗ = FL−1ω−1. Taking global sections of the
exact sequence (3.1) tensored withω leads to

0−→ H 0(FL−1) −→ H 0(ω)⊗W −→ H 0(ω2L2) −→ · · · .
Now we observe that dimH 0(ω) ⊗W = 9 and dimH 0(ω2L2) = 8 (Riemann–
Roch), which implies that dimH 0(FL−1) ≥ 1.

(3) We tensor the exact sequence (2.2) defined bye with F and take global sec-
tions:

0−→ H 0(FL−1) −→ H 0(E ⊗ F ) −→ H 0(FL)

⋃
e−−→ H1(FL−1) −→ · · · .

The coboundary map is the cup product with the extension classe ∈H1(L−2) and,
since detF = ω, the coboundary map

⋃
e is skew-symmetric (by Serre duality,

H1(FL−1) = H 0(FL)∗). Hence the linear mapε 7→⋃
ε factorizes as follows:
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H 0(ωL2)∗ −→ 32H 0(FL)∗ ⊂ Hom(H 0(FL),H1(FL)), (3.3)

and its dual map32H 0(FL)
µ−→ H 0(ωL2) coincides with exterior product of

global sections (see e.g. [L1]). On the other hand, it is easy to check that the im-
age underµ of the subspace32W ∗ ⊂ 32H 0(FL) equalsW ⊂ H 0(ωL2) and
thatµ restricts to the canonical isomorphism32W ∗ = W. The linear map

⋃
e

is thus zero onW ∗ ⊂ H 0(FL), from which we deduce that dimH 0(E ⊗ F ) =
dimH 0(FL−1)+ dim ker

(⋃
e
) ≥ 4.

It follows that the mapDL factorizes

DL : P0(L)→ Pω(L) ⊂Mω. (3.4)

Moreover, by Lemma 3.2(3) and Lemma 2.1, the pointDL(e) corresponds to the
embedded tangent space ate ∈ P0(L), henceDL is the restriction ofD to P0(L).

In particular,DL is given by a linear system of cubics throughϕ(C).
We recall from Section 2.3 that the restriction of the trisecant scrollT0 toP0(L)

is the surface, denoted byT0(L), ruled out by the trisecants toϕ(C) ⊂ P0(L).

3.3. Lemma. Let a pointe ∈ P0(L) be such thate /∈ ϕ(C). Then the bundleFe
is stable if and only ife /∈ T0. Moreover:

(i) if dimH 0(L2) = 0, then the trisecantpqr to ϕ(C) is contracted to the
semistable point[L(u)⊕ ωL−1(−u)] = ϕ(u) ∈ Pω(L) for some pointu ∈C
satisfyingp + q + r ∈ |L2(u)|;

(ii) if dimH 0(L2) > 0, thenωL−2 = OC(u+ v) for some pointsu, v ∈C, and
any trisecantpqr is contracted to the semistable point[L(u)⊕ L(v)].

Proof. The bundleF fits into an exact sequence 0−→ L −→ F −→ ωL−1 −→ 0.
Suppose thatF has a line subbundleM of degree 2 and consider the composite
mapα : M → F → ωL−1.

First we consider the caseα = 0. ThenM = L(u) ↪→ F for someu ∈ C,
or equivalently dimH 0(FL−1(−u)) > 0. We tensor (3.1) withω(−u) and take
global sections:

0−→ H 0(FL−1(−u)) −→ H 0(ω(−u))⊗W m−→ H 0(ω2L2(−u)) −→ · · · .
The second mapm is the multiplication map of global sections. As long as
W ⊂ H 0(ωL2), let us consider for a moment the extended multiplication map
m̃ : H 0(ω(−u))⊗H 0(ωL2)→ H 0(ω2L2(−u)). By the “base-point–free pencil
trick” applied to the pencil|ω(−u)|, we have ker̃m = H 0(L2(u)), and a tensor
in kerm̃ is of the forms ⊗ tα − t ⊗ sα with {s, t} a basis ofH 0(ω(−u)) andα ∈
H 0(L2(u)).We denote byp+q+r the zero divisor ofα. Then we see that kerm 6=
{0} if and only ifW contains the linear space spanned bytα andsα. Dually, this
means thate ∈ pqr, the trisecant through the pointsp, q, r. Conversely, anye ∈
pqr is mapped byDL to [L(u)⊕ ωL−1(−u)].

We next consider the caseα 6= 0. ThenM = ωL−1(−u) ↪→ F for someu∈C,
or equivalently dimH 0(Fω−1L(u)) > 0. As in the first case, we take global sec-
tions of (3.1) tensored withL2(u) and obtain thatH 0(Fω−1L(u)) is the kernel of
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the multiplication mapH 0(L2(u))⊗W m−→ H 0(ωL4(u)). Then kerm̃ 6= {0} im-
plies that dimH 0(L2(u)) = 2. HenceL2(u) = ω(−v) for some pointv ∈C (i.e.,
ωL−2 = OC(u + v)), which implies that dimH 0(ωL−2) = dimH 0(L2) > 0.
Also, the multiplication map becomesH 0(ω(−v))⊗W m−→ H 0(ω2L2(−v)). We
now conclude exactly as in the first case, with the additional observation that any
trisecantpqr is contracted to the point [L(v)⊕ωL−1(−v)] = [L(v)⊕L(u)].
We shall now construct (along the same lines) an inverse map toDL (3.4):

D ′L : Pω(L)→ P0(L).

Given an extension classf ∈ Pω(L) such thatf /∈ ϕ(C), we denote byWf ⊂
H 0(C, ω2L−2) the corresponding 3-dimensional linear space of divisors and de-
fineEf = D ′L(f ) to be the rank-2 vector bundle that fits in the exact sequence

0−→ Ef ω
−1L −→ Wf ⊗OC ev−→ ω2L−2 −→ 0.

Exactly as in Lemma 3.2, we show thatEf has the following properties.

3.4. Lemma. Suppose thatf /∈ ϕ(C). Then:

(1) the bundleEf has trivial determinant and is semistable, andEf ωL−1 is gen-
erated by global sections;

(2) there exists a nonzero mapL−1→ Ef and so[Ef ] defines a point inP0(L);
(3) we havedimH 0(C,Ef ⊗ F ) ≥ 4, whereF is the stable bundle associated to

f as in(2.3).

Similarly, the analogue of Lemma 3.3 holds for the bundleEf .

3.5. Lemma. The mapD ′L is the birational inverse ofDL. That is,

D ′L B DL = IdP0(L) and DL B D ′L = IdPω(L).

Proof. Start withe ∈ P0(L) for e /∈ T0(L). Then (by Lemma 3.3)DL(e) = Fe
is stable and (by Lemma 3.2(3)) dimH 0(C,E ⊗ Fe) ≥ 4. Now the stable bun-
dle Fe determines an extension classf ∈ Pω(L) with f /∈ ϕ(C). Let us denote
Ef = D ′L(f ). We know (Lemma 3.4(3)) that dimH 0(C,Ef ⊗ Fe) ≥ 4 and, since
F is stable, we deduce from Lemma 2.2 that the embedded tangent spaceTFMω

corresponds to [E ] and [Ef ]. Hence [E ] = [Ef ] and, sinceE is stable, we have
E = Ef .
We deduce thatDL restricts to an isomorphismP0(L) \ T0(L)

∼−→Pω(L) \ Tω(L).
SinceM0 is covered by the spacesP0(L) and sinceD restricts toDL onP0(L),we
obtain thatD restricts to a birational bijective morphism fromM0\T0 toMω \Tω.
Hence, by Zariski’s main theorem,D is an isomorphism on these open sets, which
proves part (1) of Theorem 3.1. Lemma 3.3 implies part (2). As for part (3), we
choose aP0(L) containingE ∈M0. This determines a pointe ∈ P0(L) and we
considerF := Fe = DL(e). By Lemma 3.2(3) and Lemma 2.1,DL(e) = D(e),
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which shows that this construction does not depend on the choice ofL. Moreover,
if e /∈ T0 thenF is stable and is characterized by the property dimH 0(C,E⊗F ) ≥
4. One easily shows that dimH 0(C,E ⊗ F ) ≥ 6 cannot occur ife /∈ T0 (see also
Remark 3.4(2)).

3.3. Blowing Up

Even though part (4) of Theorem 3.1 is a straightforward consequence of the results
obtained in [L2], we give the complete proof for the convenience of the reader.
First we consider the blow-upBls(P7) of P7 = |22| along the 64 singular points
of K0. Because of the invariance ofK0 andM0 under the Heisenberg group, it
is enough to consider the blow-up at the “origin”O := [O ⊕ O]. We denote by
K̃0 (resp.Bls(M0)) the proper transform ofK0 (resp.M0) and byP(TOP7) ⊂
Bls(P7) the exceptional divisor (overO).

By [L2, Rem. 5], the Zariski tangent spacesTOK0 andTOM0 at the originO
toK0 andM0 satisfy the relations

Sym2H 0(ω)∗ ∼= TOK0 ⊂ TOM0 = TOP7 and TOM0/TOK0
∼= 33H 0(ω)∗.

Moreover, in the notation of Section 2.2, the equation of the hyperplaneTOK0 ⊂
TOM0 isT = 0 and theTij are coordinates on Sym2H 0(ω)∗. We deduce from the
local equation ofM0 at the originO (Section 2.2(ii)) that̃K0∩PSym2H 0(ω)∗ is
the Veronese surfaceS := VerH 0(ω)∗ and thatK̃0 is smooth. Moreover, the lin-
ear system spanned by the proper transforms of the cubicsCi is given by the six
quadricsQij := ∂

∂Tij
(det[Tij ]) vanishing onS.

Given a smooth pointx = [M ⊕M−1] ∈K0 withM 2 6= O, the Zariski tangent
spacesTxK0 andTxM0 satisfy the relations

H 0(ω)∗ ∼= TxK0 ⊂ TxM0 = TxP7

and
TxM0/TxK0

∼= H 0(ωM 2)∗ ⊗H 0(ωM−2)∗.

The tangent spaceTxK0 ⊂ TxM0 is cut out by the four equationsTij = 0, where
theTij are natural coordinates onH 0(ωM 2)∗ ⊗H 0(ωM−2)∗. Let Ẽ be the excep-
tional divisor of the blow-up ofBls(P7) along the smooth varietỹK0 and letE be
its restriction to the proper transform̃M0. We denote byẼx andEx the fibers of
Ẽ andE over a pointx ∈ K0. Then, for a smooth pointx, it follows from the lo-
cal equation atx (Section 2.2(ii)) that (a)Ex is the Segre embeddingP1× P1 =
|ωM 2|∗ × |ωM−2|∗ ↪→ PH 0(ωM 2)∗ ⊗H 0(ωM−2)∗ = Ẽx and (b) the linear sys-
tem spanned by the proper transforms of the cubicsCi is given by the four linear
formsTij .

At a singular point (we takex = O), it follows from the preceding discus-
sion thatEO is the exceptional divisor of the blow-up ofPSym2H 0(ω)∗ along
the Veronese surfaceS (i.e., the projectivized normal bundle overS). It is a well-
known fact (duality of conics) that the rational map given by the quadricsQij

resolves by blowing upS.
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It remains to show that̃D mapsE onto the trisecant scrollTω. SinceE is irre-
ducible, it will be enough to check this on an open subset ofE . We consider again
the extension spacesP0(L) ⊂M0. For simplicity we chooseL such that:

(1) P0(L) does not contain a singular point ofK0; and
(2) the morphismϕ : C → P0(L) is an embedding or, equivalently,

dimH 0(L2) = 0.

Let P̃0(L) be the blow-up ofP0(L) along the curveC, with exceptional divisor

EL. Because of assumptions (1) and (2), we have an embedding̃P0(L) ↪→ M̃0,

E restricts toEL, andEL is the projectivized normal bundleN of the embedded
curveC ⊂ P0(L). We have the following commutative diagram:

P(N ) = EL ⊂
π

��

P̃0(L)

��

D̃L
##GGGGGGG

C ⊂ P0(L)
DL // Pω(L).

In order to study the imagẽDL(EL), for a pointu ∈ C we introduce the rank-2
bundleEu, which is defined by the exact sequence

0−→ E∗u −→ OC ⊗H 0(ωL2(−u)) ev−→ ωL2(−u) −→ 0.

Note thatH 0(ωL2(−u)) corresponds to the hyperplane defined byu∈C ⊂ P0(L).

Then, exactly as in Lemma 3.2(1), we show that detEu = ωL2(−u) and thatEu is
stable and globally generated withH 0(Eu) ∼= H 0(ωL2(−u))∗. We introduce the
Hecke lineHu defined as the set of bundles that are (negative) elementary trans-
formations ofEuL−1(u) at the pointu—namely, the set of bundles that fit into the
exact sequence

0−→ F −→ EuL
−1(u) −→ Cu −→ 0. (3.5)

SinceEu is stable, it follows that anyF is semistable (and detF = ω) and so we
have a linear map (see [B2])P1∼= Hu→Mω.

3.6. Lemma. Given a pointu ∈ C, the fiberP(Nu) = EL,u is mapped byD̃L to
the Hecke lineHu ⊂ Pω(L). Moreover,Hu coincides with the trisecant linepqr
toC ⊂ Pω(L) with p + q + r ∈ |ωL−2(u)|.
Proof. Note that the Zariski tangent spaceTuP0(L) at the pointu is identified
with H 0(ωL2(−u))∗ ∼= H 0(Eu). Under this identification, the tangent space
TuC corresponds to the subspaceH 0(Eu(−u)). Hence we obtain a canonical
isomorphism ofP(Nu) with the projectivized fiber over the pointu of the bun-
dleEu, that is, the Hecke lineHu. It is straightforward to check that̃DL restricts
to the isomorphismP(Nu) ∼= Hu. To show the last assertion, it is enough to
(a) observe that the Hecke lineHu intersects the curveC ⊂ Pω(L) at a pointp if
and only if dimH 0(EuL

−1(u − p)) > 0 and then (b) continue as in the proof of
Lemma 3.3.



Self-Duality of Coble’s Quartic Hypersurface and Applications 561

Since the union of thoseEL such thatL satisfies assumptions (1) and (2) form
an open subset ofE, we conclude that̃D(E ) = Tω. This completes the proof of
Theorem 3.1.

3.4. Some Remarks

1. The divisorTω ∈ |L8|, which may be seen as follows. It suffices to re-
strict Tω to a generalPω(L) ⊂ Mω and to compute the degree of the trisecant
scroll Tω(L) ⊂ Pω(L). By Lemma 3.6,Tω(L) is the image ofEL = P(N ) under
the morphismD̃L. The hyperplane bundle overPω(L) pulls back underD̃L to
OP(1)⊗π∗(ω3L6) over the ruled surfaceP(N ). SinceD̃L|EL is birational, we ob-
tain that degTω(L) = degπ∗OP(1)⊗ ω3L6 = degN ∗ω3L6 = 8.

2. Using the same methods as before, one can show a refinement of Theo-
rem 3.1(3). ConsiderE stable withE ∈M0 andF semistable with [F ] ∈Mω.

(a) The only pairs(E,F ) for which dimH 0(C,E ⊗ F ) = 6 are the 64 excep-
tional pairsE = Aκ andF = κ⊕ κ for a theta characteristicκ as in (2.1). We
note thatD(Aκ) = [κ ⊕ κ].

(b) SupposeD(E) = [M ⊕ ωM−1] for someM andE 6= Aκ; that is,M 2 6= ω.
Then there are exactly three semistable bundlesF such thatD(E) = [F ] and
dimH 0(C,E ⊗ F ) = 4, namely:
(i) the decomposable bundleF = M ⊕ ωM−1 (note that dimH 0(EM) =

2); and
(ii) two indecomposable bundles with extension classes in Ext1(M,ωM−1) =

H 0(M 2)∗ and Ext1(ωM−1,M) = H 0(ω2M−2)∗ defined by the images
of the exterior product maps

32H 0(EM) −→ H 0(M 2) and 32H 0(EωM−1) −→ H 0(ω2M−2).

3. As a corollary of Lemma 3.6, we obtain that the morphismD̃ maps the ex-
ceptional divisorẼ onto the dual hypersurfaceK∗0 of the Kummer varietyK0 (more
precisely,D̃mapsẼx = P3 isomorphically to the subsystem of divisors singular at
x ∈Ksm0 ) and that the hypersurfacẽD(Ẽ ) = K∗0 intersects (set-theoretically)Mω

along the trisecant scrollTω. It is worthwhile to figure out the relationship with
other distinguished hypersurfaces in|22|, for example, the octicG8 defined by
the equationD−1(F4) = F4 ·G8 and the HessianH16 of Coble’s quarticF4.

4. Applications

4.1. The Eight Maximal Line Subbundles ofE ∈M0

In this section we recall the results of [LaN] (see also [OPP; OP2]) on line sub-
bundles of stable bundlesE ∈M0 andF ∈Mω. We introduce the closed subsets
M 0(E) andM ω(F ) of Pic1(C) parametrizing line subbundles of maximal degree
of E andF :

M 0(E) := {L∈Pic1(C) | L−1 ↪→ E}, M ω(F ) := {L∈Pic1(C) | L ↪→ F }.
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The next lemma follows from [LaN, Sec. 5] and Nagata’s theorem. For simplicity
we assume thatC is not bi-elliptic.

4.1. Lemma. The subsetsM 0(E) andM ω(F ) are nonempty and0-dimensional
unlessE andF are exceptional(see(2.1)). In these cases we have

M 0(Aκ) = {κ(−p) | p ∈C} ∼= C, M ω(Aα) = {α(p) | p ∈C} ∼= C.
Note thatAκ ∈ T0 andAα ∈ Tω (see [OPP, Thm. 5.3]) and that, in the bi-elliptic
case, we additionally have aJC[2]-orbit inM0 (resp.Mω) of bundlesE (resp.
F ) with 1-dimensionalM 0(E) (resp.M 0(F )).

SinceM 0(E) is nonempty, any stableE ∈M0 lies in at least one extension
spaceP0(L) for someL ∈ Pic1(C) with extension classe /∈ ϕ(C). Now [LaN,
Prop. 2.4] says that there exists a bijection between the sets of

(1) effective divisorsp + q onC such thate lies on the secant linepq and
(2) line bundlesM ∈Pic1(C) such thatM−1 ↪→ E andM 6= L.
The two data are related by the equation

L⊗M = OC(p + q). (4.1)

Let us count secant lines toϕ(C) through ageneralpoint e ∈ P0(L): compos-
ingϕ with the projection fromemapsC birationally to a plane nodal sexticS. By
the genus formula, we obtain that the number of nodes ofS (= number of secants)
equals 7. Hence, forE general, the cardinality|M 0(E)| of the finite setM 0(E) is
8. We write

M 0(E) = {L1, . . . , L8}.
From now on, we shall assume thatE is sufficiently general in order to have
|M 0(E)| = 8. SinceE ∈P0(Li) for 1≤ i ≤ 8, we deduce from relation (4.1) that

Li ⊗ Lj = OC(Dij ) for 1≤ i < j ≤ 8, (4.2)

whereDij is an effective degree-2 divisor onC.

4.2. Lemma. The eight line bundlesLi satisfy the relation
⊗8

i=1Li = ω2.

Proof. We representE as a pointe ∈P0(L8) and assume that the plane sextic curve
S ⊂ P2 obtained by projection with centere has seven nodes as singularities. It
will be enough to prove the equality for such a bundleE. ThenC

π−→ S is the nor-
malization ofS and, by the adjunction formula, we haveω = π∗OS(3)⊗OC(−1),
where1 is the divisor lying over the seven nodes ofS; that is,1 = ∑7

i=1Di8.

Hence

ω = ω3L6
8

(
−

7∑
i=1

Di8

)
= ω3L−1

8 ⊗
7⊗
i=1

(L8(−Di8)) = ω3⊗
8⊗
i=1

L−1
i ,

where we have used relations (4.2).

4.3. Remark. Conversely, suppose we are given eight line bundlesLi that sat-
isfy the 28 relations (4.2). Then there exists a unique stable bundleE ∈M0 such
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that M 0(E) = {L1, . . . , L8}. This is seen as follows. Take for exampleL8 and
consider any two secant lines̄Di8 andD̄j8 (i < j < 8) in P0(L8). Then relations
(4.2) imply that these two lines intersect in a pointe. It is straightforward to check
that the bundleE associated toe does not depend on the choices we made.

4.2. Nets of Quadrics

We considerE ∈M0 and assume thatE /∈ T0 and|M 0(E)| = 8. ThenF = D(E)
is stable and dimH 0(C,E ⊗ F ) = 4. We recall that the rank-4 vector bundle
E ⊗ F is equipped with a nondegenerate quadratic form

det :E ⊗ F = Hom(E,F )→ ω

(we note thatE = E∗). Taking global sections on both sides endows the pro-
jective spaceP3 := PH 0(C,Hom(E,F )) with a net5 = |ω|∗ of quadrics. We
denote byQx ⊂ P3 the quadric associated tox ∈ 5 and, identifyingC with its
canonical embeddingC ⊂ |ω|∗ = 5, we see that (the cone over) the quadricQp
for p ∈C corresponds to the sections

Qp := {φ ∈H 0(C,Hom(E,F )) | Ep φp−→ Fp not surjective}, (4.3)

whereEp,Fp denote the fibers ofE,F overp ∈C. It follows from Lemma 3.2(2)
thatM 0(E) = M ω(F ) or, equivalently, that any line bundleLi ∈M 0(E) fits into
a sequence of maps

xi : E→ Li → F.

We denote byxi ∈P3 the composite map (defined up to a scalar).

4.4. Lemma. The base locus of the net of quadrics5 consists of the eight dis-
tinct pointsxi ∈P3.

Proof. A base pointx corresponds to a vector bundle mapx : E → F such that
rk x ≤ 1 (sincex ∈ Qp ∀p). Hence there exists a line bundleL such thatE →
L→ F and, sinceE andF are stable and of slope 0 and 2 (respectively), we ob-
tain that degL = 1 andL∈M 0(E) = M ω(F ).

The set of base points̄x = {x1, . . . , x8} of a net of quadrics inP3 is self-associated
(for the definition of (self-)association of point sets we refer to [DO, Chap. 3])
and is called aCayley octad.We recall [DO, Chap. 3, Ex. 6] that ordered Cay-
ley octadsx̄ = {x1, . . . , x8} are in 1-to-1 correspondence with ordered point sets
ȳ = {y1, . . . , y7} in P2 (note that we consider here general ordered point sets up to
projective equivalence). The correspondence goes as follows: starting fromx̄ we

consider the projection with centerx8, P3 prx8−−→ P2, and defineȳ to be the pro-
jection of the remaining seven points. Conversely, givenȳ in P2, we obtain by
association seven pointsx1, . . . , x7 in P3. The missing eighth pointx8 of x̄ is the
additional base point of the net of quadrics through the seven pointsx1, . . . , x7.

Consider a generalE ∈M0 and choose a line subbundleL8 ∈M 0(E). We de-
note byx8 the corresponding base point of the net5. We consider the following
two (different) projections ontoP2.
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(1) Projection with centerx8 of P3 = PH 0(C,Hom(E,F ))
prx8−−→ P2. Let ȳ =

{y1, . . . , y7} ⊂ P2 be the projection of the seven base pointsx1, . . . , x7.

(2) Projection with centere of P0(L8)
pre−→ P2. Let z̄ = {z1, . . . , z7} ⊂ P2 be the

images of the seven secant lines toϕ(C) throughe, and note thatz1, . . . , z7

are the seven nodes of the plane sexticS.

4.5. Lemma. The two targetP2s of the projections(1) and (2) are canonically
isomorphic(to PW ∗e ), and the two point sets̄y and z̄ coincide.

Proof. First we recall from the proof of Lemma 3.2 that we have an exact sequence,

0−→ H 0(FL−1
8 )

i−→ H 0(E ⊗ F ) π−→ H 0(FL8) −→ 0,

and thatH 0(FL8) ∼= W ∗e and dimH 0(FL−1
8 ) = 1. Moreover, it is easily seen

thatP(im i) = x8 ∈ P3 and hence the projectivized mapπ identifies with prx8.

The images prx8(xi) for 1 ≤ i ≤ 7 are given by the sectionssi ∈ H 0(FL8) van-
ishing at the divisorDi8 (sinceLiL8 = OC(Di8) ↪→ FL8). It remains to check
that the sectionsi ∈ H 0(FL8) ∼= W ∗e correponds to the 2-dimensional subspace
H 0(ωL2(−Di8)) ⊂ We ⊂ H 0(ωL2), which is standard.

We introduce the nonempty open subsetMreg
0 ⊂M0 of stable bundlesE that sat-

isfy E /∈ T0 and|M 0(E)| = 8; for anyL ∈M 0(E), the point set̄z ⊂ P2 is such
that no three points in̄z are collinear.

4.3. The Hessian Construction

It is classical (see e.g. [DO, Chap. 9]) to associate to a net of quadrics5 onP3 its
Hessian curve parametrizing singular quadrics—that is,

Hess(E) := {x ∈5 = |ω|∗ | Qx singular}.
Note thatC and Hess(E) lie in the same projective plane.

4.6. Lemma. We suppose thatE ∈Mreg
0 . Then the curveHess(E) is a smooth

plane quartic.

Proof. It follows from [DO, Chap. 9, Lemma 5] that Hess(E) is smooth if and
only if every four points of̄x = {x1, . . . , x8} spanP3. Projecting from one of the
xi and using Lemma 4.5, we see that this condition holds forE ∈Mreg

0 .

First we determine for which bundlesE ∈Mreg
0 the Hessian curve Hess(E) equals

the base curveC. We need to recall some facts about nets of quadrics and Cayley
octads [DO]. The net5 determines an even theta characteristicθ over the smooth
curve Hess(E) such that the Steinerian embedding

Hess(E)
St−→ P3 = |ωθ |∗, x 7→ Sing(Qx),

is given by the complete linear system|ωθ |. The image St(E) is called theStein-
erian curve. Given two distinct base pointsxi, xj ∈ P3 of the net5, the pencil
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3ij of quadrics of the net5 that contain the linexi xj is a bitangent to the curve
Hess(E). In this way we obtain all the 28= ( 8

2

)
bitangents to Hess(E). Let u, v

be the two intersection points of the bitangent3ij with Hess(E). Then the secant
line to the Steinerian curve St(E) determined by St(u) and St(v) coincides with
xi xj .

Conversely: given a smooth plane quarticX ⊂ P2 with an even theta character-
istic θ, by taking the symmetric resolution overP2 of the sheafθ supported at the
curveX we obtain a net of quadrics5 whose Hessian curve equalsX. Thus the
correspondence between nets of quadrics5 and the data(X, θ) is 1-to-1.

This correspondence allows us to construct some more distinguished bundles
inM0. We consider a triple(θ, L, x) consisting of an even theta characteristicθ
overC, a square rootL ∈Pic1(C) (i.e.,L2 = θ), and a base pointx of the net of
quadrics5 associated to(C, θ). We denote by

A(θ, L, x)∈M0 (4.4)

the stable bundle defined by the pointx ∈P0(L) = |ωθ |∗. SinceC is smooth, we
haveA(θ, L, x) ∈Mreg

0 . These bundles will be calledAronholdbundles (see Re-
mark 4.12). We leave it to the reader to deduce the following characterization:E

is an Aronhold bundle if and only if the 28 line bundlesLiLj (1≤ i < j ≤ 8) are
the odd theta characteristics, withLi ∈M 0(E).

4.7. Proposition. Let the bundleE ∈Mreg
0 . Then the following statements hold.

(1) We haveHess(E) = C if and only ifE is an Aronhold bundle.
(2) AssumingHess(E) 6= C, the curvesC andHess(E) are everywhere tangent.

More precisely, the scheme-theoretical intersectionC ∩ Hess(E) is nonre-
duced of the form21(E), with1(E)∈ |ω2|.

Proof. We deduce from (4.3) that the intersectionC ∩Hess(E) corresponds (set-
theoretically) to the sets of points where the evaluation map of global sections

OC ⊗H 0(C,Hom(E,F ))
ev−→ Hom(E,F ) (4.5)

is not surjective.
Let us suppose thatC = Hess(E). Then ev is not generically surjective(rk ev≤

3). We choose a line subbundleL8 ∈M 0(E) and consider (as in Lemma 4.5) the
exact sequence

0 −−→ H 0(FL−1
8 ) −−→ H 0(Hom(E,F )) −−→ H 0(FL8) −−→ 0y∼= yev

yev′

0 −−→ OC −−→ Hom(E,F ) −−→ E −−→ 0,

where the vertical arrows are evaluation maps. Note thatOC ↪→ FL−1
8 ↪→

Hom(E,F ) corresponds to the section ofH 0(FL−1
8 ). We denote byE the rank-3

quotient. Then ev′ : H 0(FL8)→ E is not generically surjective, either. ButE has
a quotientE→ FL8 with kernelωL−2

8 . Now, sinceH 0(FL8)
ev−→ FL8 is surjec-

tive, we obtain a direct sum decompositionE = ωL−2
8 ⊕FL8. Furthermore, since
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E ⊗ F is polystable (semistable and orthogonal) and of slope 2, we obtain that
ωL−2

8 is an orthogonal direct summand. HenceωL−2
8 = θ for some theta charac-

teristicθ. Now we can repeat this reasoning for any line bundleLi ∈M 0(E),estab-
lishing that allωL−2

i are theta characteristics contained inHom(E,F ). Projecting
to FL8 shows thatL2

i = L2
8 = θ for all i and therefore the 28 line bundlesLiLj

are the odd theta characteristics. It follows thatE is an Aronhold bundle.
AssumingC 6= Hess(E), the evaluation map (4.5) is injective:

0−→ OC ⊗H 0(C,Hom(E,F ))
ev−→ Hom(E,F ) −→ C1(E) −→ 0.

The cokernel is a skyscraper sheaf that is supported at a divisor1(E). Because
detHom(E,F ) = ω2,we have1(E)∈ |ω2|. This shows that set-theoretically we
haveC ∩ Hess(E) = 1(E). Let us determine the local equation of Hess(E) at a
pointp ∈1(E). We denote bym the multiplicity of1(E) at the pointp. Then,
since there is no section ofHom(E,F ) vanishing twice atp (by the stability ofE
andF ), we have dimH 0(Hom(E,F )(−p)) = m. We choose a basisφ1, . . . , φm
of sections of the subspaceH 0(Hom(E,F )(−p)) ⊂ H 0(Hom(E,F )) and com-
plete it (if necessary) byφm+1, . . . , φ4. Let z be a local coordinate in an analytic
neighborhood centered at the pointp. With this notation, the quadricsQz of the
net can be written as

Qz(λ1, . . . , λ4) = det

( 4∑
i=1

λiφi(z)

)
,

where theφi(z) are a basis of the fiberHom(E,F )z for z 6= 0. By construction,
for 1≤ i ≤ m we haveφi(z) = zψi(z), and the local equation of Hess(E) is the
determinant of the symmetric 4× 4 matrix

Hess(E)(z) = det[B(φi(z), φj(z))]1≤i,j≤4,

whereB is the polarization of the determinant. We obtain that Hess(E)(z) is of
the formz2mR(z). Hence multp(Hess(E)) ≥ 2m, proving the statement.

4.8. Definition. We call the divisor1(E) the discriminant divisorof E and
the rational map1 : M0→ |ω2| thediscriminant map.

In the sequel of this paper we will show that the bundleE and its Hessian curve
Hess(E) are in bijective correspondence (modulo some discrete structure, which
will be defined in Section 4.5.2). A first property is the following: GivenE ∈
Mreg

0 , we associate to the 28 degree-2 effective divisorsDij (see (4.2)) on the
curveC their corresponding secant linesD̄ij ⊂ |ω|∗.
4.9. Proposition. The secant linēDij to the curveC coincides with the bitan-
gent3ij to the smooth quartic curveHess(E).

Proof. Since the bitangent3ij to Hess(E) corresponds to the pencil of quadrics in
5 containing the linexi xj , it will be enough to show thatQa andQb belong to3ij,
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for Dij = a + b, with a, b ∈ C. Consider the vector bundle mapπi ⊕ πj : E →
Li ⊕Lj, whereπi andπj are the natural projection maps. SinceLiLj = O(Dij ),

the mapπi ⊕ πj has cokernelCa ⊕Cb, which is equivalent to saying that the two
linear formsπi,a : Ea → Li,a andπj,a : Ea → Lj,a are proportional (and like-
wise forb). This implies that any mapφ ∈ xi xj factorizes at the pointa through
πi,a = πj,a and hence detφa = 0. This means thatxi xj ⊂ Qa; that is,Qa ∈3ij

(likewise forb).

4.4. Moduli ofPSL2-Bundles and the Discriminant Map1

The finite groupJC[2] of 2-torsion points ofJC acts by tensor product onM0

andMω. Since Coble’s quartic is Heisenberg-invariant, it is easily seen that the
polar mapD : M0→Mω is JC[2]-equivariant; that is,D(E ⊗ α) = D(E)⊗ α
for all α ∈ JC[2]. This implies that the constructions we made in Sections 4.2 and
4.3—namely, the projective spaceP3 = PH 0(Hom(E,F )), the net of quadrics
5, its Hessian curve Hess(E) and discriminant divisor1(E)—depend only on
the class ofE moduloJC[2], which we denote bȳE. It is therefore useful to in-
troduce the quotientN = M0/JC[2], which can be identified with the moduli
space of semistablePSL2-vector bundles with fixed trivial determinant. We ob-
serve thatN is canonically isomorphic to the quotientMω/JC[2]. Therefore the
JC[2]-invariant polar mapD descends to a birational involution

D̄ : N → N. (4.6)

We recall [BLS] that the generator̄L of Pic(N ) = Z pulls back under the quotient
mapq : M0 → N to q∗L̄ = L4 and that global sectionsH 0(N, L̄k) correspond
to JC[2]-invariant sections ofH 0(M0,L4k).

The Kummer varietyK0 is contained in the singular locus ofN : because the
composite mapJC

i−→M0
q−→ N (with i(L) = [L⊕L−1]) is JC[2]-invariant, it

factorizesJC
[2]−→ JC

ī−→ N, and the imagēi(JC) ∼= K0 ⊂ N.
We also recall from [OP1] that we have a morphism

0 : N → |32|+ = P13,

Ē 7→ 0(Ē) = {L∈Pic2(C) | dimH 0(C,Sym2(E)⊗ L) > 0},
which is well-defined since0(Ē) depends only on̄E. The subscript+ denotes in-
variant (w.r.t.ξ 7→ ωξ−1) theta functions. When restricted toK0, the morphism
0 is the Kummer map; that is, we have a commutative diagram

K0
Kum−−−−→ |22| = P7y y+2

N 0−−−−→ |32|+ = P13.

The main result of [OP1] is the following.
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4.10. Proposition. The morphism0 : N → |32|+ is given by the complete lin-
ear system|L̄|. That is, there exists an isomorphism|L̄|∗ ∼= |32|+.
4.11. Remark. Using the same methods as in [NR], one can show that0 : N →
|32|+ is an embedding. We do not use that result.

Since the open subsetMreg
0 isJC[2]-invariant, we obtain thatMreg

0 = q−1(N reg).

By passing to the quotientN, the Aronhold bundles (4.4) determine 36· 8= 288
distinct pointsA(θ, x) := A(θ, L, x) ∈ N reg, the exceptional bundles (2.1) de-
termine one point inN, denoted byA0, and we obtain a (rational) discriminant
map (4.8)

1 : N → |ω2|
defined on the open subsetN reg\ {A(θ, x)}. We also note that the 28 line bundles
LiLj for Li ∈M 0(E) depend only onĒ.

4.12. Remark. The 288 pointsA(θ, x) are in 1-to-1 correspondence with un-
ordered Aronhold sets (see [DO, p. 167])—that is, with sets of seven odd theta
characteristicsθi (1 ≤ i ≤ 7) such thatθi + θj − θk is even for alli, j, k. The
sevenθi are cut out on the Steinerian curve by the seven linesxxi, wherex, xi are
the base points of5.

The main result of this section is as follows.

4.13. Proposition. We have a canonical isomorphism|32|2|+ ∼= |ω2|, which
makes the right diagram commute:

K0 ⊂
∩

N 1 //

0

��

|ω2|
∼=

��

|22| +2
// |32|+ res2 // |32|2|+.

In other words, consideringN (via0) as a subvariety in|32|+, the discriminant
map1 identifies with the projection with center|22| = Span(K0) or (equiva-
lently) with the restriction map of|32|+ to the Theta divisor2 ⊂ Pic2(C).

Proof. First we show that the discriminant map1 is given by a linear subsystem
of |L̄| (∼= |32|∗+). Consider a line bundleL∈Pic1(C) and the composite map

ψL : P3 := P0(L) −→M0
q−→ N 1−→ |ω2|.

Then it will be enough to show thatψ∗L(H ) ∈ |OP3(4)| (sinceq∗L̄ = L4) for a
hyperplaneH in |ω2|. We denote byp (resp.q) the projection ofP3× C ontoC
(resp.P3). There exists a universal extension bundleE overP3× C,

0−→ p∗L−1−→ E −→ p∗L⊗ q∗OP3(−1) −→ 0, (4.7)

such that the vector bundleE|{e}×C corresponds to the extension classe for all e ∈
P0(L). We denote byW ↪→ OP3⊗H 0(ωL2) the universal rank-3 subbundle over
P3, and we define the familyF overU × C by the exact sequence
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0−→ (F⊗ p∗L)∗ −→ q∗W ev−→ p∗(ωL2) −→ 0, (4.8)

whereU is the open subsetP3 \C. We haveF|{e}×C ∼= Fe (see (3.1)). Note that
Pic(U) = Pic(P3). It follows immediately from (4.7) and (4.8) that detE =
q∗O(−1), detF = q∗O(1) ⊗ p∗ω, and det(E ⊗ F) = p∗ω2. After removing (if
necessary) the pointA0 from U (see Remark 3.4(2)), we obtain for alle ∈ U
that dimH 0(C,E ⊗ F|{e}×C) = 4; hence, by the base change theorems, the di-
rect image sheavesq∗(E⊗ F) andR1q∗(E⊗ F) are locally free overU. Suppose
that the hyperplaneH consists of divisors in|ω2| containing a pointp ∈C. Then
ψ∗L(H ) is given by the determinant of the evaluation map overU,

q∗(E⊗ F) ev−→ E⊗ F|U×{p}
(see (4.5)). Since det(E⊗ F|U×{p}) = OU , the result will follow from the equal-
ity detq∗(E ⊗ F) = OU(−4), which we prove by using some properties of the
determinant line bundles [KM].

Given any family of bundlesF overU×C,we denote the determinant line bun-
dle associated to the familyF by detRq∗(F ). First we observe that, by relative
duality [K], we have

q∗(E⊗ F) ∼−→ (R1q∗(E⊗ F))∗,
so detRq∗(E⊗ F) = (detq∗(E⊗ F))⊗2. Next we tensor (4.7) withF to obtain

0−→ F⊗ p∗L−1−→ E⊗ F −→ F⊗ p∗L⊗ q∗O(−1) −→ 0.

Since detRq∗ is multiplicative, we have

detRq∗(E⊗ F) ∼= detRq∗(F⊗ p∗L−1)⊗ detRq∗(F⊗ p∗L⊗ q∗O(−1)).

Again by relative duality we have detRq∗(F ⊗ p∗L−1) ∼= detRq∗(F ⊗ p∗L ⊗
q∗O(−1)), hence (as Pic(U) = Z) we can divide by 2 to obtain

detq∗(E⊗ F) ∼= detRq∗(F⊗ p∗L⊗ q∗O(−1)) ∼= detRq∗(F⊗ p∗L)⊗O(−2).

The last equation holds becauseχ(FeL) = 2. Finally, we apply the functor detRq∗
to the dual of (4.8):

detRq∗(F⊗ p∗L) ∼= detRq∗(q∗W∗)⊗ detRq∗(p∗ωL2)−1

∼= (detW∗)⊗χ(O) ∼= O(−2);
this proves that detq∗(E⊗ F) = O(−4).

We also deduce from this construction that the exceptional locus of the rational
discriminant map1 is the union of the Kummer varietyK0, the exceptional bun-
dleA0, and the 288 Aronhold bundlesA(θ, x). The map1 is therefore given by
the composite of0 with a projection map,π : |L̄|∗ ∼= |32|+ → |ω2|, whose cen-
ter of projection kerπ contains Span(K0) = |22|. In order to show that kerπ =
|22|, it suffices (for dimensional reasons) to show that1 is dominant.

Consider a general divisorδ = a1+ · · · + a8 ∈ |ω2| and chooseM ∈ Pic2(C)

such thata1+ · · · + a4 ∈ |M 2| (or, equivalently, thata5 + · · · + a8 ∈ |ω2M−2|).
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Using Lemma 3.3, we can find a stableE ∈ T0 such that [D(E)] = [M ⊕ωM−1].
We easily deduce from Remark 3.4(2) that1(E) = δ.

Finally, we deduce from the natural exact sequence associated to the divisor
2 ⊂ Pic2(C),

0−→ H 0(Pic2(C),22)
+2−−→ H 0(Pic2(C),32)+

res2−−→ H 0(2,32|2)+ −→ 0,

that the projectivized restriction map res2 identifies with the projectionπ.

4.14. Remark. Geometrically the assertion on the exceptional locus of1 given
in the proof means that

N ∩ |22| = K0 ∪ {A0} ∪ {A(θ, x)}
(we mapN via 0 into |32|+) or, equivalently, that the 3θ -divisors0(A0) and
0(A(θ, x)) are reducible and of the form

0(A0) = 2+ 0 res(A0), 0(A(θ, x)) = 2+ 0 res(A(θ, x)),

where the residual divisors0 res(A0) and0 res(A(θ, x)) both lie in |22|. This can
be checked directly as follows.

Exceptional bundleA0: Since2 ∼= Sym2C, the inclusion2 ⊂ 0(A0) is equiv-
alent to dimH 0(C,Sym2(A0)⊗ ω−1(p + q)) > 0 for all p, q ∈C (here we take
A0 ∈Mω; see (2.1)) or to dimH 0(C,Sym2(A0)(−u − v)) > 0 for all u, v ∈ C.
But this follows immediately from dimH 0(C,A0) = 3, which implies that, for
all u, there exists a nonzero sectionsu ∈H 0(C,A0(−u)). Taking the symmetric
product, we obtainsu · sv ∈H 0(C,Sym2(A0)(−u− v)).

Aronhold bundlesA(θ, x): Similarly we must show that dimH 0(C,Sym2(A)⊗
ω(−p − q)) > 0 for all p, q ∈ C (takeA = A(θ, L, x) ∈M0). SinceM 0(A)

is invariant under the involutionLi 7→ θL−1
i , we haveD(A) = A ⊗ θ and

dimH 0(C,A⊗A⊗ θ) = dimH 0(C,Sym2(A)⊗ θ) = 4. Hence, for allp, there
exists a nonzero sectionsp ∈ H 0(C,End0(A) ⊗ θ(−p)) (note that End0(A) =
Sym2(A)); by taking the End0 part of the composite sectionsp B sq, we obtain a
nonzero element ofH 0(C,Sym2(A)⊗ ω(−p − q)).
It can also be shown by standard methods that Sym2(A0) and Sym2(A(θ, x))

are stable bundles. It would be interesting to describe explicitly the 2θ -divisors
0 res(A0)and0 res(A(θ, x)),which (we suspect) do not lie on the Coble quarticM0.

4.5. The Action of the Weyl GroupW(E7)

The aim of this section is to show that the Hessian map (Section 4.3), which as-
sociates to aPSL2-bundleĒ ∈ N reg the isomorphism class of the smooth curve
Hess(Ē)∈M3, is dominant.

4.5.1. Some Group Theory Related to Genus-3 Curves
We recall here (see e.g. [A; DO; Ma]) the main results on root lattices and Weyl
groups. Let0 ⊂ P2 be a smooth plane quartic andV its associated degree-2



Self-Duality of Coble’s Quartic Hypersurface and Applications 571

Del Pezzo surface, that is, the degree-2 coverπ : V → P2 branched along the
curve0. We choose an isomorphism (called a geometric marking ofV ) of the Pi-
card group Pic(V ),

ϕ : Pic(V ) ∼−→H7 =
7⊕
i=0

Zei, (4.9)

with the hyperbolic latticeH7, such thatϕ is orthogonal for the intersection form
on Pic(V ) and for the quadratic form onH7 defined bye2

0 = 1, e2
i = −1 (i 6= 0),

andei · ej = 0 (i 6= j). The anticanonical class−k of V equals 3e0 −∑7
i=1ei .

We pute8 := ∑7
i=1ei − 2e0 = e0 + k. Then the 63 positive roots ofH7 are of

two types:

(1) αij = ei − ej (1≤ i < j ≤ 8),

(2) αijk = e0 − ei − ej − ek (1≤ i < j < k ≤ 7).
(4.10)

The 28 roots of type (1) correspond to the 28 positive roots of the Lie algebrasl8

viewed as a subalgebra of the exceptional Lie algebrae7. Similarly, the 56 excep-
tional lines ofH7 are of two types: for 1≤ i < j ≤ 8,

(1) lij = ei + ej − e8,

(2) l ′ij = e0 − ei − ej . (4.11)

The Weyl groupW(SL8) equals the symmetric group68 and is generated by the
reflectionssij associated to the rootsαij of type (1). The action of the reflectionsij
on the exceptional lineslpq andl ′pq is given by applying the transposition(ij) to
the indicespq. The Weyl groupW(E7) is generated by the reflectionssij andsijk
(associated toαijk), and the reflectionsijk acts on the exceptional lines as follows:

(i) if |{i, j, k,8} ∩ {p, q}| = 1, thensijk(lpq) = lpq;
(ii) if |{i, j, k,8} ∩ {p, q}| = 0 or 2, thensijk(lpq) = l ′st such that{p, q, s, t}

equals{i, j, k,8} or its complement in{1, . . . ,8}.
Let us consider the restriction map Pic(V )

res−→ Pic(0) to the ramification divi-
sor0 ⊂ V. Then we have the beautiful fact (see [DO, Lemma 8, p. 190]) that res
maps bijectively the 63 positive roots{αij, αijk} (4.10) to the 63 nonzero 2-torsion
pointsJ0[2]\{0}, thus endowing the JacobianJ0with a level-2 structure—that is,
a symplectic isomorphismψ : J0[2] ∼= F3

2 × F3
2 (for details, see [DO, Chap. 9]).

We also observe that the partition ofJ0[2] into the two sets{res(αij )} (28 points)
and{res(αijk),0} (36 points) corresponds to the partition into odd and even points
(w.r.t. the level-2 structureψ). Moreover, the images of the 56 exceptional lines
(4.11) are the 28 odd theta characteristics on0, which we denote by res(lij ) =
res(l ′ij ) = θij . Further,π(lij ) = π(l ′ij ) = 3ij, where3ij is the bitangent to0
corresponding toθij .

Two geometric markingsϕ, ϕ ′ (4.9) differ by an elementg ∈O(H7) = W(E7),

and their induced level-2 structuresψ,ψ ′ differ by ḡ ∈ Sp(6,F2). The restric-
tion mapW(E7)→ Sp(6,F2), g 7→ ḡ, is surjective with kernelZ/2 = 〈w0〉 =
Center(W(E7)). The elementw0 ∈W(E7) acts as−1 on the root lattice, leavesk
invariant(w0(k) = k), and exchanges the exceptional lines(w0(lij ) = l ′ij ).
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We also note thatw0 /∈ 68 ⊂ W(E7) and that the injective composite map
68 → W(E7) → Sp(6,F2) identifies68 with the stabilizer of an even theta
characteristic.

4.5.2. Two Moduli Spaces withW(E7)-Action
We introduce the68-Galois coverM̃0→Mreg

0 parametrizing stable bundlesE ∈
Mreg

0 with an order on the eight line subbundlesM 0(E) = {L1, . . . , L8}. The
groupJC[2] acts onM̃0 and we denote the quotient̃M0/JC[2] by Ñ, which is
a68-Galois coverÑ → N reg. The polar mapD̄ : N → N (4.6) lifts to a68-
equivariant birational involutioñD : Ñ → Ñ.

We also consider the moduli spacePC parametrizing pairs(0, ϕ), with 0 ⊂
|ω|∗ = P2 a smooth plane quartic curve that satisfies0 ∩ C = 21 and1 ∈ |ω2|
and withϕ a geometric marking (4.9) for the Del Pezzo surfaceV associated to
0. Then the forgetful map(0, ϕ) 7→ 0 realizesPC as aW(E7)-Galois cover of
the spaceR of smooth quartic curves0 satisfying the intersection property just
described. Since the general fiberf −1(1) of the projection mapR f−→ |ω2| cor-
responds to the pencil of curves spanned by the curveC and the double conicQ2

defined byQ ∩ C = 1, we see thatR is an open subset of aP1-bundle over|ω2|
and hence is rational.

4.15. Proposition. The Hessian map of Section 4.3 induces a birational map

H̃ess:Ñ → PC,
which endowsÑ with aW(E7)-action. The action ofw0 corresponds to the polar
mapD̃.
Proof. Let Ē ∈ Ñ be represented byE ∈Mreg

0 and by an ordered setM 0(E) =
{L1, . . . , L8}. In order to construct the data(0, ϕ),we consider the Del Pezzo sur-
faceV

π−→ P2 associated to the Hessian curve0 = Hess(E) ⊂ |ω|∗ = P2. Since
0 ∩ C = 21(E), the preimageπ−1(C) ⊂ V splits into two irreducible com-
ponentsC1 ∪ C2, with C1 = C2 = C. More generally, it can be shown that the
preimageπ−1(C×R) ⊂ V has two irreducible components, whereV → R is the
family of Del Pezzo’s parametrized byR. This allows us to choose uniformly a
componentC1. Then, by Proposition 4.9, the secant lineD̄ij coincides with a bi-
tangent to0. Hence the preimageπ−1(D̄ij ) splits into two exceptional lines, and
we denote bylij the line that cuts out the divisorDij on the curveC1= C. Then the
other linel ′ij cuts out the divisorD ′ij onC1 withDij +D ′ij ∈ |ω|. Now it is imme-
diate to check that the classesei = li8 for 1≤ i ≤ 7 and thate0 = ei + ej − lij − k
determine a geometric marking as in (4.9).

Conversely, givenV and a geometric markingϕ, we choose a line bundleL8 ∈
Pic1(C) such thatωL2

8 = e0|C=C1. Next we defineLi for 1≤ i ≤ 7 byLiL8 =
ei |C=C1. Then one verifies thatlij |C=C1 = LiLj and hence (by Remark 4.3) there
exists a bundleE ∈M0 such thatM 0(E) = {L1, . . . , L8}. SinceL8 is defined up
to JC[2], this construction gives an element ofÑ.

Because the element̄E ∈ Ñ is determined by the 28 line bundlesLiLj, it will
be enough to describe the action ofD̃ andw0 ∈ W(E7) on theLiLj . Suppose



Self-Duality of Coble’s Quartic Hypersurface and Applications 573

D̃(Ē) = F̄ with M 0(F ) = {M1, . . . ,M8}; then it follows from the equality
M ω(F ) = M 0(E) (assumingF = D(E)) thatMiMj = ωL−1

i L
−1
j . On the other

hand, we havew0(lij ) = l ′ij andlij + l ′ij = −k. Restricting toC = C1 (−k|C =
ω), we obtain thatw0 = D̃.
4.16. Corollary. The morphismHess:N reg→ R, Ē 7→ Hess(Ē), is finite
of degree72. If C is general, the map

N reg−→M3, Ē 7→ isoclass(Hess(Ē)),

is dominant.

Proof. The first assertion follows from|W(E7)/68| = 72; for the second, it suf-
fices to show that the forgetful mapR→M3 is dominant. Let [C] ∈ |OP2(4)| =
P14 denote the quartic equation ofC. Projection with center [C] maps|OP2(4)| →
|ω4|.We immediately see thatR equals the cone with vertex [C] over theVeronese
variety Ver|ω2| ↪→ |ω4|. If C is general then one can show (e.g., by computing
the differential of the natural mapPGL3 × R → |OP2(4)|) that thePGL3-orbit
of the coneR (note that dimR = 6) in |OP2(4)| = P14 is dense, and sinceM3 =
|OP2(4)|/PGL3 we obtain the result.

4.17. Remark. The action of the reflectionsijk ∈W(E7) onÑ is easily deduced
from its action on the exceptional lineslpq andl ′pq (see Section 4.5.1). Represent-
ing an elementĒ ∈ Ñ by e ∈ |ωL2

8|∗, it is easily checked that the restriction of
sijk to |ωL2

8|∗ is given by the linear system of quadrics on|ωL2
8|∗ passing through

the six pointsDijk = Di8 + Dj8 + Dk8. In this way we can construct the 72=
2
(
1+ ( 7

3

))
bundles in the fiber of Hess:N reg→ R.
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