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1. Introduction

In [12] Defant introduced the local Radon–Nikodým property for duals of locally
convex spaces and used it to understand the duality theory of injective and projec-
tive tensor products of locally convex spaces. This concept generalizes the con-
cept of Radon–Nikodým property for Banach spaces in the sense that a Banach
space has a dual with the local Radon–Nikodým property if and only if its dual
has the Radon–Nikodým property. The class of locally convex spaces having
duals with the local Radon–Nikodým property includes nuclear spaces, Schwartz
spaces, quasi-normable semireflexive spaces, and (gDF)-spaces that have a separa-
ble strong dual. This class is stable with respect to subspaces, quotients, countable
direct sums, arbitrary products, countable inductive limits, and arbitrary projective
limits.

LetE be a (real or complex) locally convex space and letE ′b denote its strong
dual. The polarV ◦ of an absolutely convex closed neighbourhoodV of 0 in E
is equicontinuous and hence is bounded inE ′b. For a closed absolutely convex
bounded subsetB of E we use[|B|] to denote the normed space spanned byB and
with closed unit ballB. GivenE andF locally convex spaces, we letL[|E;F ′|]
denote the space of all linear maps fromE intoF ′ transforming some neighbour-
hood of zero into an equicontinuous set. HenceT ∈L[|E;F ′|] if and only if there
exists an absolutely convex closed neighbourhoodV of 0 inF such thatT factors
continuously through the Banach space[|V ◦|].

Let (�,6,µ) be a finite measure space and letX be a Banach space. An opera-
torT : L1(µ)→ X is said to berepresentable[15] if there is a Bochner-integrable
f ∈L1(µ;X) such that

Tφ =
∫
φf dµ

for all φ ∈L1(µ).

Given a locally convex spaceE, an operatorT ∈L[|L1(µ);E ′|] is said to belo-
cally representableif there is a neighbourhoodV of 0 in E and a representable
operatorT̂ ∈L(L1(µ);E ′V ◦) such that the following diagram commutes:
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According to Defant [12], a locally convex spaceE has a dual with local Radon–
Nikodým property if, for every finite measure space(�,6,µ), all operators in
L[|L1(µ);E ′|] are locally representable. We rename this property and say thatE is
locally Asplund.By [12], a locally convex spaceE is locallyAsplund if and only if,
for every absolutely convex neighbourhoodU of 0 inE and every positive Radon
measureν on(U ◦, σ(E ′, E)), there is an absolutely convex neighbourhoodV of 0
in E, V ⊆ U, such that the embedding(U ◦, σ(E ′, E)) ↪→ [|V ◦|] is ν-measurable.

In Section 2 we show that theε-product of two locally Asplund locally convex
spaces is locally Asplund. In Section 3, we prove that a continuousn-linear mapu
defined between locally convex spacesE andF is weakly (uniformly) continuous
on bounded sets if and only if each of its associated mapsT j : x ∈E 7→ T j(x) ∈
L(n−1E;F ), defined byT j(x)(z1, . . . , zn−1) = u(z1, . . . , zj−1, x, zj, . . . , zn−1),

maps bounded sets into precompact sets. This generalizes [3, Thm. 2.9]. In Sec-
tion 4 we apply the preceding results to study local Asplundness of (a) the space
Pw(nE;F ) of continuousn-homogeneous polynomials that are weakly continu-
ous on bounded sets and (b) the spacePA(nE;F ) of approximablen-homogeneous
polynomials. Both spaces are endowed with the topology of uniform convergence
on bounded sets. Specifically, we show that whenE ′b andF are locally Asplund
thenPw(nE;F ) andPA(nE;F ) are locally Asplund. In our final section, we ex-
amine local Asplundness of the spaces(Hwu(U ;F ), τb) and(H(U ;F ), τo).

2. Schwartz Products of Locally Asplund Spaces

Given a locally convex spaceE we letE ′c denote the dual ofE, E ′, endowed with
the topology of uniform convergence on all absolutely convex compact subsets of
E. If E is quasi-complete then this topology coincides with the topology of uni-
form convergence on compact subsets ofE. For locally convex spacesE andF,
the ε-product (Schwartzε-product) ofE andF was introduced by L. Schwartz
[27; 28] and is defined as the locally convex spaceEεF = Le(E ′c;F ) of continu-
ous linear operators fromE ′c to F endowed with the topology of uniform conver-
gence on equicontinuous subsets ofE ′. It is shown in [28] thatEεF coincides with
the space of all weak∗–weakly continuous linear maps fromE ′ into F that trans-
form equicontinuous subsets ofE ′ into relatively compact subsets ofF. If bothE
andF are complete and if one of them has the approximation property, thenEεF

can be identified withE⊗̂εF (see [23]). IfUE(0) is the collection of all abso-
lutely convex closed neighbourhoods of 0 inE then a fundamental system of neigh-
bourhoods of 0 inEεF is given by all sets of the form

N(U ◦,V ) := {T ∈EεF : T(U ◦) ⊂ V },
whereU ∈ UE(0) andV ∈ UF (0).
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The spaceC(K;E) denotes all continuous maps from a compact Hausdorff
spaceK into E. If E is the scalar field, we denoteC(K;E) by C(K). We use
M(K) to denote the space of all finite Radon measures onK.

Lemma 1. LetE, F, andG be locally convex spaces withE andF complete.
For eachh ∈ (EεF )εG, the expression̂h(x ′)(y ′) = h(x ′ ⊗ y ′) for x ′ ∈ E ′ and
y ′ ∈F ′ defines an operator̂h∈Eε(FεG).
Note thatE ′⊗F ′ can be considered a subspace of(EεF )′ by means of the identity
(x ′ ⊗ y ′)(g) = y ′(g(x ′)) for x ′ ∈E ′, y ′ ∈F ′, andg ∈EεF.
Proof. We start by proving that̂h(x ′) ∈ L(F ′c ;G) for a fixedx ′ ∈ E ′. Clearly
ĥ(x ′) is linear. To prove that̂h(x ′) is continuous, fixV ∈ UG(0). We have to
check that there is a compact subsetC of F such that̂h(x ′)(C◦) is contained inV.

By hypothesis there is a compact subsetK of EεF such thath(K◦) ⊂ V.

The setC = {g(x ′) : g ∈ K} is a compact subset ofF. Let y ′ ∈ C◦. Since
|(x ′ ⊗ y ′)(g)| = |y ′(g(x ′))| ≤ 1 for all g ∈ K, we havex ′ ⊗ y ′ ∈ K◦. Hence
ĥ(x ′)(y ′) = h(x ′ ⊗ y ′)∈V and this proveŝh(x ′)(C◦) ⊂ V.

We now show that̂h∈Eε(FεG) = L(E ′c;FεG). Clearly ĥ is linear. To prove
that ĥ is continuous, takeV ∈ UF (0) andW ∈ UG(0). We must find a compact
subsetK ofE such that̂h(K◦) ⊂ N(V ◦,W); that is,ĥ(x ′)(y ′)∈W for everyx ′ ∈
K◦ andy ′ ∈V ◦.

Sinceh ∈ (EεF )εG = L((EεF )′c;G), there is a compact subsetC in EεF
such thath(C◦) ⊂W. Set

C∗ = {g∗ : F ′c 7→ E : g ∈C},
whereg∗ is the transpose ofg. ThenC∗ ⊂ FεE = L(F ′c ;E) andK = C∗(V ◦) =
{g∗(y ′) : g∗ ∈ C∗, y ′ ∈ V ◦} ⊂ E is compact (see [23, Prop. 16.2.6]). Letx ′ ∈
C∗(V ◦)◦ andy ′ ∈V ◦. Since

|(x ′ ⊗ y ′)(g)| = |y ′(g(x ′))| = |x ′(g∗(y ′))| ≤ 1

for all g ∈ C, it follows thatx ′ ⊗ y ′ ∈ C◦. Hence,ĥ(x ′)(y ′) = h(x ′ ⊗ y ′) ∈W.
This proves that̂h(C∗(V ◦)◦) ⊂ N(V ◦,W).
Lemma 2. LetK be a compact Hausdorff space and letE andF be complete
locally convex spaces. For eachf in C(K;EεF ), the expressionT(y ′)(x ′) =
(x ′ ⊗ y ′) B f for x ′ ∈E ′ andy ′ ∈F ′ defines an operatorT ∈Fε(EεC(K)).
Proof. Consider the canonical isomorphisms

α : f ∈ C(K;EεF ) 7→ α(f )∈ (EεF )εC(K),
whereα(f )(φ) = φ B f for φ ∈ (EεF )′, and

β : g ∈ (EεF )εC(K) 7→ β(g)∈ (FεE)εC(K)
given byβ(g)(φ) = g(φ̃), whereφ̃ ∈ (FεE)′ andφ̃(k) = φ(k∗) for k ∈ EεF.
Note that, forx ′ ∈E ′ andy ′ ∈F ′, we havex̃ ′ ⊗ y ′ = y ′ ⊗ x ′. Let
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γ : h∈ (FεE)εC(K) 7→ ĥ∈Fε(EεC(K))
be given as in Lemma 1. Forf ∈ C(K;EεF ) we haveT = (γ B β B α)(f ), and
this completes the proof.

Theorem 3. LetE andF be locally Asplund locally convex spaces. ThenEεF

is locally Asplund.

Proof. Without loss of generality, we may assume thatE andF are complete. By
[12, Cor. 5] we must prove that, for any compact Hausdorff spaceK and every
ψ in C(K;EεF )′, there exist a bounded sequence of Radon measures(µi)i in
M(K) as well as an equicontinuous sequence(yi)i in (EεF )′ and(λi)i in `1 such
that

〈f,ψ〉 =
∞∑
i=1

λi

∫
K

yi B f dµi
for all f in C(K;EεF ).

SinceF is locally Asplund, by [12, Thm. 5(b)] there existV ∈ UC(K;E)(0), W ∈
UF (0), andz = ∑ i λi x

′
i ⊗ y ′i ∈ [|V ◦|]⊗̂π [|W ◦|] with (λi)i ∈ `1, (xi)i ⊂ W ◦, and

(yi)i ∈V ◦ such that
〈T,ψ〉 =

∑
i

λi〈x ′i, T (y ′i )〉

for all T in FεC(K;E).
By [12, Thm. 5(a)], for eachi we can findU ∈ UE(0) andz ′i =

∑∞
j=1γiju

′
ij ⊗

v ′ij ∈M(K)⊗̂π [|U ◦|] with ‖u′ij‖ = ‖v ′ij‖ = 1 and‖z ′i‖ = inf
∑∞

j=1|γij | so that

〈T(y ′i ), x ′i 〉 =
∞∑
j=1

γij 〈u′ij, T (y ′i )(v ′ij )〉

for all i. If f ∈ C(K;EεF ) and ifT ∈FεC(K;E) is its associated operator given
by Lemma 2, then

〈f,ψ〉 = 〈T,ψ〉 =
∞∑
i=1

∞∑
j=1

λiγij 〈u′ij, T (y ′i )(v ′ij )〉

=
∑
ij

λiγij 〈u′ij, (v ′ij ⊗ y ′i ) B f 〉 =
∑
ij

λiγij

∫
(v ′ij ⊗ y ′i ) B f du′ij ;

this proves the theorem.

Since local Asplundness is inherited by subspaces and since`1 is not Asplund, we
have the following corollaries.

Corollary 4. LetE andF be locally Asplund locally convex spaces. Then the
injective tensor productE⊗̂εF is locally Asplund.

Corollary 5. Let E and F be locally Asplund locally convex spaces. Then
E⊗̂εF does not contain a copy of`1.
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Corollary 4 was proved for Banach spaces by Ruess and Stegall [25, Thm. 1.9].
Samuel [26] showed that, ifX is anAsplund Banach space andY is a Banach space
not containing copies of̀1, thenX⊗̂εY does not contain copies of`1. Corollary 5
is a weak version of Samuel’s result for locally convex spaces.

3. Weakly Continuous Multilinear Mappings
on Locally Convex Spaces

GivenE andF locally convex spaces, letL(nE;F ) denote the space of all con-
tinuousn-linear mappings fromE into F. We denoteL(nE;C) by L(nE). Let
Lw(nE;F ) (resp.Lw(nE)) denote the subspace ofL(nE;F ) (resp.L(nE)) con-
sisting of those mappings that are weakly continuous on bounded sets. We use
P(nE;F ) to denote the space of all continuousn-homogeneous polynomials from
E into F ; that is,P ∈ P(nE;F ) if P(x) = u(x, . . . , x) for some symmetric
u ∈ L(nE;F ). We letPw(nE;F ) denote the subspace ofP(nE;F ) consisting of
those polynomials that are weakly continuous on bounded sets. A polynomialP ∈
P(nE;F ) is said to beof finite typeif there exist finite subsets{φi}li=1 in E ′ and
{yi}li=1 in F such thatP(x) = ∑ l

i=1φ
n
i (x)yi for all x ∈ E. An n-homogeneous

polynomial is said to beapproximableif it can be uniformly approximated on
bounded sets by polynomials of finite type. We denote byPA(nE;F ) the space
of all approximable polynomials. We consider all these spaces endowed with the
topology of uniform convergence on bounded sets ofE orEn.

Given u ∈ L(nE;F ), for eachj = 1, . . . , n let T j : x ∈ E 7→ T j(x) ∈
L(n−1E;F ) be defined byT j(x)(z1, . . . , zn−1) = u(z1, . . . , zj−1, x, zj, . . . , zn−1).

The following result is essentially in [20] for locally convex spaces and general-
izes Banach space results in [3, Thm. 2.9] (see also[17,Sec. 2.1] and [30, Cor. 3]).
A similar result for symmetricn-linear mappings also holds.

Proposition 6. LetE andF be locally convex spaces, and letu be inL(nE;F ).
The following statements are equivalent:

(a) u is weakly continuous on bounded sets;
(b) u is weakly uniformly continuous on bounded sets;
(c) T j is weakly continuous on bounded sets for allj = 1, . . . , n;
(d) T j maps bounded sets into precompact sets for allj = 1, . . . , n.

Proof. The equivalence between (a) and (b) has been proved in [20, Cor. 1.7].
To prove that (b) implies (c), let(xd)d∈D be a bounded net that converges weakly

to x ∈ E. Suppose that(T j(xd − x))d∈D does not converge to zero for somej.
Then there exists a bounded subsetB of E, a continuous seminormp of F, a co-
final subsetD0 of D, and anε0 > 0 such that

sup
yi∈B

p(T j(xd − x)(y1, y2, . . . , yj−1, yj+1, . . . , yn)) ≥ ε0 for all d ∈D0.

Hence, for eachd ∈D0 and eachi 6= j, there existyid ∈B such that

p
(
T j(xd − x)(y1

d , . . . , y
j−1
d , y

j+1
d , . . . , y nd )

) ≥ ε0/2. (1)
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Since(y id)d∈D0 is bounded, by taking subnets if necessary we can assume with-
out loss of generality that(y id)d∈D0 is weakly Cauchy for alli 6= j. By [20,
Thm. 3],

p
(
u(y1

d , . . . , y
j−1
d , xd − x, y j+1

d , . . . , y nd )
)

= p(T j(xd − x)(y1
d , . . . , y

j−1
d , y

j+1
d , . . . , y nd )

)
tends to zero asd →∞, and this contradicts (1).

Statement (c) implies (d) because every bounded set inE is weakly precompact
and its image byT j, which is weakly uniformly continuous on bounded sets [20,
Cor. 7], is precompact. Statement (d) implies (c) by arguments in[17,Lemma 2.3].

To prove that (c) implies (a), let(y1
d )d∈D, . . . , (y

n
d )d∈D ben bounded weakly

Cauchy nets inE such that the(y jd )d∈D converge weakly to zero for somej. Let
B be a bounded subset ofE with (y id)d∈D ⊂ B for all i.

SinceT j is weakly continuous on bounded sets, givenε > 0 and a continuous
seminormp of F, there exists ad0 ∈D such that

sup
yi∈B

p(T j(y
j

d )(y1, y2, . . . , yj−1, yj+1, . . . , yn)) ≤ ε for all d ≥ d0.

Hence

p(u(y1
d , . . . , y

n
d )) ≤ sup

zi∈B,i 6=j
p(u(z1, . . . , zj−1, y

j

d, zj+1, . . . , zn))

=: ‖T j(y jd )‖Bn−1,p < ε.

By [20, Thm. 3], this proves thatu is weakly continuous on bounded sets.

The preceding result can be combined with an earlier result due to Aron and Prolla
[4] for Banach spaces to obtain the following proposition (see also[17, Prop. 2.6]
and [30, Cor. 4]).

Proposition 7. LetE andF be locally convex spaces and letP ∈ P(nE;F ).
The following statements are equivalent:

(a) P is weakly continuous on bounded sets;
(b) P is weakly uniformly continuous on bounded sets;
(c) for eachk (0 ≤ k ≤ n), (d̂ k)P/k! is weakly continuous on bounded sets;
(d) for eachk (0 ≤ k ≤ n), (d̂ k)P/k! maps bounded sets into precompact sets;
(e) (d̂ n−1)P/(n− 1)! maps bounded sets into precompact sets.

4. Local Asplundness for Spaces of Homogeneous Polynomials

ForX andY locally convex spaces,Kp(X;Y ) denotes the space of continuous op-
erators fromX into Y that map bounded sets into precompact sets endowed with
the topology of uniform convergence on bounded sets.

Theorem 8. LetE andF be locally convex spaces withF quasi-complete. If
E ′b andF are locally Asplund, thenLw(nE;F ) is locally Asplund for alln∈N.
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Proof. We proceed by induction onn ∈N. By Proposition 6 and Theorem 3, the
result is true forn = 1.

Assume thatLw(n−1E;F ) is locally Asplund. Consider the mappingu ∈
Lw(nE;F ) 7→ T n ∈ L(E;Lw(n−1E;F )) defined byT n(x)(x1, . . . , xn−1) =
u(x1, . . . , xn−1, x). Since

sup
x∈Bn

sup
xi∈Bi,1≤i≤n−1

p(T n(x)(x1, . . . , xn−1)) = sup
xi∈Bi,1≤i≤n

p(u(x1, . . . , xn))

for every continuous seminormp onF, this mapping is continuous and open. Fur-
thermore, Proposition 6 implies thatT n ∈ Kp(E;Lw(n−1E;F )). We may there-
fore identifyLw(nE;F )with a subspace ofKp(E;Lw(n−1E;F )).We can identify
Kp(E;Lw(n−1E;F )) with a subspace ofE ′bεLw(n−1E;F ), whereLw(n−1E;F )
is the completion ofLw(n−1E;F ). Since a locally convex space is locally As-
plund if and only if its completion is locally Asplund, Theorem 3 shows that
E ′bεLw(n−1E;F ) is locally Asplund. Since (by [12]) the class of locally convex
spaces that are locally Asplund is stable under the formation of subspaces, we con-
clude thatLw(nE;F ) is locally Asplund.

Corollary 9. LetE andF be locally convex spaces. IfE ′b andF are locally
Asplund, thenPw(nE;F ) is locally Asplund for alln∈N.

Corollary 9 generalizes [2, Thm. 5(a)] and [29, Cor.1.1] to locally convex spaces
(note thatPw∗(nX ′′) is isometrically isomorphic toPw(nX)).

LetE andF be locally convex spaces. Ann-homogeneous polynomialP from
E intoF is said to benuclearif there exist(λi)∞i=1∈ `1, {φi}∞i=1 equicontinuous in
E ′, and{yi}∞i=1 bounded inF̂ such that

P(x) =
∞∑
i=1

λiφ
n
i (x)yi

for all x ∈E. The space ofn-homogeneous nuclear polynomials fromE intoF is
denoted byPN(nE;F ).

Given a locally convex spaceE and a Banach spaceF, let Pa(nE;F ) denote
the space of all (algebraic) polynomials fromE into F. A locally convex space
E is polynomially bornologicalif, for every locally convex spaceF, everyP ∈
Pa(nE, F ) that is bounded on compact subsets is continuous.

Proposition 10. Let E be a polynomially bornological locally convex space
such thatE ′b is locally Asplund and has the approximation property, and letF be
a Banach space. If eitherPN(nE ′b) or F ′b has the approximation property, then
(Pw(nE;F ), τb)′ = PN(nE ′b;F ′b ).
Proof. By modifying [9, Thm. 3 and Rem. (1)], we see thatPw(nE;F ) is isomor-
phic toPw(nE)εF. SinceE ′b is locallyAsplund, Corollary 9 implies thatPw(nE) is
locally Asplund and, by [7, Prop. 7 and Thm. 3],Pw(nE)′ = PN(nE ′b). Applying
[12, Thm. 5] and the fact thatPN(nE ′b) or F ′b has the approximation property,
we conclude that each element ofPw(nE;F )′ has a representation of the form
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k=1 λiφ

n
k(·)yi, where(φi)∞i=1 is equicontinuous in(E ′b)′, (yi)

∞
i=1 is bounded in

F ′b, and(λi)∞i=1∈ `1. This is the spacePN(nE ′b;F ′b ).
LetE be a Banach space. A complex-valuedn-homogeneous polynomial onE is
said to beintegral if there is a finite Borel regular measureµ on (B ′E, σ(E ′, E))
such that

P(x) =
∫
BE ′
φ(x)n dµ(φ)

for all x ∈E.
The Banach spacè2 is (locally) Asplund. SincePN(2`2) = PI (2`2) =

`2 ⊗̂s,π `2 contains a copy of̀ 1, it follows thatPN(2`2) = PI (2`2) is not lo-
cally Asplund. This shows that Corollary 9 does not extend to spaces of nuclear
or integral homogeneous polynomials.

Alencar [1] and Valdivia [30] show that, ifE is a Banach space such thatE ′′
has the Radon–Nikodým property and the approximation property, then(Pw(nE),
‖ · ‖)′′ and(P(nE ′′), ‖ · ‖) are isomorphic. This was extended to vector-valued
holomorphic functions by Jaramillo and Moraes in [22] (see also [19]). The first
author [7, Prop. 9], in extending Alencar’s result to Fréchet spaces, noted that the
Radon–Nikodým property onE ′′ needed to be replaced by local Asplundness on
E ′b and that strong duals needed to be replaced by inductive duals. We have the
following extension to vector-valued polynomials on Fréchet spaces.

Theorem 11. LetE be a Fréchet space andF a Banach space such thatE ′b is
locally Asplund and(E ′b)

′
b has the approximation property. Then it follows that

((Pw(nE;F ), τb)′i )′i is isomorphic to(P(n((E ′b)′b; (F ′b )′b), τω) for each integern.

Proof. SinceE ′b is locally Asplund, Corollary 9 implies thatPw(nE) is locally
Asplund for each integern. By [13, Prop. 4.2(3)],E ′b has the approximation
property. It now follows from [9, Rem. (2)], [13, Ex. 3.2], and [7, Prop. 2 and
Thm. 3] that(Pw(nE;F ), τb)′ = ((Pw(nE), τb)εF )′ = ((PA(nE), τb)⊗̂εF )′ is
(algebraically) isomorphic toPI (nE ′b)⊗̂πF ′b = PN(nE ′b)⊗̂πF ′b. By the definition
of the inductive dual, this implies that(Pw(nE;F ), τb)′i = PN(nE ′b)⊗̂πF ′b. Since
(E ′b)

′
b has the approximation property, [14, Thm. 1.4] implies that this space is iso-

morphic to
(⊗̂

s,n,π (E
′
b)
′
b

)⊗̂πF ′b. By [8, Thm. 3], the inductive dual of this space
is (P(n(E ′b)′b; (F ′b )′b), τω).

5. Locally Asplund Spaces of Weakly Uniformly
Continuous Holomorphic Functions

LetU be an open subset of a locally convex spaceE, and letF be a Banach space.
We denote byH(U ;F ) the space of all holomorphic functions fromU into F
and byHwu(U, F ) the subspace ofH(U ;F ) of all functions that are weakly uni-
formly continuous on bounded sets. We useH(U) andHwu(U) forH(U ;C) and
Hwu(U ;C). The subset ofH(E, F ) of holomorphic functions that map bounded
sets to bounded sets is denoted byHb(E;F ). Again, we useτb to denote the
topology onHwu(U ;F ) (resp.Hb(E;F )) of uniform convergence on bounded
sets ofU (resp.E).
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In [21, I, pp. 95,108], Grothendieck (see also [11;12]) gives a representation the-
orem for continuous linear functionals onε-products of locally convex spaces. In
order to use this result to study local Asplundness of spaces of holomorphic func-
tions, we require a more quantitative analysis of the neighbourhoods involved. We
therefore reproduce Defant’s proof [12, Thm. 5], keeping track of how the neigh-
bourhoods involved are related to each other.

Theorem 12 [12; 21]. LetE andF be locally convex spaces withE locally As-
plund. If ψ ∈ (EεF )′ then there exist absolutely convex neighbourhoods of0,
V in E andW in F, and

z =
∞∑
i=1

λi x
′
i ⊗ y ′i ∈ [|V ◦|]⊗̂π [|W ◦|],

so that

〈T,ψ〉 =
∞∑
i=1

λi〈T(x ′i ), y ′i 〉

for all T ∈EεF. Furthermore, ifψ ∈ (N(U ◦,W ))◦ thenV may be chosen so that
the inclusion

i : (U ◦, σ(E ′, E)) ↪→ [|V ◦|]
is ν-measurable for some positive Radon measureν on (U ◦, σ(E ′, E)).

Proof. Fix ε > 0. By scalingU andW we may assume that‖ψ‖(N(U◦,W))◦ = 1.
LetH = (U ◦ ×W ◦, σ(E ′, E)× σ(F ′, F )) and letS : M(H )→ (EεF )′ be de-
fined by

µÃ
(
T Ã

∫
H

〈T(x ′), y ′ 〉 dµ(x ′, y ′)
)
.

It follows as in [12, Thm. 5] that(N(U ◦,W ))◦ ⊂ A := S(µ ∈M(H ) : µ(H ) =
1) and there exists aµ∈M(H ) such that

〈T,ψ〉 =
∫
H

〈T(x ′), y ′ 〉 dµ(x ′, y ′)
for all T ∈EεF. We have‖ψ‖(N(U◦,W))◦ ≤ ‖µ‖H . Since‖ψ‖(N(U◦,W))◦ = 1, this
implies

‖ψ‖(N(U◦,W))◦ = ‖µ‖H = 1.

Let p : H → (U ◦, σ(E ′, E)) be defined byp(x ′, y ′)→ x ′, and letν = p(µ).
BecauseE is locally Asplund, we can chooseV ⊆ U so that

i : (U ◦, σ(E ′, E)) ↪→ [|V ◦|]
is ν-measurable. Letf = i B p. SinceV ⊆ U, we havef(x ′, y ′) ⊆ V ◦ for all
(x ′, y ′) ∈ H and hence‖f ‖ ≤ 1. SinceL1(µ, [|V ◦|]) is isometrically isomorphic
toL1(µ)⊗̂π [|V ◦|], we can writef in the form

f =
∞∑
i=1

λiφi ⊗ xi
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with ‖φi‖L1(µ) ≤ 1 and‖xi‖V ◦ ≤ 1 for all i and where
∑∞

i=1|λi | ≤ 1+ ε. Define
R : L1(µ)→ [|W ◦|] by letting

φ Ã
(
y Ã

∫
H

φ(x ′, y ′)〈y, y ′ 〉 dµ(x ′, y ′)
)
.

Then we have

〈T,ψ〉 =
∫
H

〈x ′, T t(y ′)〉 dµ(x ′, y ′)

=
∫
H

〈f(x ′, y ′), T t(y ′)〉 dµ(x ′, y ′)

=
∞∑
i=1

λi

∫
H

φi(x
′, y ′)〈xi, T t(y ′)〉 dµ(x ′, y ′)

=
∞∑
i=1

λi〈T(xi)R(φi)〉.

Since‖R‖ ≤ 1, this implies that

z =
∞∑
i=1

λi xi ⊗ R(φi),

where‖xi‖V ◦ ≤ 1 and‖R(φi)‖W ◦ ≤ 1 for all i and where
∑∞

i=1|λi | ≤ 1+ ε.
Theorem 13. Let E be a holomorphically bornological locally convex space.
ThenHwu(E) is locally Asplund if and only ifE ′b is locally Asplund.

Proof. ClearlyE ′b is locally Asplund wheneverHwu(E) is locally Asplund.
Now suppose thatE ′b is locally Asplund. Then the space(Pw(nE), τb) is a

complemented subspace of(Lw(nE), τb), which in turn is a subspace of
E ′bε(Lw(n−1E), τb). Furthermore, ifB is bounded inE then it follows that
{P ∈ Pw(2E) : ‖P ‖B ≤ 1} is identified with the intersection ofPw(2E) and
N(B◦◦, B◦) in E ′bεE

′
b. Let B̃2 = N(B◦◦, B◦), and inductively defineB̃ n in

E ′bε(E
′
bεE

′
bε . . . εE

′
b) by

B̃ n = N(B◦◦, (B̃ n−1)◦).

Then we can identify{P ∈ Pw(nE) : ‖P ‖B ≤ 1} with the intersection ofPn(nE)
andB̃ n in E ′bε(E

′
bεE

′
bε . . . εE

′
b).

Let K be a compact Hausdorff set and supposeψ ∈ C(K;Hwu(E))
′. By [23,

Cor. 16.6.30] and [9, Thm. 3],

C(K;Hwu(E)) ∼= C(K)εHwu(E) ∼= Hwu(E)εC(K) ∼= Hwu(E; C(K)).
Similarly,

C(K;Pw(nE)) ∼= Pw(nE; C(K)).
We denote this isomorphism and its inverse byf 7→ f s, wheref s(x)(k) =
f(k)(x) andf s(k)(x) = f(x)(k) for x ∈E andk ∈K.
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By using[17, (3.42)], we see that{Pw(nE; C(K))}n is anS-absolute decompo-
sition forHwu(E; C(K)). Thus, for eachf ∈ C(K;Hwu(E)) we have that

〈f,ψ〉 =
∞∑
n=0

〈(
d̂ nf s(0)

n!

)s
, ψ

〉
.

Sinceψ is continuous and linear onC(K;Hwu(E)) and since the decomposition
is S-absolute, there exists a bounded setB in E andC > 0 such that

|〈f,ψ〉| ≤ C
∞∑
n=0

∥∥∥∥( d̂ nf s(0)n!

)s∥∥∥∥
B

for all f ∈ C(K;Hwu(E)). Forn∈N, letψn = ψ |Pw(nE;C(K)). LetA be bounded
in E and letB ⊂ A be such that

(B◦◦, σ(E ′′, E ′)) ↪→ [|A◦◦|]
is measurable for the measure associated withψ on (B◦◦, σ(E ′′, E ′)) (see [12,
Thm. 5]). Letε > 0. It follows from the above and induction that we can choose
our representations in Theorem 12 so that, for everyn∈N, there exist a sequence
of measures{µi,n}∞i=1 onK with ‖µi,n‖K ≤ 1 for all i, a sequence{y ′i,n}∞i=1 ⊂
(E ′bεE

′
bε . . . εE

′
b)
′ with ‖y ′i,n‖(Ãn)◦ ≤ C for all i, and a sequence{λi,n}∞i=1 so that∑∞

i=1|λi,n| ≤ 1+ ε which together satisfy〈(
d̂ nf s(0)

n!

)s
, ψ

〉
=
∞∑
i=1

λi,n

∫
K

y ′i,n B
(
d̂ nf s(0)

n!

)s
dµi,n

for everyf ∈ C(K;Hwu(E)).

Then, for everyf ∈ C(K;Hwu(E)), we have

〈ψ, f 〉 =
∞∑
n=0

〈(
d̂ nf s(0)

n!

)s
, ψ

〉

=
∞∑
n=0

∞∑
i=1

λi,n

∫
K

y ′i,n B (πn(f )) dµi,n,

whereπn is the (continuous) projection ofHwu(E) ontoPw(nE), g→ d̂ ng(0)/n!.
Thus

〈ψ, f 〉 =
∞∑
n=0

∞∑
i=1

λi,n

n2

∫
K

(n2y ′i,n B πn)(f ) dµi,n

with ‖µi,n‖K ≤ 1 for all i and alln. Therefore,
∞∑
n=0

∞∑
i=1

λi,n

n2
=
∞∑
n=0

1

n2

∞∑
i=1

|λi,n| ≤
∞∑
n=0

1

n2
(1+ ε) <∞

and

‖n2y ′i,n B πn(g)‖A =
∥∥∥∥y ′i,n(n2 d̂

ng(0)

n!

)∥∥∥∥
A

<∞

for all g inHwu(E) satisfying
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∞∑
n=0

n2

∥∥∥∥ d̂ ng(0)n!

∥∥∥∥
A

≤ 1.

Since the decomposition isS-absolute, it follows that this is a neighbourhood of 0
inHwu(E) and hence{n2y ′i,n B πn}i,n is equicontinuous. By [12, Cor. 5], this im-
plies thatHwu(E) is locally Asplund.

This result is easily extended to the vector-valued case by usingε-products, and it
can be used to give an alternative proof of [22, Cor. 2.3].

A locally convex spaceE is a k-spaceif continuity on compact subsets ofE
implies continuity onE. If E is a k-space then we can identify{P ∈ P(nE) :
‖P ‖K ≤ 1}, K compact inE, with the intersection ofP(nE) and the setK̃ n :=
N(K◦◦, (K̃ n−1)◦) (K̃2 = N(K◦◦,K◦)) in E ′c εE ′c ε . . . εE ′c. The preceding proof is
easily modified to yield the next theorem.

Theorem 14. Let E be a locally Asplund locally convexk-spaceE. Then
(H(E), τo) is locally Asplund if and only ifE ′c is locally Asplund.

Motivated by Theorem 12, Defant [12] introduced the following notation. Given
locally convex spacesE andF, we define

∑
(E⊗̂πF ) to be the dense subspace

of E⊗̂πF given by{
z∈E⊗̂πF : z =

∞∑
i=1

λi xi ⊗ yi : (λi)
∞
i=1∈ `1,

{xi}∞i=1 and{yi}∞i=1 are equicontinuous

}
.

ForU an open subset of a locally convex spaceE and forF a Banach space, we
denote byτo the topology onH(U ;F )of uniform convergence on compact subsets
of U. A seminormp onH(U ;F ) is τδ-continuous if, for each increasing count-
able open cover{Vn}∞n=1 of U, there is a positive integerno and aC > 0 such that

p(f ) ≤ C‖f ‖Vno for all f ∈H(U ;F ).
Theτδ topology onH(U ;F ) is the topology generated by allτδ-continuous semi-
norms.

LetU be an open subset of a locally convex spaceE. Mujica and Nachbin [24]
show that there is a complete locally convex spaceG(U) and aδU ∈H(U,G(U))
with the following universal property: Given any complete locally convex spaceF

and anyf ∈H(U ;F ), there exists a unique continuous linear mapTf : G(U)→
F such thatTf B δU (x) = f(x) for all x in U. Furthermore, by [24, Prop. 2.3], if
F is a Banach space then

(H(U, F ), τδ) = ind−→
α∈c.s.(G(U))

L(G(U)α;F ).
We finish with the following application of the concept of local Asplundness.

Theorem 15. Let U be a balanced open subset of a Fréchet spaceE, and
let F be a Banach space such thatF ′b has the approximation property. Then
((H(U ;F ), τo)′i )′i = ((H(U ;F ), τo)′b)′i is isomorphic to(H(U ; (F ′b )′b), τδ).



Locally Asplund Spaces of Holomorphic Functions 505

Proof. By [16, Thm. 1.8],(H(U), τo) is a Schwartz space and hence is locally
Asplund. Therefore, [13, Thm. 3] shows that the dual of(H(U ;F ), τo) =
(H(U), τo)εF is (algebraically) isomorphic to

∑
((H(U), τo)′b⊗̂πF ′b ). Applying

[23, Cor. 15.5.4], [16, Thm. 1.8], and [5], we obtain

(H(U ;F ), τo)′i =
∑

((H(U), τo)′i⊗̂πF ′b ) =
∑

((H(U), τo)′b ⊗̂πF ′b ).
By [13, 1.1], thestrong dual of(H(U ;F ), τo) also equals

∑
((H(U), τo)′b⊗̂πF ′b )

with the topology induced by(H(U), τo)′b⊗̂πF ′b. Since the completion of
(H(U), τo)′b is G(U) (see [6, Lemma 8]), the completion of(H(U ;F ), τo)′i is
G(U)⊗̂πF ′b. Hence, by [24, Prop. 2.3],((H(U ;F ), τo)′i )′i = ((H(U ;F ), τo)′b)′i
is isomorphic to(H(U ; (F ′b )′b), τδ).
For a related scalar-valued result, see [18] and [6]; see also [8].
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