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Propagation of Regularity and
Global Hypoellipticity

A. ALEXANDROU HiMmoNAS & GERSON PETRONILHO

1. Introduction

If X = {Xa,..., X,,} is a collection of real_* vector fields on aC> manifold
M, then the formulation of necessary and sufficient conditions for the global (or
local) hypoellipticity of theirsub-LaplacianAx = —(X2+--- + X2) is an open
problem. We recall that an operat®iis said to be globally hypoelliptic if, for any
distributionu in M such thatPu is in C*° (M), we have that: is in C*(M).
An operatorP is said to be locally hypoelliptic if the last condition holds in any
open subset of the manifold. Global and local analytic hypoellipticity are defined
similarly. Also, we recall that a point i is said to be of finite type (or satisfies
the bracket condition) if the Lie algebra generated by the vector fi¢lds .., X,,
spans the tangent space/of at the given point. Otherwise, it is said to be of in-
finite type. By the celebrated theorem of Hormander [HO] (see also Kohn [K],
Oleinik and Radkevic [OR], and Rothschild and Stein [RS]), the finite-type condi-
tion is sufficient for the local hypoellipticity o x and hence for its global hypo-
ellipticity. In the analytic category, Derridj [D] proved that the finite-type condi-
tion is also necessary for hypoellipticity. Baouendi and Goulaouic [BG] proved
that the finite-type condition is not sufficient for the analytic hypoellipticity of
Ax. We shall not discuss here the problem of analytic hypoellipticity, for which
we refer the reader to Bernadi, Bove, and Tartakoff [BBT], Christ [C2], Grigis
and Sjostrand [GS], Hanges and Himonas [HH2], Helffer [Hel], Metivier [M],
Tartakoff [Ta], Treves [Tr], and the references therein.

Our first result here is about semi-local propagation of regularity for an operator
that is the sum of a sub-Laplacian and lower-order terfhs: Ax + Xo + ib(2).

THEOREM 1.  On the torusT *+V+" with variables(z, x) let P be the operator

P=—A =Y X?+Xo+ib(), (1.1)
j=1
whereX; = 9, + Y i1 aik()dy, for j =0,...,n and withaj.(r) andb(r) real-
valued functions irfC > (T"*Y). If u € D'(T"t4™), Py e C®(T" ™), andu €
C>®(U x T™) for some open séf C T"+L, thenu e C®°(T"+1m),
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In general, the operatat in (1.1) is notglobally hypoelliptic, since if al; (1) and
b(¢) are identically equal to zero then any functioe- u(x) will be a solution to
Pu = 0. However, Theorem 1 implies the following result.

CorOLLARY 1. Let P be as in(1.1). If there exists a pointz°, x°) € T+ of
finite type for the vector field,, ar, ..., 9;, and X, Xy, ..., X,,, thenP is glob-
ally hypoelliptic inT"+¥+m,

In fact, since the finite type is an open condition, there exists an opdii set
T+ such that® e U and all points of the séf x T are of finite type. Thus, by
Hormander’s theorem [HO], the operat®ris hypoelliptic inU x T™. Therefore,
if w e D'(T"T™) is such thatPu € C®(T"+t*™), then Theorem 1 implies that
u € C®(T"*+¥m) and henceP is globally hypoelliptic inT "+

In Section 3 we state a necessary and sufficient condition for the global hypoel-
lipticity of the operator1.1) (whenn = 1, Xo = 0, andb = 0) using Diophantine
approximations (see Theorem 5). Here we state a result concerning semi-local
propagation of regularity for our second family of operators.

THEOREM 2. On T"*+! with variables(t, ..., ,, x), let P be the operator de-
fined by
P=—@2+ 482 )— 0, +alts....t,)3)% (1.2)

wherea(ry, ..., t,) is a real-valued function irC>®(T"). If u € D'(T"*Y), Pu €
C®(T"*Y), andu € C*° (U xT?) forsome open sét ¢ T"~L thenu e C®°(T"*1).

Operator (1.2) is globally hypoelliptic when the finite-type condition holds on a
“2-dimensional torus” set. More precisely, we have the following result.

Tueorem 3. If there exists a pointz?, ..., 2 ;) € T"~1 such that all points in
the set{(z), ..., 1)_y} x T are of finite type for the vector field§; = 9, (j =
1...,n—YandX, =9, +a(t,...,t,)0,, then the operatoP defined by1.2)
is globally hypoelliptic ifT"+%.

If n = 2 then the operator (1.2) takes the familiar form
Ax = =35 = [3;, + alt, 12)8:]%. (1.3)

The analytic hypoellipticity of this operator has been considered by several au-
thors (see [C1; HH1; PR]). H is an analytic function, then x is globally analytic
hypoelliptic if the bracket condition holds [CH]. & = a(7;) and is analytic near

the origin, thenAy is not locally analytic hypoelliptic it:(0) = a’(0) = 0 [C1].

If a = a(t1) and is inC*°(T), thenAy is globally hypoelliptic if and only if the
range ofa contains a non-Liouville number [H]. As a consequence of Theorem 3
it follows that, if there exists a poinf € T such that all points in the se®} x T2

are of finite type, then the operatat is globally hypoelliptic inT 3. Moreover, if
every pointinT 2 is of infinite type, then it is globally hypoelliptic if and only if the
average of the functiom is a non-Liouville number (see Theorem 4 in Section 3).
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For more results on local and global hypoellipticity, we refer the reader to [A;
BM; FO; GPY; GW; F; HP1; HP2; KS; T] and the references therein.

2. Proofs of Theorems 1-3

Proof of Theorem 1Letu € D'(T"**") be such that
Pu=f, feC®(T"m), (2.1)

and letu e C®(U x T™) for some open sdi c T"+1,
If, in (2.1), we take the partial Fourier transform with respect toT™, then

[—A, -~ ZgZ+Yo+ib(z)}a(r,s) = ft,& forall Eez™,  (2.2)
j=1
where

m

Y =0, +iY ap®)&. j=0....n (2.3)
k=1

For any fixedt € Z™, we have thafi(z, ) is in C>(T"*Y) because (2.2) is ellip-
tic in t. Therefore, if we multiply (2.2) withi, integrate by parts with respect to
t € T"*1, and use (2.3), then

n n
D ity G N2y + NG O 22,

j=0 j=1

+i[|m/ <a,0ﬁ(r,s>>5dt+/ S aoc i, &) dr
']1‘/1+1 'ﬂ‘n+1k:1
+f b(r)m(r,s)ﬁdr}
'H‘n+l

= f, ©a, &) dr.

Tn+l

Taking the real part in the last relation, we obtain

n n
A 2 ~ 2
D ity G N 2rminy + NG O 22,
j=1

Jj=0
=Re fa, &yaw, &) dt.  (2.4)

Tn+

Using the Cauchy—Schwarz inequality, relation (2.4) gives

D iy G2y < 1FC O zemm IC, E)ll 2. (2.5)

j=0

Furthermore, using the fundamental theorem of calculus yields
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[ICN 3] [PR— c( / lii(s, &) ds +Z||ﬁ,j<-,5)||§z(w)>, (2.6)
1% =0

whereV c V c U andV is a compact set.

From now on we shall use the leti€tto represent a constant, which may change
a finite number of times. Sinaee C*(U x T™) for a givenN € N, there exists
aCy > 0 such that

li(s, &) < Cyle|™2Y Vs eV andVE e Z™ — {0} 2.7)

By (2.5)—(2.7) it then follows that, for a gived € N, there areCy > 0 andC > 0
such that

1 N2 2 pneny < c< / (s, )P ds + Y iy (-, s>||izm,,ﬂ))
\4 j=0
=< C/ |LA¢(S, §)|2ds + C||f(', §)||L2(1rn+l) ||12('7 §)||L2(1r"+1)
1%

< Cy / E172V ds + Cll £ Ol 2eomsy G, E) |2y
1%
< CyIEIT2 + CIFC &) aermny GG, ©) Nl 2y
< CylEl™N +C iu ¢, el? + S—Znﬁ(- £)|2
= LN 282 . ) L2(']1‘n+1) 2 ) LZ(’H‘rH—l) .
If we chooses > 0 such that - ce?/2 > 1/2, then

1 A 2 <C —2N C r 2
E ”I/l(, S)”LZ(TnJrl) = N|§| + 2_82 ”f(a %‘) ||L2('JT”+1)’

which gives

I, ©)ll 2y < CyIEITY VE€Z™ — {0}, (2.8)
since f € C®°(T"**™). Finally, using (2.8) and a standard microlocal analysis
argument (sefH]), we provethatu e C°(T"+m), O

Proof of Theorem 2The proof of Theorem 2 is similar to that of Theorem 1, if
one replaces inequality (2.6) with

P n—1
I, )Gz < C( / f (s, b, &)1 ds dty + Y |l -, s)niz(w)), (2.9)
—r JI

j=1
wherel c [—x, 7]""tandC is a constant independent &f To verify inequal-
ity (2.9), letep (1) = (-, &), s € I, andt € [—m, 7]". Then, by the fundamental
theorem of calculus, we have

n—=1 ;.

7
PO =¢(s.t)+ D> [ Sy (5081 Vi tiga s t) ;.

j=1Y%
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Using the Cauchy—Schwarz inequality gives
n—1 P
lp(0)]% < C(|q§(s, P+ | Iy (520 852 Vs i - tn>|2dy,).
=177

Finally, integrating this inequality far € I andt € [—n, 7]" yields (2.9). O

Proof of Theorem 3For simplicity we may assume tha?, ..., % ) is the ori-
gin in T"~% We will show that there exis8 (0 < § < ), functionsc,(t) e
C®([-8,8]" txT)fore =1,...,M,andJy, ..., Jy € J with |J| > 2 such that

M
3y =Y c(t)Xy, on [-8,8]"* x T, (2.10)
=1

where forJ = (j1, ..., jy) €T = U;"zl{l, ..., n}” we define
Xy =X, [Xj50 [Xjs, -, X5, 111

Also, we defingJ| = p. By the finite-type assumption, {0, t,,, x) € T"** then
there are/y, ..., J,41€ J suchthafX,, ..., X; ., span the tangent spacebft!
at(0,1,, x). Since eithexX; = 0orX; = C,(t)d, forall J € J, whereC,(t) =
d7a(r) for somea € N”, it follows that the listX ;,, ..., X, ., just displayed nec-
essarily must contain the vector fieldlg ..., X,,. Now, using the assumption that
all points in the sef0} x T? are of finite type, for each poinj, € T there exist
an open sev,, containing 0 and an open intervid], containingz, such that, for
some|J| > 2,

3, =C X, CHr)eC™V, x U,).

Since the family of the intervaldJ,, },, <t coverT, by the compactness &f there
exist finitely many intervald/y, ..., Uy coveringT. If we defineV to be the in-
tersection of the corresponding séts..., Vy, then

3 =Cr Xy, C/HHeC®V x Uy, |Jl=2 £=1...,M.

If we chooses > 0 such that {8, §]"~* c V, then the open setg x U, cover
the compact set{s, §]"~1 x T. Now, taking a partition of unityy} subordi-
nate to this covering and letting(t) = ¥, (t)C[l(t), we obtain the desired rela-
tion (2.10).

Applying Hérmander’s theorem [HG], we find that the operatads hypoellip-
ticin U x T2, whereU c [—8, §]*~Lis an open set. Therefore iife D'(T"*1)
is such thatPu € C*®(T"*1), thenu € C*(U x T?). Using Theorem 2, we con-
clude thatt e C*°(T"*+) and henceP is globally hypoelliptic inT "+, O

3. Global Hypoellipticity and Diophantine Approximations

Finding necessary and sufficient conditions for the global hypoellipticity of a sub-
Laplacian is a difficult open problem. One of the main obstacles is the appearance
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of Diophantine phenomena (see e.g. [FO; GPY; GW; H; HP1; HP2]). Such is the
case in our next result for the operator (1.2), when the finite-type condition fails
everywhere.

THEOREM 4. LetXy,..., X, be asin Theorem 3, and I&be as in(1.2). If every
point in T"*+ is of infinite type for the vector fields,, ..., X,, then the operator
P is globally hypoelliptic inT”** if and only if the average of the functianis a
non-Liouville number.

Proof. Suppose that every point Ii"*! is of infinite type for the vector fields
X1, ..., X,. Then we must have, a(r) = 0 for allz € T" and for all j =
1,...,n—1 This means thai(t) = a(t,). Thus, the average of the functiaris
given by

ao

1 T
/ a(tydt = — | a(,)dt,.
n 27

T @ i
If we now change the variables ..., r, andx to the new variables,, ..., s, and

y, wheres; =¢; (j =1,...,n) and

th
y=x —/ a(r)dr + ao(t, + ),

T

then the operatoP becomes
0= _(3s21 4ot a‘fnil) — (3, + aoay)z.

Thus, P is globally hypoelliptic inT "+ if and only if Q is globally hypoelliptic in
T+, 1t follows from [H, Thm. 1.2] thatQ is globally hypoelliptic inT"** if and
only if ag is a non-Liouville number. This completes the proof of the theoreim.

Although Theorems 3 and 4 provide significant information about the global hypo-
ellipticity of the operator (1.2), we still do not understand the full picture. On the
other hand, for the operat¢t.l)withn = 1, Xo = 0, andb = 0, we have the
following complete result using Diophantine approximations.

THEOREM 5. Let P be the differential operator defined by

m 2
P=-032— (a, + Za,-(r)axj) , (3.1)

j=1

where(t, x) € T*™ andg; (j =1,...,m) are real-valued functions i (T).
ThenP is globally hypoelliptic inT**" if and only if, after a possible renaming
of the variablesy, ..., x,, and the corresponding coefficienis ..., a,,, the fol-
lowing Diophantine conditioiDC); is satisfied for somg¢ € {0, 1, ..., m — 1}:
(DO); ay, ..., an—; areR-independent and

@n—j41, ..., a,) € (SA)(ay, ..., apn_j).

We recall the following definitions from [HP2]. A collection of vectars ..., v,
in R is said to be not simultaneously approximable if there exiSt-a 0 and a
K > 0 such that, for any = (51, ..., n,) € Z* and¢ € Z¢ — {0}, we have
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Inj —vj - &l > IE% forsomej =1,...,¢.
When¢ = 1, this is the definition of a non-Liouville vector (see [Her] and [HP1]).
Whend = 1, this is the definition of a collection of real numbers ..., v, that
are not simultaneously approximable (see [HP1]Y. # 1 andd = 1, then this is
the well-known definition of a non-Liouville number.
A vector (f1(¢), ..., fa(r)) of real-valued functions that are linearly indepen-
dent overR is said to belong tdSA) (b, ..., by) if the following conditions hold:

Q) {f1, ..., fa} is contained in the linear span fify, ..., by}; and
(2) thet column vectors of the matrig ;) in the expression

(froooos ' = ) (b, ..., b))’

are not simultaneously approximable vector&ih

REMARK. In[HP2]itwas shown that conditiogfDC); is necessary and sufficient
for the global hypoellipticity of the operator

m

2
0=-92— (Zaj(t)a,q) : (3.2)

j=1

Therefore, with respect to global hypoellipticity, the operators (3.1) and (3.2) are
equivalent.

Proof of Theorem 5.

NecessityLet j, be the number of functions amomng(z), ..., a,,(¢) that are
linearly independent ovék. Thus 0< jo < m. If condition (DC); does not hold
then it implies that, after a possible renaming of the variables. ., x,, and the
corresponding coefficients, ..., a,,, eithera; =0, ..., a,, = 0 or the following
condition holds:

(DC)j, 1< jo<n—1land{gjpss,....an} € (SA)(ay ..., aj).

The condition(DC);, means that, ..., a;, are linearly independent ovég,
{@jo+1, ..., an} is contained in the linear span @, ..., a;,}, and thejo col-
umn vectors of the matrig. ;) in the expression

(@jos1s s am)' = () (ay, ..., a;)’

are simultaneously approximable vector&iti—/o.

Case 1. Assume thata; = --- = a, = 0. Then, for any functioru €
Cc%T,) — C>(T,), we havePu = 0. Therefore,P is not globally hypoellip-
tic in T,

Case 2. Assume that conditionlﬁ\é)j0 holds. Then

jo
a, = Zkiak, p=jo+1...,m,
k=1
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where the vect0r$/\{;°+l, LAY, k= 1., jo, are simultaneously approx-
imable. Thus the operatdt takes the form

Jo m 2
P=—0%— (a, + Zak(t)<8)c,( + Y xiax,,)> . (3.3)
k=1

p=jotl

Since thejp vectors(/\f;”l, WA,k =1, ..., jo, are simultaneously approx-
imable, there exist sequendés} = {(£jg+1¢ - --» Em,¢)} fOr & € Z"~J0 — {0} and
{ne} = {(ve, .-, mjo,e)} for n, € Z/° such that

Nk,e — Z My&pe

p=jo+l

<&l =12, (3.4)

foranyk =1, ..., jo.
We now defina: € D'(T*") — C*°(T*") by

00
u(t,x) = Zei('ll'x/—fl'x”)’
=1

wherex’ = (x1, ..., xj,) andx” = (Xjo41, ..., X»). Then

o0 Jo m
Pu=3 S s (mi= 3 i) el

=1 " k=1 p=jo+1
00 Jjo m 2

+ Z { [ Zak(t)<nk,l _ Z )\flzép,(i)} }ei(’][-x/_fbxn).
=1 k=1 p=jo+l

It follows from this and (3.4) thaPu € C>°(T**"). HenceP is not globally hypo-
elliptic in T**". This completes the proof of the necessity.

Sufficiency We will prove that, if conditionDC); holds forsomg € {0, 1, ...,
m — 1}, then P is globally hypoelliptic. For this, let € D'(T**") be such that

Pu=f, feC®(T¥"). (3.5)
If, in (3.5), we take the partial Fourier transform with respect toT”, then
m 2 .
[—3,2 - (3; +iZa,-(t)§j) }ﬁ(r,g) = f(t,&) forall £eZ™. (3.6)
j=1

For any fixeds, we have thafi(z, ) is in C*°(T) because (3.6) is elliptic in.
Therefore, if we multiply (3.6) witli and integrate by parts with respectte T,
then

M@W@m+AMW£meSW£Ww=Aﬂ%ﬁ@®% (3.7)

where

b(t,&) =Y a;j(n)§. (3.8)
j=1
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First we have the following inequality:

I (-, )17 20r + /T b2(t, )la(t, §)1% dt

< 308l Fagr, + 3 [ 101, + b0, D O P dr. (3.9)
T
In fact,

it )2y + /T b3, Ot O di

= Il T2 + fT lib(t, £)id(t, &) dt
= |l O T2y + f 0442, §) + ib(t, £)id(t, §) — 8,i(t, )| di
T

< 1, )22, +2f 19,1, £) +ib<z,s>ﬁ<r,s)|2dt+2/ 19,0, §)[2dr.
T T

Now, since conditiorfDC); holds for somej € {0, 1, ..., m — 1}, it follows from
[HP2, (2.13)] withe(¢) = u(z, &) that

laC, &)N720r) < C|s|K<||ﬁ,<-,s)||iz(T)+ /T bz(r,s)m(t,snzdt). (3.10)
Using (3.7), (3.9), and (3.10), we have

1, )22, < C|s|’((3||ﬁz(-, E)Zom +3 /T 10,4(, ) + ib(1, £)i(t, 5)|2dt)

= Clg® f f@. &), & dt. (3.11)
T
This and the Cauchy—Schwarz inequality imply that
@G, &)z < CIEI*IfC, &)l 2T (312)

Finally, using a standard microlocal analysis (§d¢), one can provehat P is
globally hypoelliptic. O
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