AUTOMORPHISMS OF COMPACT ABELIAN GROUPS AS MODELS FOR MEASURE-PRESERVING INVERTIBLE TRANSFORMATIONS

Ciprian Foias

The aim of the present note is to prove the following result.

THEOREM. Let (S, Σ, m) be a finite measure space, and T a measure-preserving invertible transformation on S. There exist a compact abelian group G, an automorphism \mathcal{F} of G, and a Borel measure $\mu \geq 0$ (on G), preserved by \mathcal{F} , such that T is conjugate to \mathcal{F} (in the sense of [3, pp. 42-45]).

Moreover, if (S, Σ, m) is separable, then G can be chosen to be metrizable.

Proof. Denote by U the unitary operator induced by T in L(S, Σ , m) = L². Let $\Gamma_{\rm T}$ be the group of (the classes of) functions f of L² such that |f| = 1, and let Γ be a subgroup of $\Gamma_{\rm T}$ satisfying the two conditions

- (i) Γ spans L^2 ,
- (ii) Γ is invariant under U and U^{-1} .

Evidently, if (S, Σ, m) is separable, Γ may be chosen to be countable. We shall take G to be the dual group of the abelian discrete group Γ , so that G is a compact abelian group which, in case (S, Σ, m) is separable, is also metrizable. Since, by (ii), U is an automorphism of Γ , there exists an automorphism $\mathscr T$ of G such that

(1)
$$\langle \mathscr{T} x, \gamma \rangle = \langle x, U\gamma \rangle \quad (x \in G, \gamma \in \Gamma).$$

It remains to define the measure μ on G and the conjugation operation between ${\mathscr T}$ and T. To this end, we define the function

(2)
$$\phi(\gamma) = \int_{S} \gamma \, dm \qquad (\gamma \in \Gamma)$$

on Γ . Obviously, for every system $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of complex numbers and for $\{\gamma_1, \gamma_2, \cdots, \gamma_n\} \subset \Gamma$, we have the relations

(3)
$$\sum_{k,j=1}^{n} \alpha_{k} \overline{\alpha}_{j} \phi(\gamma_{k} \gamma_{j}^{-1}) = \sum_{k,j=1}^{n} \alpha_{k} \overline{\alpha}_{j} \int_{S} \gamma_{k} \overline{\gamma}_{j} dm = \int_{S} \left| \sum_{j=1}^{n} \alpha_{j} \gamma_{j} \right|^{2} dm,$$

so that ϕ is positive definite. It is evidently continuous on Γ , since Γ is discrete. By Bochner's theorem, there exists a positive (finite) Borel measure μ on G such that

(4)
$$\phi(\gamma) = \int_{G} \langle x, \gamma \rangle d\mu(x) \quad (\gamma \in \Gamma).$$

But by (1), (2), and (3),

Received January 28, 1966.

$$\phi(\gamma) = \phi(U\gamma) = \int_{G} \langle x, U\gamma \rangle d\mu(x) = \int_{G} \langle \mathcal{T}x, \gamma \rangle d\mu(x) = \int_{G} \langle x, \gamma \rangle d\nu(x),$$

where ν is the measure defined by $\nu(A) = \mu(\mathscr{T}^{-1}A)$, A being a Borel set contained in G. The uniqueness of the measure in Bochner's theorem implies that

$$\mu(\mathbf{A}) = \mu(\mathcal{T}^{-1}\mathbf{A})$$

for every Borel set A in G, so that μ is invariant under \mathscr{F} .

To define the conjugation operation, we put

$$V\left(\sum_{k=1}^{n}\alpha_{k}\gamma_{k}\right)=\sum_{k=1}^{n}\alpha_{k}\left\langle \cdot,\gamma_{k}\right\rangle .$$

Then, by virtue of (3) and (4),

$$\int_{S} \left| \sum_{k=1}^{n} \alpha_{k} \gamma_{k} \right|^{2} dm = \sum_{k,j=1}^{n} \alpha_{k} \overline{\alpha}_{j} \phi(\gamma_{k} \gamma_{j}^{-1}) = \int_{G} \left| \sum_{k=1}^{n} \alpha_{k} \langle x, \gamma_{k} \rangle \right|^{2} d\mu(x)$$

$$= \int_{G} \left| V \left(\sum_{k=1}^{n} \alpha_{k} \gamma_{k} \right) \right|^{2} d\mu;$$

hence V is an isometry which, on account of (i), can be extended uniquely to an isometry of L^2 in $L^2(G, \mu)$. Using the fact that the characters on G span C(G), we deduce that V is a map onto $L^2(G, \mu)$, that is, V is a unitary operator of L^2 on $L^2(G, \mu)$. Since $V^{-1}\left\langle \, \cdot \, , \, \gamma \, \right\rangle = \gamma$ and

$$\langle \mathcal{I}, \gamma \rangle = \langle \cdot, U\gamma \rangle = VUV^{-1} \langle \cdot, \gamma \rangle \quad (\gamma \in \Gamma),$$

it follows from linearity that $U = V \mathcal{U} V^{-1}$, where \mathcal{U} is the unitary operator induced by \mathcal{T} in $L^2(G, \mu)$.

It remains to show that

(5)
$$VL^{\infty}(S, \Sigma, m) = L^{\infty}(G, \mu)$$

and that V is multiplicative on $L^{\infty}(S, \Sigma, m)$.

Denote by \mathcal{A}_{S} , respectively, \mathcal{A}_{G} , the space of polynomials

$$\sum_{k=1}^{n} \alpha_{k} \gamma_{k}, \quad \text{respectively, } \sum_{k=1}^{n} \alpha_{k} \langle \cdot, \gamma_{k} \rangle.$$

Evidently \mathscr{A}_S (respectively, \mathscr{A}_G) is an algebra containing together with each polynomial p also its complex conjugate \bar{p} . The operator V is multiplicative on \mathscr{A}_S , since

$$V(\gamma_1 \gamma_2) = \langle \cdot, \gamma_1 \gamma_2 \rangle = \langle \cdot, \gamma_1 \rangle \langle \cdot, \gamma_2 \rangle = V\gamma_1 \cdot V\gamma_2;$$

moreover, V is real, that is, $V\bar{p} = \overline{Vp}$ ($p \in \mathcal{A}_{S}$). Thus, for each $p \in \mathcal{A}_{S}$,

$$\begin{split} \int_{G} |Vp|^{2n} d\mu &= \int_{G} (Vp)^{n} \overline{(Vp)^{n}} d\mu = \int_{G} Vp^{n} \cdot V\bar{p}^{n} d\mu \\ &= \int_{G} V|p|^{2n} d\mu = \int_{S} |p|^{2n} dm \leq m(S) \|p\|_{\infty}^{2n} , \end{split}$$

where

$$\|\mathbf{p}\|_{\infty} = \mathbf{m} - \mathbf{ess.} \, \mathbf{max} \, |\mathbf{p}|$$
.

Consequently

$$\bigg(\int_G |Vp|^{2n} \, d\mu \bigg)^{1/2n} \leq m(S)^{1/2n} \|p\|_{\infty};$$

letting n tend to ∞ , we deduce that

$$\|\mathbf{V}\mathbf{p}\|_{\infty} = \mu - \text{ess. max } \|\mathbf{V}\mathbf{p}\| \leq \|\mathbf{p}\|_{\infty}.$$

The same argument applied to V^{-1} shows that $\|V^{-1}q\|_{\infty} \leq \|q\|_{\infty}$ for every $q \in \mathscr{A}_{G}$, so that finally, for $p \in \mathscr{A}_{S}$,

$$\|\mathbf{v}\mathbf{p}\|_{\infty} = \|\mathbf{p}\|_{\infty}.$$

It is evident from the definition that also

$$V_{\mathcal{A}_{S}} = \mathcal{A}_{G}.$$

From (6) and (7) it follows that if \mathcal{A}_S denotes the closure of \mathcal{A}_S in L^∞ , then

$$V_{\mathscr{A}_{S}} = C(G),$$

V remains multiplicative on $\widetilde{\mathscr{A}}_S$, and (6) is valid for every $f \in \widetilde{\mathscr{A}}_S$. From the real algebraic isometry V and from (8) we deduce that if ϕ is a real continuous function defined on the complex plane, then $\phi \circ f = \phi(f) \in \widetilde{\mathscr{A}}_S$ whenever $f \in \widetilde{\mathscr{A}}_S$. Let now $f \in L^\infty(S, \Sigma, m) = L^\infty$. There exists a sequence $\{p_n\} \subset \mathscr{A}_S$ such that $p_n \to f$ in L^2 and also m-everywhere in S. Take $\infty > b > a > \|f\|_\infty$, and choose a continuous function ϕ defined on the complex plane, with $0 \le \phi \le a$ and

$$\phi(\lambda) = \lambda$$
 if $|\lambda| \le a$, $\phi(\lambda) = 0$ if $|\lambda| \ge b$.

Then the functions $f_n = \phi \circ p_n$ also converge (in L^2) to f, and

$$f_n \in \mathcal{A}_S, \quad \|f_n\|_{\infty} \leq a.$$

Since $Vf_n \to Vf$ in $L^2(G, \mu)$, we may suppose (taking a subsequence, if necessary) that $Vf_n \to Vf$ μ -almost everywhere, so that by an application of (6) we obtain the inequality $\|Vf\|_{\infty} \leq a$, from which it follows easily that

(9)
$$\|\mathbf{V}\mathbf{f}\|_{\infty} \leq \|\mathbf{f}\|_{\infty} \quad (\mathbf{f} \in L^{\infty}).$$

Let now $p \in \mathscr{A}_S$, $g \in L^2$, and choose $\{p_n\} \subset \mathscr{A}_S$ so that $p_n \to g$ (in L^2). By (6) (or by (9)) we have (in $L^2(G, \mu)$) the equalities

$$V(pg) = \lim V(pp_n) = \lim Vp \cdot Vp_n = Vp \cdot \lim Vp_n = Vp \cdot Vg$$
,

that is,

(10)
$$V(pg) = Vp \cdot Vg \quad (p \in \mathscr{A}_S, g \in L^2).$$

Letting $g = f \in L^{\infty}$ in (10), and using (9) and the fact that \mathcal{A}_S is dense in L^2 , we deduce that

$$V(gf) = Vg \cdot Vf$$

for every $g \in L^2$. In this manner and in view of (9) and (11), we conclude that V maps L^{∞} into $L^{\infty}(G, \mu)$ and is multiplicative on L^{∞} . Using (8) and replacing V with V^{-1} , we see further that V actually maps L^{∞} onto $L^{\infty}(G, \mu)$.

This completes the proof.

Remarks. 1. One can always take $\Gamma = \Gamma_T$. In this case, the automorphism \mathscr{T} is a conjugate invariant; this means that if T_1 is conjugate with T_2 , and G_1 , \mathscr{T}_1 , μ_1 and G_2 , \mathscr{T}_2 , μ_2 are constructed as in the theorem, with $\Gamma = \Gamma_{T_1}$ (respectively, $\Gamma = \Gamma_{T_2}$), then there exists a homeomorphic isomorphism h of G_1 on G_2 such that h $\mathscr{T}_1 = \mathscr{T}_2$ h.

- 2. Subgroups (of generalized proper functions) of Γ_T were already considered long ago, by P. R. Halmos and J. von Neumann [4]. A detailed study of these groups was carried out by L. M. Abramov [1].
- 3. The last part of the proof, concerning (5) and the multiplicativity of V, is similar to one given in [2].

REFERENCES

- 1. L. M. Abramov, Metric automorphisms with quasi-discrete spectrum (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 513-530.
- 2. N. Dinculeanu and C. Foiaș, A universal model for ergodic transformations on separable measure spaces, Michigan Math. J. 13 (1966), 109-117.
- 3. P. R. Halmos, Lectures on ergodic theory, Chelsea, New York, 1956.
- 4. P. R. Halmos and J. von Neumann, Operator methods in classical mechanics, II, Ann. of Math. (2) 43 (1942), 332-350.

Institute of Mathematics of the Academy of the Socialist Republic of Rumania, Bucharest