FUNCTIONS OF BOUNDED CHARACTERISTIC WITH PRESCRIBED
AMBIGUOUS POINTS

F. Bagemihl and W. Seidel

Let f(z) be a complex-valued uniform function defined for |z| < 1. We shall call
a point ¢ an ambiguous point for f(z), if |¢|= 1 and there exist two Jordan arcs J,
and J,, terminating in ¢ and lying, except for ¢, in |z| < 1, such that

lim f(z) and lim £(z)
z > z >
zed; zeld,

both exist and are unequal.

It has recently been shown [1, p. 382] that even if no further conditions are im-
posed on f(z), there are at most enumerably many ambiguous points for f(z), and it
is well-known [2, p. 66] that if f(z) is regular and bounded in |z|< 1, there are no
ambiguous points for f(z). On the other hand, corresponding to every enumerable
set E on |z| = 1 there exist [1, p. 381] regular functions in Izl < 1 for which every
point of E is an ambiguous point, and it is thus natural to ask whether such regular
functions can, in some sense, be “nearly” bounded. Now, regular functions of
bounded characteristic possess [2, pp. 185, 208, 209] some of the important bound-
ary properties of bounded regular functions. The following result shows, however,
that the two classes of functions are quite different in respect to the existence of
ambiguous points.

THEOREM. Let

E = {Cn Car "% ns }

be an enumevable set of points on |z|= 1. Then there exists a function £(z), regu-
lar and of bounded chavactevistic in |z| < 1, for which every element of E is an
ambiguous point.

Proof. A function g(z)/h(z), where g(z) and h(z) are bounded and regular in
|zl <1 and h(z) # 0 in |z]| < 1, is a regular function of bounded characteristic in
|z| <1 [2, p. 189]; we shall obtain an f(z) which is of this form and satisfies the
conclusion of the theorem. To this end, it is obviously sufficient to construct g(z)
and h(z) so that they satisfy the following conditions:

(I) There exists a constant b > 0 such that, in |z|< 1,
lg(z)] > b - |z])?

and g(z)>0 as z tends to an arbitvary point of E.
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(II) For every ¢, € E there exist two civcular arcs C, and D, in |z|
terminating in €y, and two posztwe constants cy and dy, such that, for =z
ciently close to ¢,

1) |h(z)| < exp[cn/(|z] - 1)]
on C,, whereas on D,

) |h(z)| > dy.

For then, for every ¢, € E,

lim f(z) = and limf(z)=0

z>8 z> 8,
zeCph z €Dy,

To obtain g(z), we modify an argument appearing in 3, pp. 294-295]; w
it in some detail, since'[3] is rather inaccessible. For this part of our con
it is not necessary to assume that E is enumerable, but merely that it is o
zero.

Let E,b D E,;DE, DD EyD -.-D E, where E,; is the interval 0 < 6 -
for n=1, 2, 3, -+, E, is open and meas E;, < n"%, Denote by XE_ (8) the c
istic function of E,, and set

o0

GO)= = Xg ().

Then it is clear that, for every 6,€ E, G(6,) = +0 and G(6)>+o as 9 >6,.

over, G(6) = + only if 6 € ﬂ :=0 E., and this set is of measure 0. Since
00

Zl n-meas(E,_1 - E,) <+, G(9) is integrable. Let us form
n= .

. oram
iy _ lf 1-r2 .
u(r el?) T , G(9,1+r2 37 cos(p - 0) do (OSI‘<1,0S¢<4

Since G(6) > 1 (0 < 6 < 27), the function u(z) (z = rei®) is harmonic and v
in |z| < 1.”We have

27
u(rei¢)_<_-21—"-f G(e)%%do <p/-1),
0

where g is a positive constant. If §, € E, 6, is a point of continuity (in the
sense) of G(8), and therefore u(z)> +» as z->e'%. A harmonic conjugate
in |z| <1 is

r A
oy 1 \ 2r sin(¢p - 9)
v(rei®) = ﬂfo G(9’1+ r2 - 2r cos(¢ - 9)d6’
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and from this representation of v(z) it readily follows that
|vrei®)| <y/Q - r)?
where y is a positive constant. The function g(z) = [u(z) + iv(z)]~! now obviously

satisfies (I). :

To obtain h(z), we first map |z| < 1, by means of a linear transformation
w = L(z), onto $w > 0, in such a manner that some point which, together with its
negative, lies in the complement of E, is carried into the point w =«., The set E
is thereby transformed into an enumerable set of real numbers S = {w,, Wy, ***1Wn,

...}

By induction on n, we shall set up a one-to-one correspondence between S and a
set of nonzero rational numbers T = {r,, ry, ***, Iy, *-°} such that, for every n, r,
corresponds to wy, the correspondence preserves the natural order of the elements
of S and the elements of T, respectively, and, for every pair of distinct natural
numbers j and k,

(3) ]wj-wk|‘> Irj —rkl.
We choose r, tobe 1. Let n > 1, and suppose that we have already defined the dis-

tinct nonzero rational numbers ry, r,, ---, r, _; so that they are in the same natural
order as the corresponding numbers

(4) Wy, Wp, % Wp_
and so that (3) holds for j <k < n - 1. Now precisely one of the following holds:
(a) w,>w, k=1,-,n-1); b) wy, <wy k=1, -, n-1) (c) neither (a) nor (b).
If (a) or (b) holds, we choose r, to be a nonzero rational number satisfying

0<r, - max(ry, -, r 1) < w, - max(wy, *-+, w,_1)
or

0 < min(ry, *++, r,_y) - ry, < min{w;, =+, w,_;) -~ w,,
respectively. If (c) holds, and if w_, denotes the largest of the numbers in (4) that
are less than w_, and w), denotes the smallest of the numbers in (4) that are greater
than w , we choose r, to be a nonzero rational number satisfying

0<r,-r,<wp,-w, and 0O0<rpy-r,<wpy- w,.

This completes the induction.

For every natural number n, let r, = p,/q,, where p, and q, are integers,
a, > 0, and (p,, q,) = 1; set

(5) A, = 1/n2q%;

and form the function

H(w) iy o )
W) = ex -1 .
p( n=1Ww - Wy
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The series in parentheses is obviously absolutely and uniformly convergen
half-plane Jw > 6 > 0, so that H(w) is regular for Sw > 0. Furthermore

every n, 3 - !

>0 in 3w > 0, and hence
n

(7) |HwW)| < 1

in this half-plane.

Now fix a natural number k. Then
(8) |H(wy + iv)| < exp (-Ay/v) (v > 0).
Consider the circle Q; given by the equation
w=w,+eTsint (0<7<7W),
lying in the upper half-plane and tangent to the real axis at w;. We shall ¢

H(w) is bounded away from 0 on Q.

Still keeping k fixed, we divide the natural numbers other than k into f
N, consists of those n for which Iwn - wk| < 3/2 and qn < qx (N, is ev:
f1mte set); N, consists of those n # k for which ]wn wkl <V3/2 and qn
N, consists of those n for which |wn - wk| > V3/2. If we set

o= T A % ) G=1,2,3),
n

J n€N; w-w

then, for we Qy,

[~ o]
\ i

On Q, the function Z; remains bounded, because it consists of a finite nu:
terms each of which has this property. If ne N,, we Q, and 0y, denote:
tance between w, and Qy, we have, in view of (3),

2 2 2 2
W= Wn|>0p k> 5wk - wp P> 5t -rp)2> >
| n|> 0n, =3 nt =3 n' = 3qfa% = 3q%
so that, because of (5),
An < 3

jw-w,| = 2n2’
which implies the boundedness of Z,. Finally, on Q,, we obviously have

2 o0
T, < —— Z A,.
? V —1n=ln

Thus the expression in (9) is bounded on Qj, which means, by (6), that the:
constant di > 0 for which

(10) [Hw)| > d.  (we Q).
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Now define the regular function
h(z) = HL@) (|z]| < 1).
Then, because of (6) and (7), h(z) # 0 and |h(z)| <1 in |z|< 1. Let C, and D,

denote the pre-images, under w = L(z), of the half-line w = w,, + iv (v > 0) and the
circle Q,, respectively. According to (10), we have (2) on D,. Since

tm s e aa m Z2fly
z > n z>ln 1- lzl
zeCp z€Cp

(1) follows from (8).

This completes the proof of the theorem.,
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