ON POWER SERIES DIVERGING EVERYWHERE ON THE
CIRCLE OF CONVERGENCE

A. Dvoretzky and P. Erdos

1. Lusin [4] (see also Dienes [1, pp. 463, 464] or Landau [3, §15]) constructed a
power series

(1) )5 anz"
n=0

which satisfies the condition

) lim ap=0
nyco

and diverges at every point of the unit circle C. Recently, Herzog [2] gave an ex-
ample of such a series whose coefficients are real, nonnegative, and satisfy not
only (2), but even the stronger condition a, = O(n~Y/3). The theorem which we are
about to state and prove implies the existence of a series (1) which diverges every-
where on C and satisfies, e.g., the condition 0 < a, < (nlogn)-'/2 (n= 3, 4, --+).

THEOREM 1. Let { bn} be a sequence of complex numbers satisfying the con-
ditions

(3) |ba| > [bat1] @=0,1,-)
and
@) E | by 2 = .

n=0

Then theve exists a power sevies (1), with
(5) a, equal to either byor 0 (n=0,1, --),

which diverges everywhere on C.
The monotonicity condition (3) cannot be engrely dispensed with, since every

o0
t
power series ): cnhz ™ with ¢, >0 and E t,/th+1 < converges on a set
1 1
which is everywhere dense on C. Condition (4) probably cannot be relaxed at all;

indeed, it has been conjectured that every power series Ebn z™ satisfying (4)

converges almost everywhere on C. \
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2. We proceed to the simple constructive proof of Theorem 1. Obviousl:
assume that

(6) am by = 0.

LEMMA. Let the sequence {b,} (=0, 1, :--) satisfy conditions (3), (4
(6). Then there exists an incveasing sequence of integers k; (1 =1, 2, ++-) 2
satisfies the condition

1

(7) . ———— I 00,

‘.“: Kiyy - Kk

i=]1
and for which

kiyy -1
(8) 1< 2 b,|<2 (G=1,2,- ).
n=k

Indeed, let k, be the smallest positive integer v for which ]bul <1 an
ing determined k,, ---, k;, let k;,; > k; be determined by the inequalities

kit - 2 kil - 1
2 Ibl<y X > 1
n=k; n=ki

0 il
(such an integer k;,; exists, since (4) implies that E |by| = . Then (8,
0

holds, and we have, for i > 1,

kit - 1 kit -1
2
2 Ibn|2§ Ibkil E Ibn|<2|bki|<2ki—ki_1;
n=k; n=Kj

therefore (7) follows from (4).

Remark. Under the hypothesis (3), condition (4) is not only sufficient bu
necessary for the existence of a sequence {ki} satisfying the conclusion of
lemma. Indeed, if {k1} is any such sequence, then

kipy - 1 kiyp - 1
1
2
2ol gl 2 Ibal> g, 1> e,
n:ki n=ki

and therefore (7) implies (4). (Only the first of the inequalities (8) was usec

We are now ready to construct the series (1) of the theorem. For i=1,
let z; be the point on C whose argument is
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i
183 _ 1
244 Kjp - K

Because of (6) and (7), the sequence {z;} (i=1, 2, ---) is everywhere dense on C,
and therefore each point on C belongs to infinitely many of the arcs

A;: |z| =1, arg z; <arg z < arg zj].

Consider now the numbers byz!' (ki <n <kjsy), and let ng) (v=0,1,2)

denote the sum 2 |bn|, extended over those indices n in the range k; < n <kj;)
for which |argb,zl’ - 2v 7/3| < n/3. Clearly
kitp - 1
of) vaff @ > X Iby;

n=ki

hence, for at least one vV = v;, we obtain from (8) the inequality 1/3 < Ql( Vi) < 2.
We now define the coefficients a, as follows: for n <k,, a, = 0; for k; < n <k;;j,
we choose

an=by, if |arg bpzi - 2v;m/3| < 7/3,

an=0 otherwise.

We claim that the series (1) thus constructed diverges everywhere on C. Indeed:

kiyy -1 kiyp -1
V-
2 azf>3 3 |anzd| _10d Y S 1.
n=k; n=k;

Moreover, writing
kit - 1

P;(z) = z 7 E a,z"

n=ki

we have, for the derivative of this polynomial in |z l <1,
ki+1 - ki - 1
Pie)l< 3 mlagm| |20

m=0
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Kiyp -1

<l -ki) 3 [ba| <26y - k)

n =ki

Hence the variation of P; (z) on the arc A; is smaller than

1
2(kj4y - k)| 2z - 24 < 2044 - ky)zz K" 1/12.
Since |P;(z;)| > 1/6 we have therefore, for every z on Aj,
k

it1 - 1

E' a z®
n

n=ki

= |P;@)| > 1/6 - 1/12 = 1/12.

Since every point on C belongs to infinitely many arcs 4;, it is clear that
(1) cannot converge anywhere on C. This completes the proof.
3. Our theorem admits some easy extensions. We mention the followin

Under the assumptions of the theorem theve exists a sevies (1) which s
(5) and for which

N
. n
lim sup a,z =
N >
n=0
everywhere on C.

Indeed, it is clear from the lemma that there also exists an increasing
of integers k;which satisfies (7) and for which

kipy -1
B; = 2 Ibnl >
n=ki
as i >, Operating with such a sequence {k;}, we get |P;(z)| > B;/12
on Aj, and the result follows.

It should also be remarked that though we can not dispense altogether
condition of monotonicity, we can easily relax it in various ways. For inst
sufficient to assume that there exist disjoint blocks (Ni» N;,; 1) such that

monotone within each block N; <n <N;,,, the sum 2 |by| over each bl
bounded away from zero, and the series 2 |on 2, extended over all bloc

vergent. The monotonicity within the block can also be replaced by certaii
requirements.

The following is another obvious consequence of Theorem 1: Let {a,}

{8,} (=0,1, :..) be two sequences of complex numbers such that 2 le
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is a monotone divevgent sevies. Then theve exists a power sevies (1) with a, equal
either to a, orto B, (n=0, 1, ---), which diverges evevywhere on C.

-A
All the results above extend also to Dirichlet series E ae nS satisfying the

o0
restriction A, -, = O(1), as well as to Laplace integrals f a(s)eSt ¢(t)dt

0
satisfying the condition that, for some H and all T,

T+H
J p(t)dt > 1.
T

4. The following result is somewhat connected with the main problem of this
paper.
THEOREM 2. If E |bn] = «o, then theve exists a power sevies (1) which satis—

fies (5) and which diverges everywhere on a vesidual set on C.

The condition 2 |bn| = « is clearly necessary in order that (1) fail to converge

uniformly and absolutely. The proof of the present result is even simpler than that
of Theorem 1; in particular, the lemma is not needed. We choose a sequence {z;}
which is dense on C, and we write

{yi} = {Zn Zyy Zyy Zyy Zzy Zy, }

Then, having determined the sequence {k;} according to (8), we choose the coeffi-
cients a, so that |P;(y;)| > 1/6. Since then |P;(z)| > 1/6 on an arc of C through
yi, the result follows. A slight modification yields a series whose partial sums are
unbounded on a residual set on C.
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