
Michigan Math. J. 47 (2000)

On Spherically Convex Univalent Functions

D. Me jía & Ch. Pommerenk e

1. Introduction

LetD be the unit disk inC, and letT = ∂D. A domainG on the Riemann sphere
Ĉ is calledspherically convexif, for any pairw1, w2 ∈G, the smaller arc of the
greatest circle (spherical geodesic) betweenw1 andw2 also lies inG.

An analytic univalent functiong in D is calledconvexif g(D) is a convex do-
main inC. A meromorphic univalent functionf in D is calledspherically convex
(s-convex) iff(D) is a spherically convex domain in̂C.

Let Rot(Ĉ) denote the group of rotations of the Riemann sphereĈ that consists
of the Möbius transformations

ϕ(z) = eiϑ(z− a)/(1+ āz), a ∈C, ϑ ∈R, (1.1)

together withϕ(z) = eiϑ/z. Let Möb(D) denote the group of Möbius transforma-
tions ofD onto itself. Iff is s-convex, then

f ∗ = ϕ B f B ψ, ϕ ∈Rot(Ĉ), ψ ∈Möb(D) (1.2)

is again s-convex and we havef ∗(D) = ϕ(f(D)).
The spherical and Schwarzian derivatives

f # = |f ′|
1+ |f |2 , Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

(1.3)

are unchanged if we replacef by ϕ B f, with ϕ ∈Rot(Ĉ). We introduce

σ(f ) = max
z∈D

(1− |z|2)f #(z). (1.4)

It is clear thatσ(ϕ B f B ψ) = σ(f ) for ϕ ∈Rot(Ĉ) andψ ∈Möb(D). The quan-
tity σ(f ) measures the thickness off(D) and corresponds to the Bloch norm in
the Euclidean case (see e.g. [ACP] and [BMY]).

Replacingf by ϕ B f with a = f(0) and suitableϑ in (1.1), we mayoften as-
sume that our s-convex functionf is normalized:

f(z) = αz+ a2z
2 + a3z

3+ · · · , 0< α ≤ 1; (1.5)
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see Theorem 3. We will show in Theorem 4 that, replacingf by ϕ B f B ψ, we
can attain thatf is centrally normalized:

f(z) = αz+ a3z
3+ a4z

4 + · · · , α = σ(f ). (1.6)

If f is s-convex thenf(D) contains no pair(w,−1/w̄) of antipodal points.
Univalent functions with this property were studied, for example, by Kühnau [K]
and Jenkins [J, p. 125]. Under the normalization (1.5), Kühnau proved thatα ≤ 1
and|a2| ≤ 0.58. . . .

Spherically convex functions have been studied, for example, by Wirths, Küh-
nau, Minda, Ma, and Mejía. Letf be s-convex and normalized as in (1.5). We
write β = √1− α2. Then

α|z|
1+ β|z| ≤ |f(z)| ≤

α|z|
1− β|z| for z∈D, (1.7)

α

(1+ β|z|)2 ≤ |f
′(z)| for z∈D. (1.8)

(see [K, p. 16; MMM, p. 53]). These estimates are sharp, as shown by the example

f(z) = αz

1− βz = αz+ αβz
2 + αβ2z3+ · · · , β =

√
1− α2. (1.9)

This function mapsD conformally onto a hemisphere.
Wirths [W1] proved the remarkable estimate

3

∣∣∣∣a3

α
− a2

2

α2

∣∣∣∣+ |a2|2
α2
+ α2 ≤ 1, (1.10)

which implies|a2| ≤ αβ ≤ 1
2 and|a3| ≤ αβ2 = α(1− α2) ≤ 2

√
3

9 ; see [MM1,
p. 158]. A more geometric proof of|a2| ≤ αβ was given in [M2, p. 104].

We shall give a short proof of the Wirths inequality and derive the sharp bound

(1− |z|2)2|Sf (z)| ≤ 2(1− σ(f )2) (z∈D), (1.11)

whereσ(f ) is defined by (1.4). Using results about the Nehari class [CO, p. 290],
we obtain the sharp bounds of|f(z)| for centrally normalized s-convex functions
that give another proof of the recent result of Ma and Minda (personal communi-
cation) thatf(D) ⊂ D.

The hyperbolically convex (h-convex) functions mapD onto a h-convex sub-
domain ofD. They were studied in [MM2; MP1; MP2]. If 0 lies in the image
domain, then

spherical convexity⇒ (classical) convexity⇒ hyperbolic convexity.

This indicates that the present case of s-convexity is easier to handle than h-
convexity. The methods and results are rather different.

We want to thank David Minda and Mario Bonk very much for our discussions
and messages, which helped us a great deal in understanding spherically convex
functions. We are also grateful to William Ma, Martin Chuaqui, and the referee
for several helpful suggestions.
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2. Reduction to Euclidean Convexity

We shall further develop an idea of Ma, Mejía, and Minda [MMM] on how to
reduce the study of s-convex functions to that of (classically) convex functions.

Lemma. If the domainG is s-convex and if0∈G, thenG is convex.

Proof. Let a, b ∈ G\{0} and letC be the smaller arc of the greatest circle be-
tweena andb. Then the line segments [0, a] and [0, b] are arcs of a greatest circle
(through 0 and∞). Thus [0, a], [0, b] andC form a spherical triangle. Its closed
interior lies inG becauseG is s-convex, and its angle sum is greater thanπ. The
Euclidean triangle formed by [0, a], [0, b], and [a, b] has angle sumπ. Hence,
[a, b] lies in the closed interior of the spherical triangle and thus inG.

Theorem 1. Letf be univalent inD and letf(0) = 0. Thenf is s-convex if and
only if the functions

gw(z) = f(z)

1+ w̄f(z) (2.1)

are convex for everyw ∈ f(D).
The fact thatgw is convex was used in [MMM] for special values ofw. All our
results will be based on Theorem 1.

Proof. (a) Letf be s-convex andw ∈ f(D). Then

fw = (f − w)/(1+ w̄f ) (2.2)

is s-convex; see (1.1).Furthermore, 0∈ fw(D) so thatfw(D) is convex by the
lemma. Hencegw = (fw+w)/(1+|w|2) is convex inD forw ∈ f(D) and hence,
by normality, forw ∈ f(D).

(b) Let gw be convex for allw ∈ f(D). Thenfw = (1+ |w|2)gw − w is also
convex; see (2.2). Ifw ′ ∈ f(D), then 0 andw∗ = (w ′ − w)/(1+ w̄w ′) and thus
also [0, w∗] lie in the convex domainfw(D). The Euclidean segment [0, w∗] lies
on a greatest circle. Hence the arc of the greatest circle betweenw andw ′ lies in
the domainf(D), which is obtained fromfw(D) by a rotation of the sphere.

A different analytic characterization was given by Ma and Minda [MM1]—namely,

Re

[
1+ zf

′′(z)
f ′(z)

− 2zf ′(z)f(z)
1+ |f(z)|2

]
≥ 0 for z∈D. (2.3)

If g is convex, then

Re

[
ζ + z
ζ − z −

2zg ′(z)
g(ζ)− g(z)

]
≥ 0 for z, ζ ∈D, (2.4)

as Sheil-Small [SS] and Suffridge [S] have shown; see [P, p. 45] for a proof.

Theorem 2. If f is s-convex withf(0) = 0 and ifw ∈ f(D), then

Re

[
ζ + z
ζ − z −

2zf ′(z)
f(ζ)− f(z)

1+ w̄f(ζ)
1+ w̄f(z)

]
≥ 0 for z, ζ ∈D. (2.5)
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This is an immediate consequence of (2.4) applied to the convex functiongw of
Theorem 1. We remark that, as a function ofw, the left-hand side assumes its
minimum forw ∈ f(T). Hence (2.5) is not sharp forw ∈ f(D).
Theorem 3. Letf(z) = αz+ a2z

2+ · · · be s-convex, and letα > 0. Thenα ≤
1 and, withβ = √1− α2,∣∣∣∣ αzf(z) − 1

∣∣∣∣ ≤ β|z| < β for z∈D, (2.6)

Re

[
z
f ′(z)
f(z)

]
≥ 1

1+ β|z| >
1

1+ β for z∈D. (2.7)

If f(z) = αz/(1− βz) (see (1.9)), then equality holds in (2.6) for allz ∈D and in
(2.7) forz < 0. The inequalities (1.7) follow at once from (2.6), and

Re

[
f(z)

αz

]
≥ 1

1+ β|z| for z∈D. (2.8)

From (2.7) and (1.7) we deduce that

|f ′(z)| ≥ |f(z)/z|
1+ β|z| ≥

α

(1+ β|z|)2 ,

which is (1.8). Of course, our proof is in essence the same as that in [MMM].

Proof. (a) If ζ ∈D is fixed, then

ζ + z
ζ − z −

2zf ′(z)
f(ζ)− f(z)

1+ w̄f(ζ)
1+ w̄f(z) = 1+ 2

(
1

ζ
− α

f(ζ)
− αw̄

)
z+ · · ·

asz→ 0. Hence it follows [P, p. 41] from (2.4) that∣∣∣∣1ζ − α

f(ζ)
− αw̄

∣∣∣∣ ≤ 1 for ζ ∈D, w ∈ f(D). (2.9)

Let b = min{|f(z)| : z ∈ T}. Choosingw ∈ f(D) suitably with |w| = b, we
deduce that ∣∣∣∣ α

f(ζ)
− 1

ζ

∣∣∣∣ ≤ 1− αb for ζ ∈D.

For ζ ∈ T with |f(ζ)| = b we obtain thatα/b − 1≤ 1− αb, which implies that
α ≤ 1 andb ≥ (1− β)/α and thus 1− αb ≤ β. This, of course, also follows from
(1.7).

(b) We obtain from (2.5) forζ = 0 that

Re
2zf ′(z)

f(z)(1+ w̄f(z)) ≥ 1 for z∈D, w ∈ f(D).

Choosingw = bf(z)/|f(z)|, we conclude that 2 Re[zf ′/f ] ≥ 1+ b|f |. Hence, it
follows from the minimum principle for harmonic functions that

2 inf
z∈D

Re

[
z
f ′(z)
f(z)

]
≥ min

z∈T
(1+ b|f(z)|) = 1+ b2 ≥ 2

1+ β .
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3. The Central Normalization

Now we show that every s-convex domain has a unique “conformal center”. For
related ideas, see [MW; MO; COP].

Theorem 4. Letf be s-convex. Then

σ(f ) = max
z∈D

(1− |z|2)f #(z) (3.1)

is attained at a unique pointz0 ∈D. The function

h(z) = f(ψ(z))− f(z0)

1+ f(z0)f(ψ(z))
, (3.2)

whereψ(z) = (z+ z0)/(1+ z̄0z), is s-convex and satisfies

h(0) = 0, |h′(0)| = σ(f ), h′′(0) = 0. (3.3)

Sinceh(D) = ϕ(f(D)) with ϕ ∈ Rot(Ĉ), we can attain thatf is centrally nor-
malized,that is,

f(z) = αz+ a3z
3+ · · · (z∈D) (3.4)

with α = σ(f ). The important additional assumption is thatf ′′(0) = 0. This nor-
malization plays a great role for functions with given bounds for the Schwarzian
derivative (see e.g. [CO; COP]). We have 0< σ(f ) ≤ 1 by Theorem 3.

Proof. By the Koebe one-quarter theorem, the spherical distance satisfies

(1− |z|2)f #(z) ≤ 4 dist#(f(z), f(T))→ 0 as|z| → 1.

Hence, the maximum in (3.1) is attained for somez0 ∈ D. It follows from (3.2)
that

(1− |z|2)h#(z) = (1− |ψ(z)|2)f #(ψ(z)) ≤ (1− |z0|2)f #(z0) = h#(0) (3.5)

for z∈D. We have

(1− |z|2) h
#(z)

h#(0)
= 1+ Re

[
zh′′(0)
h′(0)

]
+O(|z|2)

asz→ 0, so we may deduce thath′′(0) = 0.
Now h is convex by the lemma. Hence

p(z) = 1+ zh
′′(z)
h′(z)

= 1+O(z2) (z∈D)

has positive real part. Consequently, the function(p − 1)/(p + 1) has a double
zero at 0 and is bounded by 1 and thus by|z|2. It follows that, forζ ∈ T and 0≤
r < 1,

r
∂

∂r
log[(1− r 2)|h′(rζ)|] = Rep(rζ)− 1+ r 2

1− r 2
≤ 0.

Hence(1− r 2)|h′(rζ)| ≤ |h′(0)|, which implies
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(1− |z|2)h#(z) < h#(0) for 0< |z| < 1.

It follows that the maximumz0 of (3.1) is unique; see (3.5).

An important example is the s-convex function

hα(z) = (1+ z)α − (1− z)α
(1+ z)α + (1− z)α = αz+

α

3
(1− α2)z3+ · · · , (3.6)

which mapsD onto the symmetric lens-shaped domain between the two circular
arcs that meet at±1 under the angleπα. This function satisfies

σ(hα) = α, Shα (z) = 2(1− α2)(1− z2)−2 (z∈D), (3.7)

hα(iy) = i tan(α arctany), h#
α(iy) = α/(1+ y2) (3.8)

for y > 0. In particular,hα(i) = i tan(πα/4). See [M1, p. 133] for a detailed
study of this example.

Theorem 5. Let the s-convex function be centrally normalized; see(3.4). Then,
for |z| = r < 1,

tan(α arctanr) ≤ |f(z)| ≤ (1+ r)
α − (1− r)α

(1+ r)α + (1− r)α < 1, (3.9)

α

1+ r 2
≤ f #(z), (3.10)

|f ′(z)| ≤ 4α(1− r 2)α−1

[(1+ r)α + (1− r)α]2
< α21−α(1− r)α−1. (3.11)

It follows from (3.6) and (3.8) that all four bounds are sharp for every value ofz∈
D. The estimate|f(z)| < 1 is due to Ma and Minda (personal communication).
Also, it follows from (3.9) that

{|w| < tan(πα/4)} ⊂ f(D); (3.12)

this disk has the spherical radiusπα/4.
Now letf be any s-convex function. We use the transformation (3.2) of Theo-

rem 4 to obtain a centrally normalized function to which Theorem 5 can be applied.
We list three consequences.

(i) Minda [M1, p. 137] proved thatf(D) always contains a disk of spherical ra-
diusπσ(f )/4. This also follows from (3.12).

(ii) It follows either from (3.12) by a geometrical argument or from (3.11) by an
analytical argument that all corners off(T) have interior angles≥ πσ(f );
we have equality for the functionhα in (3.6).

(iii) We deduce from (3.11) that, iff is bounded, then

f ′(z) = O((1− |z|)σ(f )−1) as |z| → 1,

where the exponent is best possible. Under the normalization (1.5), it is
known [MMM, p. 53] that

|f ′(z)| ≤ α(1− β|z|)−2 for |z| < 2/
(
1+

√
5− 4β

)
, β =

√
1− α2.
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Proof of Theorem 5.(a) First we prove the lower estimates. Letw ∈ f(D) and let
gw be the convex function of Theorem 1. Then

Re

[
1+ zf

′′

f ′
− 2zf ′w̄

1+ fw̄
]
= Re

[
1+ zg

′′

g ′

]
> 0.

For givenζ ∈T, we choosew = f(ζ2z̄). Then

pζ(z) ≡ 1+ zf
′′(z)
f ′(z)

− 2zf ′(z)f(ζ2z̄)

1+ f(z)f(ζ2z̄)
(z∈D) (3.13)

is analytic and satisfies

Repζ(z) > 0 (z∈D), pζ(0) = 1, p ′ζ(0) = 0

by our normalization (3.4). We easily deduce that|(pζ(z)−1)/(pζ(z)+1)| ≤ |z|2
for z∈D. It follows that Repζ(z) ≥ (1− |z|2)/(1+ |z|2). We conclude that, with
z = rζ ∈D,

Re

[
1+ zf

′′(z)
f ′(z)

− 2zf ′(z)f(z)
1+ |f(z)|2

]
= Repζ(rζ) ≥ 1− |z|2

1+ |z|2 . (3.14)

Hence we have

r
∂

∂r

[
log

(1+ r 2)|f ′(rζ)|
1+ |f(rζ)|2

]
= Repζ(rζ)− 1− r 2

1+ r 2
≥ 0,

which, by (1.3), implies (3.10) because [. . . ] = logα for r = 0. Finally, if z ∈ D
andC = f −1([0, f(z)]), then by (3.10) we have

arctan|f(z)| =
∫
C

|f ′(s)||ds|
1+ |f(s)|2 ≥

∫
C

α|ds|
1+ |s|2 ≥ α arctan|z|.

(b) The upper estimates are an immediate consequence of Theorem 7 (see Sec-
tion 4) and the following result of Chuaqui and Osgood [CO, p. 290].

Proposition. Let f be meromorphic and locally univalent inD. If f(z) =
a1z+ a3z

3+ · · · near0 and if

(1− |z|2)2|Sf (z)| ≤ 2(1− α2) (z∈D)
with 0< α ≤ 1, then

|f(z)| ≤ |a1|
α
hα(|z|), |f ′(z)| ≤ |a1|

α
h′α(|z|)

for z∈D, wherehα is defined by(3.6).

4. The Schwarzian Derivative

Wirths [W1, p. 49] proved an important inequality, which we present in its invari-
ant form [MM1, p. 158] (cf. [W2]). We shall give a much simpler proof.
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Theorem 6. If f is s-convex, then

(1− |z|2)2
2

|Sf (z)| +
∣∣∣∣z̄− 1− |z|2

2

f ′′(z)
f ′(z)

+ (1− |z|2) f
′(z)f(z)

1+ |f(z)|2
∣∣∣∣2

+ (1− |z|2)2f #(z)2 ≤ 1. (4.1)

Proof. All three terms in (4.1) remain essentially unchanged if we replacef by
ϕ B f B ψ, with ϕ ∈ Rot(Ĉ) andψ ∈ Möb(D); see [MM1, p. 154]. Hence, it is
sufficient to prove (4.1) forz = 0, f(0) = 0, andf ′(0) = α > 0, that is, to prove
(1.10).

Let ζ ∈T, and definepζ again by (3.13). We have

pζ(z) = 1+ 2p1z+ 2p2z
2 + · · · ,

where

p1= a2

α
, p2 = 3a3

α
− 2a2

2

α2
− α2ζ̄2.

Since Repζ(z) > 0, the analytic function

q(z) = 1

z

p(z)−1

p(z)+1
= p1+ (p2 − p2

1)z+ · · ·

satisfies|q(z)| ≤ 1 for z∈D. Hence|p2 − p2
1| + |p1|2 ≤ 1, so that∣∣∣∣3a3

α
− 3a2

2

α2
− α2ζ̄2

∣∣∣∣+ |a2|2
α2
≤ 1;

(1.10)follows if we chooseζ ∈T suitably.

We deduce the sharp bound for the Schwarzian derivative in terms of the quantity
σ(f ) defined in (1.4). We remark that, forh-convex functions, the sharp bound of
the Schwarzian derivative remains unknown.

Theorem 7. If f is s-convex, then

(1− |z|2)2|Sf (z)| ≤ 2(1− σ(f )2), (4.2)

and equality is possible for every value ofz∈D.
Proof. (a) Letζ ∈T be fixed. First we prove that

uζ(r) = r − 1− r 2

2
Re
ζf ′′(rζ)
f ′(rζ)

+ (1− r 2)Re
ζf ′(rζ)f(rζ)
1+ |f(rζ)|2 (4.3)

satisfies
u′ζ(r) ≥ 2(1− r 2)f #(rζ)2 for 0 ≤ r < 1. (4.4)

By rotational invariance, we may assume thatζ = 1. We write

a = f ′′(r)
f ′(r)

, a ′ =
(
f ′′(r)
f ′(r)

)′
, b = f ′(r)f(r)

1+ |f(r)|2 . (4.5)
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By (1.3), the Wirths inequality (4.1) implies

(1− r 2)2
(

1
2 Rea ′ − 1

4 Re(a2))+ |r − 1
2(1− r 2)a + (1− r 2)b|2

+ (1− r 2)2|b/f |2 ≤ 1.

Rearranging and dividing by the common factor 1− r 2, we obtain

0 ≤ − 1
2(1− r 2)Rea ′ − 1

2(1− r 2)(Im a)2 +1+ r Rea − 2r Reb

+ (1− r 2)Re(ab̄)− (1− r 2)|b|2 − (1− r 2)|b/f |2. (4.6)

Differentiating (4.3), we see from (4.5) that

u′1 = 1+ r Rea − 1
2(1− r 2)Rea ′ − 2r Reb

+ (1− r 2)Re(ab)+ (1− r 2)|b/f |2 − (1− r 2)Re(b2).

Hence, we deduce from (4.6) that

u′1− 2(1− r 2)|b/f |2 ≥ (1− r 2)
[

1
2(Im a)2 + |b|2 − Re(b2)− 2 Ima Im b

]
= 2(1− r 2)

(
Im a

2 − Im b
)2 ≥ 0,

which is (4.4), by (4.5).
(b) Since both max(1− |z|2)2|Sf (z)| andσ(f ) are unchanged under the trans-

formation (1.2), we may assume thatf is centrally normalized. Thusf(0) =
f ′′(0) = 0 and so, by (4.3),uζ(0) = 0. Hence (4.4) shows thatuζ(r) ≥ 0 for 0≤
r ≤ 1.

Using (4.3), it is easy to check that

d

dr
[uζ(r)

2 + (1− r 2)2f #(rζ)2] = 2uζ(u
′
ζ − 2(1− r 2)f #2). (4.7)

Sinceuζ(r) ≥ 0, this expression is≥ 0 by (4.4). Furthermore [. . . ] = f #(0)2 =
σ(f )2 for r = 0. Using again (4.3), we therefore obtain from the Wirths inequal-
ity (4.1) that

1
2(1− r 2)2|Sf (rζ)| ≤ 1− uζ(r)2 − (1− r 2)2f #(rζ)2 ≤ 1− σ(f )2.

(c) For the functionhα defined in (3.6), we have equality in (4.2) ifz∈D ∩ R;
see (3.7). Usinghα(ζz) with suitableζ ∈ T, we deduce that equality in (4.2) is
possible for everyz∈D.
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